Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente
Los microorganismos, especialmente las bacterias, están distribuidos por todo el mundo, desde el suelo, los mares y los ríos hasta el sistema digestivo de los animales y los seres humanos; por lo tanto, las bacterias mantienen una interacción constante con los compuestos utilizados por los seres hum...
- Autores:
-
Fernández Rodríguez, Ronield Elías
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/835
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/835
- Palabra clave:
- resistencia bacteriana, antibióticos, genes de resistencia antibiótica.
bacterial resistance, antibiotics, antibiotic resistance genes.
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_49054e720ca84532567e006bf504473c |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/835 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
dc.title.alternative.spa.fl_str_mv |
Antibiotic resistance: the role of man, animals and the environment |
title |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
spellingShingle |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente resistencia bacteriana, antibióticos, genes de resistencia antibiótica. bacterial resistance, antibiotics, antibiotic resistance genes. |
title_short |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
title_full |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
title_fullStr |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
title_full_unstemmed |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
title_sort |
Resistencia antibiótica: el papel del hombre, los animales y el medio ambiente |
dc.creator.fl_str_mv |
Fernández Rodríguez, Ronield Elías |
dc.contributor.author.none.fl_str_mv |
Fernández Rodríguez, Ronield Elías |
dc.contributor.other.none.fl_str_mv |
Bolívar-Anillo, Hernando Hoyos Turcios, Carlos Carrillo García, Laura Serrano Hernández, María Abdellah, Ezzanad |
dc.subject.keywords.spa.fl_str_mv |
resistencia bacteriana, antibióticos, genes de resistencia antibiótica. bacterial resistance, antibiotics, antibiotic resistance genes. |
topic |
resistencia bacteriana, antibióticos, genes de resistencia antibiótica. bacterial resistance, antibiotics, antibiotic resistance genes. |
description |
Los microorganismos, especialmente las bacterias, están distribuidos por todo el mundo, desde el suelo, los mares y los ríos hasta el sistema digestivo de los animales y los seres humanos; por lo tanto, las bacterias mantienen una interacción constante con los compuestos utilizados por los seres humanos y los animales como los antibióticos, y con otros microorganismos que pueden ser de la misma especie o de diferentes géneros taxonómicos; esta interacción podría dar lugar a una presión selectiva sobre las bacterias en el medio ambiente y promover el intercambio de material genético, lo que llevaría a una propagación global de la resistencia a los antibióticos y a una afectación mundial de la salud. En este contexto, esta revisión tiene por objeto ofrecer una visión general del papel de los seres humanos, los animales y el medio ambiente en la resistencia bacteriana, con énfasis en los procesos en el suelo y los medios acuáticos y los efectos sobre la salud humana. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-05-30 |
dc.date.submitted.none.fl_str_mv |
2019-05-19 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:42:19Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:42:19Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/835 |
dc.identifier.doi.none.fl_str_mv |
10.14482/sun.36.1.615 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/835 |
identifier_str_mv |
10.14482/sun.36.1.615 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Universidad del Norte |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/1/12022-Texto%20del%20art%c3%adculo-214421455317-1-10-20201127.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/3/license.txt |
bitstream.checksum.fl_str_mv |
d4a5ddf530ce6883dd3ddc6e96c459d5 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203416730140672 |
spelling |
Fernández Rodríguez, Ronield Elíasda02676b-4608-43e3-a073-913542d6bb78Bolívar-Anillo, HernandoHoyos Turcios, CarlosCarrillo García, LauraSerrano Hernández, MaríaAbdellah, Ezzanad2022-11-15T19:42:19Z2022-11-15T19:42:19Z2019-05-302019-05-19https://hdl.handle.net/20.500.12834/83510.14482/sun.36.1.615Universidad del AtlánticoRepositorio Universidad del AtlánticoLos microorganismos, especialmente las bacterias, están distribuidos por todo el mundo, desde el suelo, los mares y los ríos hasta el sistema digestivo de los animales y los seres humanos; por lo tanto, las bacterias mantienen una interacción constante con los compuestos utilizados por los seres humanos y los animales como los antibióticos, y con otros microorganismos que pueden ser de la misma especie o de diferentes géneros taxonómicos; esta interacción podría dar lugar a una presión selectiva sobre las bacterias en el medio ambiente y promover el intercambio de material genético, lo que llevaría a una propagación global de la resistencia a los antibióticos y a una afectación mundial de la salud. En este contexto, esta revisión tiene por objeto ofrecer una visión general del papel de los seres humanos, los animales y el medio ambiente en la resistencia bacteriana, con énfasis en los procesos en el suelo y los medios acuáticos y los efectos sobre la salud humana.Microorganisms, especially bacteria, are distributed throughout the world, from the soil, seas and rivers to the digestive system of animals and humans. Therefore, the bacteria maintain a constant interaction with compounds used by humans and animals, such as antibiotics, and with other microorganisms that may be of the same species or of different taxonomic genera. In addition, this interaction could lead to selective pressure on bacteria in the environment and promote the exchange of genetic material, which would allow to a global spread of antibiotic resistance and thus a worldwide affectation on health. In this context, the present review aims to provide an overview of the role of humans, animals and the environment in bacterial resistance, with emphasis on soil and aquatic processes and effects on human health.application/pdfspahttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Universidad del NorteResistencia antibiótica: el papel del hombre, los animales y el medio ambienteAntibiotic resistance: the role of man, animals and the environmentPúblico generalresistencia bacteriana, antibióticos, genes de resistencia antibiótica.bacterial resistance, antibiotics, antibiotic resistance genes.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte1. Pereira A, Pita J. Alexander Fleming (1881-1955): da descoberta da penicilina (1982) ao prémio Nobel (1945). História: revista da Faculdade de Letras da Universidade do Porto, 2018, vol. 6.2. Carvalho I T, Santos L. Antibiotics in the aquatic environments: a review of the European scenario. Environment International, 2016, vol. 94, p. 736-757. https://doi.org/10.1016/j.envint.2016.06.025.3. Bartlett J G, Gilbert D N, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clinical Infectious Diseases, 2013, vol. 56, no 10, p. 1445-1450. https://doi.org/10.1093/cid/cit070.4. Abraham E P, Chain E. An enzyme from bacteria able to destroy penicillin. Nature, 1940, vol. 146, no 3713, p. 837. https://doi.org/10.1038/146837a0.5. Chambers H F. The changing epidemiology of Staphylococcus aureus?. Emerging infectious diseases, 2001, vol. 7, no 2, p. 178.6. Navarro F, Miró E, Mirelis B. Lectura interpretada del antibiograma de enterobacterias. Enfermedades Infecciosas y microbiología clínica, 2010, vol. 28, no 9, p. 638-645. https://doi.org/10.1016/j. eimc.2010.05.002.7. Martínez J L. Antibiotics and antibiotic resistance genes in natural environments. Science, 2008, vol. 321, no 5887, p. 365-367. DOI: 10.1126/science.1159483.8. Zhu Y G, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 2013, vol. 110, no 9, p. 3435-3440. https://doi.org/10.1073/ pnas.1222743110.9. Salyers A A, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends in microbiology, 2004, vol. 12, no 9, p. 412-416. https://doi.org/10.1016/j.tim.2004.07.004.10. Redfield R J. Do bacteria have sex?. Nature Reviews Genetics, 2001, vol. 2, no 8, p. 634. https://doi. org/10.1038/35084593 DO.11. Clewell D B. (ed.). Bacterial conjugation. Springer Science & Business Media, 2013.12. Kümmerer K. Resistance in the environment. Journal of antimicrobial Chemotherapy, 2004, vol. 54, no 2, p. 311-320. https://doi.org/10.1093/jac/dkh325.13. Correia A. Presence and elimination of pharmaceutical compounds in wastewater treatment plants. Worldwide review and national perspective. Boletín de Malariología y Salud Ambiental, 2015, vol. 55, no 1.14. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, vol. 74, no 3, p. 417-433. DOI:10.1128/MMBR.00016-10.15. Poirel L, et al. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrobial agents and chemotherapy, 2005, vol. 49, no 8, p. 3523-3525. DOI:10.1128/AAC.49.8.3523– 3525.2005.16. Humeniuk C, et al. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrobial agents and chemotherapy, 2002, vol. 46, no 9, p. 3045-3049. DOI: 10.1128/AAC.46.9.3045-3049.2002.17. Jernberg C, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 2010, vol. 156, no 11, p. 3216-3223. DOI: 10.1099/mic.0.040618-0.18. Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Veterinary research, 2001, vol. 32, no 3-4, p. 227-241. https://doi.org/10.1051/vetres:2001121.19. Pepper I L, et al. Soil: a public health threat or savior?. Critical Reviews in Environmental Science and Technology, 2009, vol. 39, no 5, p. 416-432. https://doi.org/10.1080/10643380701664748.20. Grenni P, Ancona V, Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal, 2018, vol. 136, p. 25-39. https://doi.org/10.1016/j.microc.2017.02.006.21. Cytryn E. The soil resistome: the anthropogenic, the native, and the unknown. Soil Biology and Biochemistry, 2013, vol. 63, p. 18-23. https://doi.org/10.1016/j.soilbio.2013.03.017.22. Schlüsener M P, Bester K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environmental Pollution, 2006, vol. 143, no 3, p. 565-571. https://doi.org/10.1016/j.envpol. 2005.10.049.23. Pan M, Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil. Science of the Total Environment, 2016, vol. 545, p. 48-56. https://doi.org/10.1016/j.scitotenv.2015.12.040.24. Séveno N A, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment. Reviews in medical microbiology, 2002, vol. 13, no 1, p. 15-27.25. Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 2005, vol. 7, no 11, p. 1673-1685. https://doi.org/10.1111/ j.1462-2920.2005.00891.x.26. Kopmann C, et al. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS microbiology ecology, 2013, vol. 83, no 1, p. 125-134. https://doi.org/10.1111/j.1574-6941.2012.01458.x.27. Martinez J. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental pollution, 2009, vol. 157, no 11, p. 2893-2902. https://doi.org/10.1016/j.envpol. 2009.05.051.28. Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science, 2018, vol. 359, no 6373, p. 320-325. DOI: 10.1126/science.aap9516.29. Wright G D. Antibiotic resistance in the environment: a link to the clinic?. Current opinion in microbiology, 2010, vol. 13, no 5, p. 589-594. https://doi.org/10.1016/j.mib.2010.08.005.30. D’costa V M, et al. Sampling the antibiotic resistome. Science, 2006, vol. 311, no 5759, p. 374-377. DOI: 10.1126/science.1120800.31. Perry J, Westman E, Wright G D. The antibiotic resistome: what’s new?. Current opinion in microbiology, 2014, vol. 21, p. 45-50. https://doi.org/10.1016/j.mib.2014.09.002.32. Riesenfeld C S, Goodman R M, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environmental microbiology, 2004, vol. 6, no 9, p. 981-989. https://doi. org/10.1111/j.1462-2920.2004.00664.x.33. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science, 1994, vol. 264, no 5157, p. 375-382. DOI: 10.1126/science.8153624.34. Marshall C G, Lessard I A D, Park I S, Wright G D. Glycopeptide antibiotic resistance genes in glycopeptide- producing organisms. Antimicrobial Agents and Chemotherapy, 1998, vol. 42, no 9, p. 2215- 2220. DOI: 10.1128/AAC.42.9.2215.35. D’costa V M, et al. Antibiotic resistance is ancient. Nature, 2011, vol. 477, no 7365, p. 457. DOI:10.1038/nature10388.36. Holvoet K, et al. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol., 2013, vol. 79, no 21, p. 6677-6683. DOI: 10.1128/AEM.01995-13.37. Kümmerer K. Antibiotics in the aquatic environment–a review–part I. Chemosphere, 2009, vol. 75, no 4, p. 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086.38. Nonaka L, Ikeno K, Suzuki S. Distribution of tetracycline resistance gene, tet (M), in gram-positive and gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in japan. Microbes and Environments, 2007, vol. 22, no 4, p. 355-364. https://doi.org/10.1264/jsme2.22.35539. Marti E, Variatza E, Balcazar J. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in microbiology, 2014, vol. 22, no 1, p. 36-41. https://doi.org/10.1016/j.tim.2013.11.00140. Ojer-Usoz E, et al. High dissemination of extended-spectrum β-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water research, 2014, vol. 56, p. 37-47. https:// doi.org/10.1016/j.watres.2014.02.041.41. Kittinger C, et al. Enterobacteriaceae isolated from the river Danube: antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. PloS one, 2016, vol. 11, no 11, p. e0165820. https:// doi.org/10.1371/journal.pone.016582042. Calisto N, Gómez C, Muñoz P. Resistencia a antibióticos en bacterias recolectadas en agua de mar en las proximidades de bases antárticas. En Anales del Instituto de la Patagonia. Universidad de Magallanes, 2018. p. 29-39. http://dx.doi.org/10.4067/S0718-686X201800030002943. Miller R V, Gammon K, Day M J. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian journal of microbiology, 2009, vol. 55, no 1, p. 37-45. https://doi.org/10.1139/W08-11944. Biyela P T, Lin J, Bezuidenhout C C. The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology, 2004, vol. 50, no 1, p. 45-50. https://doi.org/10.2166/wst.2004.001445. Liu Bo, Pop M. ARDB—antibiotic resistance genes database. Nucleic acids research, 2008, vol. 37, no suppl_1, p. D443-D447. https://doi.org/10.1093/nar/gkn65646. Schwartz T, et al. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS microbiology ecology, 2003, vol. 43, no 3, p. 325- 335. https://doi.org/10.1111/j.1574-6941.2003.tb01073.x47. Jacobs C, Frère JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell, 1997, vol. 88, no 6, p. 823-832. https://doi.org/10.1016/S0092-8674(00)81928-548. Kümmerer K. Antibiotics in the aquatic environment–a review–part II. Chemosphere, 2009, vol. 75, no 4, p. 435-441. https://doi.org/10.1016/j.chemosphere.2008.12.00649. Miranda C D, Zemelman R. Antibiotic resistant bacteria in fish from the Concepcion Bay, Chile. Marine Pollution Bulletin, 2001, vol. 42, no 11, p. 1096-1102. https://doi.org/10.1016/S0025- 326X(01)00093-550. Middleton J H, Ambrose A. Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). Journal of wildlife diseases, 2005, vol. 41, no 2, p. 334-341. https://doi.org/10.7589/0090-3558-41.2.33451. Labarca J, Araos R. Resistencia antimicrobiana: Problema en aumento y soluciones escasas. Revista chilena de infectología, 2009, vol. 26, p. 8-9. http://dx.doi.org/10.4067/S0716-1018200900030000152. Van Boeckel T P, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 2014, vol. 14, no 8, p. 742-750. https://doi. org/10.1016/S1473-3099(14)70780-753. Wirtz V J, Dreser A, Gonzales R. Tendencias en el consumo de antibióticos en ocho países latinoamericanos entre 1997 y 2007. Revista Panamericana de Salud Pública, 2010, vol. 27, no 3, p. 219-226.54. Klein E Y, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 2018, vol. 115, no 15, p. E3463-E3470. https://doi.org/10.1073/pnas.171729511555. Alós JI. Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades infecciosas y microbiología clínica, 2015, vol. 33, no 10, p. 692-699. https://doi.org/10.1016/j.eimc.2014.10.00456. O’neill J I M. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on antimicrobial resistance, 2014, vol. 1, no 1, p. 1-16.57. Gupta K, Hooton T M, Stamm W E. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of internal medicine, 2001, vol. 135, no 1, p. 41-50. DOI: 10.7326/0003-4819-135-1-200107030-0001258. De Kraker M EA, et al. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS medicine, 2011, vol. 8, no 10, p. e1001104. https://doi.org/10.1371/journal.pmed.100110459. Cuevas O, et al. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrobial agents and chemotherapy, 2004, vol. 48, no 11, p. 4240-4245. DOI: 10.1128/AAC.48.11.4240-4245.200460. Oteo J, et al. Antibiotic resistance in 3113 blood isolates of Staphylococcus aureus in 40 Spanish hospitals participating in the European Antimicrobial Resistance Surveillance System (2000–2002). Journal of Antimicrobial Chemotherapy, 2004, vol. 53, no 6, p. 1033-1038. https://doi.org/10.1093/ jac/dkh21461. Chiang FY, Climo M. Efficacy of linezolid alone or in combination with vancomycin for treatment of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy, 2003, vol. 47, no 9, p. 3002-3004. DOI: 10.1128/AAC.47.9.3002-3004.200362. Kollef M H, et al. New antimicrobial agents for methicillin-resistant’Staphylococcus aureus’. Critical Care and Resuscitation, 2009, vol. 11, no 4, p. 282.63. Long S, et al. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrobial agents and chemotherapy, 2014, vol. 58, no 11, p. 6668-6674. DOI: 10.1128/AAC.03622-1464. Villalobos A P, Barrero L I, Rivera S M, Ovalle M V, Valera D. (2014). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(1), 67-80.65. Oldfield E, Feng X. Resistance-resistant antibiotics. Trends in Pharmacological Sciences, 2014, vol. 35, no 12, p. 664-674. https://doi.org/10.1016/j.tips.2014.10.00766. Li J, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet infectious diseases, 2006, vol. 6, no 9, p. 589-601. https://doi.org/10.1016/S1473- 3099(06)70580-167. Van Hoek A H, et al. Acquired antibiotic resistance genes: an overview. Frontiers in microbiology, 2011, vol. 2, p. 203. https://doi.org/10.3389/fmicb.2011.0020368. Coutinho F, et al. Antibiotic resistance in aquatic environments of Rio de Janeiro, Brazil. InTech, 2013. http://dx.doi.org/10.5772/5463869. Olaechea P M, et al. Epidemiología e impacto de las infecciones nosocomiales. Medicina Intensiva, 2010, vol. 34, no 4, p. 256-267. doi:10.1016/j.medin.2009.11.01370. Farinas M, Martínez-Martínez L. Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, Pseudomonas aeruginosa, Acinetobacter baumannii y otros bacilos gramnegativos no fermentadores. Enfermedades infecciosas y microbiología clinica, 2013, vol. 31, no 6, p. 402- 409. https://doi.org/10.1016/j.eimc.2013.03.01671. Martin F, et al. Estudio económico de la infección nosocomial en una unidad de cuidados intensivos pediátricos. Revista Cubana de Pediatría, 2000, vol. 72, no 1, p. 21-26.72. Castro-Orozco R, et al. Patrones de resistencia antimicrobiana en uropatógenos gramnegativos aislados de pacientes ambulatorios y hospitalizados Cartagena, 2005-2008. Revista de salud pública, 2010, vol. 12, p. 1010-1019.73. Rodríguez‐Baño J, et al. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clinical microbiology and infection, 2008, vol. 14, no 3, p. 276-278. https://doi. org/10.1111/j.1469-0691.2007.01916.x74. Alvarez M, Benavides D. Aplicación de las normas de bioseguridad en el cuidado de enfermería en pacientes que ingresan al área de infectología Hospital Vicente Corral Moscoso. Cuenca, 2013. 2014. Tesis de Licenciatura.75. Rodríguez L, et al. Uso prudente de antimicrobianos y propuestas de mejora en veterinaria. Enfermedades Infecciosas y Microbiología Clínica, 2010, vol. 28, p. 40-44. https://doi.org/10.1016/S0213- 005X(10)70042-276. Phillips I, et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of Antimicrobial Chemotherapy, 2004, vol. 53, no 1, p. 28-52. https:// doi.org/10.1093/jac/dkg48377. Nogales B, et al. Anthropogenic perturbations in marine microbial communities. FEMS Microbiology reviews, 2011, vol. 35, no 2, p. 275-298. https://doi.org/10.1111/j.1574-6976.2010.00248.x78. Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Current opinion in microbiology, 2011, vol. 14, no 3, p. 236-243. https://doi.org/ 10.1016/j.mib.2011.04.00979. Teuber M. Veterinary use and antibiotic resistance. Current opinion in microbiology, 2001, vol. 4, no 5, p. 493-499. https://doi.org/10.1016/S1369-5274(00)00241-180. Enne V I, et al. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiology Letters, 2008, vol. 278, no 2, p. 193-199. https://doi.org/10.1111/j.1574- 6968.2007.00991.x81. Mckinney C W, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental science & technology, 2010, vol. 44, no 16, p. 6102-6109. DOI: 10.1021/es903816582. Peak N, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environmental microbiology, 2007, vol. 9, no 1, p. 143-151. https://doi.org/10.1111/j.1462-2920.2006.01123.x83. Binh C, et al. Similar bacterial community structure and high abundance of sulfonamide resistance genes in field-scale manures. Manure: management, uses and environmental impacts. Nova Science Publishers, Hauppauge, NY, 2010, p. 141-166.84. Aarestrup F, et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrobial Agents and chemotherapy, 2001, vol. 45, no 7, p. 2054-2059. DOI: 10.1128/AAC.45.7.2054- 2059.200185. Klare I, et al. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microbial Drug Resistance, 1999, vol. 5, no 1, p. 45-52. https://doi. org/10.1089/mdr.1999.5.4586. Valdez J. Adición de fuentes antioxidantes al diluyente de semen bovino y sus efectos posdescongelamiento. 2018. Tesis Doctoral. Universidad Autonoma De Chihuahua.87. Ungemach F R, Müller-Bahrdt D, Abraham G. Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. International Journal of Medical Microbiology, 2006, vol. 296, p. 33-38. https://doi.org/10.1016/j.ijmm.2006.01.05http://purl.org/coar/resource_type/c_6501ORIGINAL12022-Texto del artículo-214421455317-1-10-20201127.pdf12022-Texto del artículo-214421455317-1-10-20201127.pdfapplication/pdf1204627https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/1/12022-Texto%20del%20art%c3%adculo-214421455317-1-10-20201127.pdfd4a5ddf530ce6883dd3ddc6e96c459d5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/835/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/835oai:repositorio.uniatlantico.edu.co:20.500.12834/8352022-11-15 14:42:20.399DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |