Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor

Background: Thedeterminationofkineticparametersandthedevelopmentofmathematicalmodelsareofgreat interesttopredictthegrowthofmicroalgae,theconsumptionofsubstrateandthedesignofphotobioreactors focusedonCO2 capture.However,mostofthemodelsintheliteraturehavebeendevelopedforCO2 concentrationsbelow10%. Res...

Full description

Autores:
Saldarriaga, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/966
Acceso en línea:
https://hdl.handle.net/20.500.12834/966
Palabra clave:
Dynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxide
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_49cceeecd76f357003b9c4738d6dd8f8
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/966
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
title Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
spellingShingle Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
Dynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxide
title_short Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
title_full Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
title_fullStr Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
title_full_unstemmed Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
title_sort Kineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactor
dc.creator.fl_str_mv Saldarriaga, Luis Fernando
dc.contributor.author.none.fl_str_mv Saldarriaga, Luis Fernando
dc.contributor.other.none.fl_str_mv Almenglo, Fernando
Ramírez, Martín
Cantero, Domingo
dc.subject.keywords.spa.fl_str_mv Dynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxide
topic Dynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxide
description Background: Thedeterminationofkineticparametersandthedevelopmentofmathematicalmodelsareofgreat interesttopredictthegrowthofmicroalgae,theconsumptionofsubstrateandthedesignofphotobioreactors focusedonCO2 capture.However,mostofthemodelsintheliteraturehavebeendevelopedforCO2 concentrationsbelow10%. Results: A nonaxenicmicroalgalconsortiumwasisolatedfromlandfill leachateinordertostudyitskinetic behaviorusingadynamicmodel.ThemodelconsideredtheCO2 masstransferfromthegasphasetotheliquid phaseandtheeffectoflightintensity,assimilatednitrogenconcentration,ammoniumconcentrationand nitrateconcentration.Theproposedmathematicalmodelwasadjustedwith13kineticparametersand validatedwithagood fit obtainedbetweenexperimentalandsimulateddata. Conclusions: Goodresultswereobtained,demonstratingtherobustnessoftheproposedmodel.Theassumption inthemodelofDICinhibitionintheammoniumandnitrateuptakeswascorrect,sothisaspectshouldbe consideredwhenevaluatingthekineticswithmicroalgaewithhighinletCO2 concentrations.
publishDate 2019
dc.date.submitted.none.fl_str_mv 2019-09-16
dc.date.issued.none.fl_str_mv 2020-01-28
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:17:08Z
dc.date.available.none.fl_str_mv 2022-11-15T21:17:08Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv Artículo
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/966
dc.identifier.doi.none.fl_str_mv 10.1016/j.ejbt.2020.01.006.
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/966
identifier_str_mv 10.1016/j.ejbt.2020.01.006.
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Pontificia Universidad Catolica de Valparaiso
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/1/1-s2.0-S0717345820300063-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/3/license.txt
bitstream.checksum.fl_str_mv ded3612a579d09ecb2e75f5bb23b5041
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203421339680768
spelling Saldarriaga, Luis Fernando73c6fde9-a32c-4dbf-984d-20b6929dc902Almenglo, FernandoRamírez, MartínCantero, Domingo2022-11-15T21:17:08Z2022-11-15T21:17:08Z2020-01-282019-09-16https://hdl.handle.net/20.500.12834/96610.1016/j.ejbt.2020.01.006.Universidad del AtlánticoRepositorio Universidad del AtlánticoBackground: Thedeterminationofkineticparametersandthedevelopmentofmathematicalmodelsareofgreat interesttopredictthegrowthofmicroalgae,theconsumptionofsubstrateandthedesignofphotobioreactors focusedonCO2 capture.However,mostofthemodelsintheliteraturehavebeendevelopedforCO2 concentrationsbelow10%. Results: A nonaxenicmicroalgalconsortiumwasisolatedfromlandfill leachateinordertostudyitskinetic behaviorusingadynamicmodel.ThemodelconsideredtheCO2 masstransferfromthegasphasetotheliquid phaseandtheeffectoflightintensity,assimilatednitrogenconcentration,ammoniumconcentrationand nitrateconcentration.Theproposedmathematicalmodelwasadjustedwith13kineticparametersand validatedwithagood fit obtainedbetweenexperimentalandsimulateddata. Conclusions: Goodresultswereobtained,demonstratingtherobustnessoftheproposedmodel.Theassumption inthemodelofDICinhibitionintheammoniumandnitrateuptakeswascorrect,sothisaspectshouldbe consideredwhenevaluatingthekineticswithmicroalgaewithhighinletCO2 concentrations.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pontificia Universidad Catolica de ValparaisoKineticcharacterizationandmodelingofamicroalgaeconsortium isolatedfromlandfillleachateunderahighCO2 concentrationinabubble columnphotobioreactorPúblico generalDynamicmodel Nonaxenicconsortium Photon flux density Masstransfer Leachate Landfill Ammonium Nitrate Carbondioxideinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/draftArtículohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede Norte[1]FarrellyDJ,EverardCD,FaganCC,etal.Carbonsequestrationandtheroleofbiolog- icalcarbonmitigation:Areview.RenewSustainEnergyRev2013;21:712–27. https://doi.org/10.1016/j.rser.2012.12.038.[2] RamírezM,GómezJ,CanteroD.Biogas:Sources,purificationanduses.Biogas.In: SivakumarS,SharmaUC,PrasadR,editors.Energyscienceandtechnology.Hydro- genandothertechnologiessources,purificationandusesUSA:StudiumPressLLC; 2015.p.296–323.[3]HsuehHT,LiWJ,ChenHH,etal.Carbonbio-fixationbyphotosynthesisof Thermosynechococcus sp.CL-1 and Nannochloropsisoculta. JPhotochem PhotobiolB2009;95(1):33–9. https://doi.org/10.1016/j.jphotobiol.2008.11. 010. PMid:19167907.[4]SheneC,ChistiY,BustamanteM,etal.EffectofCO2 in theaerationgasoncultivation of themicroalga Nannochloropsisoculata: Experimentalstudyandmathematical modelingofCO2 assimilation.AlgalRes2016;13:16–29. https://doi.org/10.1016/j. algal.2015.11.005.[5]PegallapatiA,NirmalakhandanN.Modelingalgalgrowthinbubblecolumnsunder spargingwithCO2-enrichedair.BioresourTechnol2012;124:137–45. https://doi. org/10.1016/j.biortech.2012.08.026. PMid:22989642.[6]MuharamY,Dianursanti,PramadanaAB,etal.Modellingandsimulationofabubble column photobioreactorforthecultivationofmicroalgae Nannochloropsissalina. ChemEngTrans2017;56:1555–60. https://doi.org/10.3303/CET1756260.[7]PfaffingerC,SchöneD,TrunzS,etal.Model-basedoptimizationofmicroalgaeareal productivityin flat-plategas-liftphotobioreactors.AlgalRes2016;20:153–63. https://doi.org/10.1016/j.algal.2016.10.002[8]KasiriS,UlrichA,PrasadV.Kineticmodelingandoptimizationofcarbondioxide fixationusingmicroalgaecultivatedinoil-sandsprocesswater.ChemEngSci2015; 137:697–711. https://doi.org/10.1016/j.ces.2015.07.004.[9]LeeE,ZhangQ.Integratedco-limitationkineticmodelformicroalgaegrowthinan- aerobicallydigestedmunicipalsludgecentrate.AlgalRes2016;18:15–24. https:// doi.org/10.1016/j.algal.2016.05.019.[10]KilhamSS,KreegerD,LynnSG,etal.COMBO:Adefinedfreshwatercultureme- diumforalgaeandzooplankton.Hydrobiologia1998;377:147–59. https://doi. org/10.1023/A:1003231628456.[11]AndersenRA,KawachiM.Traditional microalgaeisolationtechniques.In: AndersenRA,editor.Algalculturingtechniques.Oxford:ElsevierAcademic Press;2005.p.83–100. https://doi.org/10.1016/B978-012088426-1/50007-X. PMid:15743338.[12]ThawechaiT,CheirsilpB,LouhasakulY,etal.Mitigationofcarbondioxidebyoleag- inousmicroalgaeforlipidsandpigmentsproduction:Effectoflightilluminationand carbondioxidefeedingstrategies.BioresourTechnol2016;219:139–49. https://doi. org/10.1016/j.biortech.2016.07.109. PMid:27484670.[13]ZhaoB,SuY.Processeffectofmicroalgal-carbondioxide fixationandbiomasspro- duction:Areview.RenewSustainEnergyRev2014;31:121–32. https://doi.org/10. 1016/j.rser.2013.11.054.[14]Safi C, UrsuA,LarocheC,etal.Aqueousextractionofproteinsfrommicroalgae:Ef- fectofdifferentcelldisruptionmethods.AlgalRes2014;3:61–5. https://doi.org/10. 1016/j.algal.2013.12.004.[15]ClesceriLS,GreenbergA,EatonA.Standardmethodsfortheexaminationofwater and wastewater..20thedWashington,DC:AmericanPublicHealthAssociation, American WaterWorksAssociation,WaterEnvironmentFederation;1999;1120 ISBN:0875532357.[16]McClureDD,AboudhaN,KavanaghJM,etal.Mixinginbubblecolumnreactors:Ex- perimental studyandCFDmodeling.ChemEngJ2015;264:291–301. https://doi. org/10.1016/j.cej.2014.11.090.[17] FlynnKJ,FashamMJ,HipkinCR.Modellingtheinteractionsbetweenammonium andnitrateuptakeinmarinephytoplankton.PhilosTransRSocLondonSerB 1997;352(1361):1625–45. https://doi.org/10.1098/rstb.1997.0145. PMC: 169207829.[18]Sanz-LuqueE,Chamizo-AmpudiaA,LlamasA,etal.Understandingnitrateassimila- tionanditsregulationinmicroalgae.FrontPlantSci2015;6(899). https://doi.org/10. 3389/fpls.2015.00899. PMid:26579149.[19]Franco-MorgadoM,AlcántaraC,NoyolaA,etal.Astudyofphotosyntheticbiogas upgradingbasedonahighratealgalpondunderalkalineconditions:Influenceof theilluminationregime.SciTotalEnviron2017;592:419–25. https://doi.org/10. 1016/j.scitotenv.2017.03.077. PMid:28340452[20]MontgomeryDC.Designandanalysisofexperiments..5thedNewYork:JohnWiley & Sons,Inc.;1997;684ISBN:0471316490.[21]ArbibZ,RuizJ,Alvarez-DiazP,etal.Photobiotreatment:influenceofnitrogenand phosphorusratioinwastewaterongrowthkineticsof Scenedesmusobliquus. IntJ Phytoremediation2013;15(8):774–88. https://doi.org/10.1080/15226514.2012. 735291. PMid:23819274.[22]BarbosaMJ,ZijffersJ,NisworoA,etal.Optimizationofbiomass,vitamins,andcarot- enoidyieldonlightenergyina flat-panelreactorusingtheA-stattechnique. BiotechnolBioeng2004;89(2):233–42. https://doi.org/10.1002/bit.20346. PMid: 15593095[23]BabcockR,MaldaJ,RadwayJ.Hydrodynamicsandmasstransferinatubularairlift photobioreactor.JApplPhycol2002;14:169–84. https://doi.org/10.1023/A: 1019924226457.[24]SanderR.CompilationofHenry’s lawconstants(version4.0)forwaterassolvent. AtmosChemPhys2015;15:4399–981. https://doi.org/10.5194/acp-15-4399-2015.[25]Callejo-LópezJ,RamírezM,BolívarJ,etal.Mainvariablesaffectingachemical-enzy- maticmethodtoobtainproteinandaminoacidsfromresistantmicroalgae.JChemN Y 2019;2019:1390463. https://doi.org/10.1155/2019/1390463.[26]AndersenRA,BrettRW,PotterD,etal.PhylogenyoftheEustigmatophyceaebased upon18SrDNA,withemphasison Nannochloropsis. Protist1998;149(1):61–74. https://doi.org/10.1016/S1434-4610(98)70010-0.[27]BaroniÉ,YapK,WebleyPA,etal.Theeffectofnitrogendepletiononthecellsize, shape,densityandgravitationalsettlingof Nannochloropsissalina, Chlorella sp.(ma- rine) and Haematococcuspluvialis. AlgalRes2019;39:101454. https://doi.org/10. 1016/j.algal.2019.101454[28]KandilianR,LeeE,PilonL.Radiationandopticalpropertiesof Nannochloropsis oculata grownunderdifferentirradiancesandspectra.BioresourTechnol2013; 137:63–73. https://doi.org/10.1016/j.biortech.2013.03.058. PMid:23587810.[29]MaY,WangZ,YuC,etal.Evaluationofthepotentialof9 Nannochloropsis strainsfor biodieselproduction.BioresourTechnol2014;167:503–9. https://doi.org/10.1016/j. biortech.2014.06.047. PMid:25013933.[30]LizzulA,Lekuona-AmundarainA,PurtonS,etal.Characterizationof Chlorella sorokiniana, UTEX1230.Biology2018;7(2):25. https://doi.org/10.3390/biol- ogy7020025. PMid:29652809.[31]XiaJ,GongS,JinX,etal.Effectsofsimulated flue gasesongrowthandlipidproduc- tionof Chlorellasorokiniana CS-01.JCentSouthUniv2013;20(3):730–6. https://doi. org/10.1007/s11771-013-1541-8.[32]KumarK,BanerjeeD,DasD.Carbondioxidesequestrationfromindustrial flue gasby Chlorellasorokiniana. BioresourTechnol2014;152:225–33. https://doi.org/10.1016/j. biortech.2013.10.098. PMid:24292202.[33]RazzakSA,IlyasM,AliSM,etal.EffectsofCO2 concentrationandpHonmixotrophic growthof Nannochloropsisoculata. ApplBiochemBiotechnol2015;176(5): 1290–302. https://doi.org/10.1007/s12010-015-1646-7. PMid:25926014.[34]ChiuS-Y,KaoC-Y,TsaiM-T,etal.LipidaccumulationandCO2 utilizationof Nannochloropsisoculata in responsetoCO2 aeration.BioresourTechnol2009;100 (2):833–8. https://doi.org/10.1016/j.biortech.2008.06.061. PMid:18722767.[35]ScherholzML,CurtisWR.AchievingpHcontrolinmicroalgalculturesthroughfed- batchadditionofstoichiometrically-balancedgrowthmedia.BMCBiotechnol 2013;13:39. https://doi.org/10.1186/1472-6750-13-39. PMid:23651806.[36]MennaaF,ArbibZ,PeralesJ.Urbanwastewatertreatmentbysevenspeciesof microalgaeandanalgalbloom:Biomassproduction,NandPremovalkineticsand harvestability.WaterRes2015;83:42–51. https://doi.org/10.1016/j.watres.2015.06. 007. PMid:26117372[37]FréN,dasChagasA,RechR,etal.Kineticmodelingof Dunaliellatertiolecta growth underdifferentnitrogenconcentrations.ChemEngTechnol2016;39(9):1716–22. https://doi.org/10.1002/ceat.201500585.[38]YangA.ModelingandevaluationofCO2 supply andutilizationinalgalponds. Ind EngChemRes2011;50(19):11181–92. https://doi.org/10.1021/ ie200723w[39] DecostereB,CraeneJ,HoeyS,etal.Validationofamicroalgalgrowthmodelac- countingwithinorganiccarbonandnutrientkineticsforwastewatertreatment. ChemEngJ2016;285:189–97. https://doi.org/10.1016/j.cej.2015.09.111.[40]SurendhiranD,VijayM,SivaprakashB,etal.Kineticmodelingofmicroalgalgrowth and lipidsynthesisforbiodieselproduction.3Biotech2015;5:663–9. https://doi. org/10.1007/s13205-014-0264-3. PMid:28324516.[41]BernardO,RémondB.Validationofasimplemodelaccountingforlightandtemper- atureeffectonmicroalgalgrowth.BioresourTechnol2012;123:520–7. https://doi. org/10.1016/j.biortech.2012.07.022. PMid:22940363.[42] KetheesanB,NirmalakhandanN.Modelingmicroalgalgrowthinanairlift-driven racewayreactor.BioresourTechnol2013;136:689–96. https://doi.org/10.1016/j. biortech.2013.02.028. PMid:23603218.[43]PackerA,LiY,AndersenT,etal.Growthandneutrallipidsynthesisingreen microalgae:Amathematicalmodel.BioresourTechnol2011;102(1):111–7. https://doi.org/10.1016/j.biortech.2010.06.029. PMid:20619638.[44]KimJ,LiuZ,LeeJ-Y,etal.Removalofnitrogenandphosphorusfrommunicipal wastewatereffluentusing Chlorellavulgaris anditsgrowthkinetics.DesalinWater Treat2013;51(40–42):7800–6. https://doi.org/10.1080/19443994.2013.779938.[45]BanerjeeS,RamaswamyS.Dynamicprocessmodelandeconomicanalysisof microalgaecultivationinopenracewayponds.AlgalRes2017;26:330–40. https:// doi.org/10.1016/j.algal.2017.08.011.[46]Figueroa-TorresGM,PittmanJK,TheodoropoulosC.Kineticmodellingofstarchand lipidformationduringmixotrophic,nutrient-limitedmicroalgalgrowth.Bioresour Technol 2017;241:868–78. https://doi.org/10.1016/j.biortech.2017.05.177. PMid: 28628990.[47]BekirogullariM,FragkopoulosIS,PittmanJK,etal.Productionoflipid-basedfuelsand chemicalsfrommicroalgae:Anintegratedexperimentalandmodel-basedoptimiza- tionstudy.AlgalRes2017;23:78–87. https://doi.org/10.1016/j.algal.2016.12.015.[48]DarveheiP,BahriPA,MoheimaniNR.Modeldevelopmentforthegrowthof microalgae:Areview.RenewSustainEnergyRev2018;97:233–58. https://doi.org/ 10.1016/j.rser.2018.08.027.[49]laSieglerDH,McCaffreyWC,BurrellRE,etal.Optimizationofmicroalgalproductiv- ityusinganadaptive,non-linearmodelbasedstrategy.BioresourTechnol2012;104: 537–46. https://doi.org/10.1016/j.biortech.2011.10.029. PMid:22119433.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S0717345820300063-main.pdf1-s2.0-S0717345820300063-main.pdfapplication/pdf1592644https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/1/1-s2.0-S0717345820300063-main.pdfded3612a579d09ecb2e75f5bb23b5041MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/966/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/966oai:repositorio.uniatlantico.edu.co:20.500.12834/9662022-11-15 16:17:09.818DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==