A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES
In this paper, some algebraic properties of Ces´aro double ideal convergent sequence spaces are defined and proved. Those spaces are defined as C I nm and C I 0nm. Furthermore, this paper shows some inclusion relations on these spaces which are established and proved.
- Autores:
-
Granados, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/956
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/956
- Palabra clave:
- C I nm space; C I 0nm space; double ideal sequence
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIATLANT2_4119a0974416b07b0d0805f24ebb464b |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/956 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
title |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
spellingShingle |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES C I nm space; C I 0nm space; double ideal sequence |
title_short |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
title_full |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
title_fullStr |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
title_full_unstemmed |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
title_sort |
A GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACES |
dc.creator.fl_str_mv |
Granados, Carlos |
dc.contributor.author.none.fl_str_mv |
Granados, Carlos |
dc.subject.keywords.spa.fl_str_mv |
C I nm space; C I 0nm space; double ideal sequence |
topic |
C I nm space; C I 0nm space; double ideal sequence |
description |
In this paper, some algebraic properties of Ces´aro double ideal convergent sequence spaces are defined and proved. Those spaces are defined as C I nm and C I 0nm. Furthermore, this paper shows some inclusion relations on these spaces which are established and proved. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-02 |
dc.date.submitted.none.fl_str_mv |
2020-11-02 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:14:35Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:14:35Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/956 |
dc.identifier.doi.none.fl_str_mv |
10.12732/ijam.v34i3.8 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/956 |
identifier_str_mv |
10.12732/ijam.v34i3.8 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
International Journal of Applied Mathematics |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/956/1/8.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/956/2/license.txt |
bitstream.checksum.fl_str_mv |
29d26a7018ce6f0065a375a94e00ad8f 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203413152399360 |
spelling |
Granados, Carlos989360de-282a-46d3-90c9-d42dbe1ea3812022-11-15T21:14:35Z2022-11-15T21:14:35Z2020-12-022020-11-02https://hdl.handle.net/20.500.12834/95610.12732/ijam.v34i3.8Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this paper, some algebraic properties of Ces´aro double ideal convergent sequence spaces are defined and proved. Those spaces are defined as C I nm and C I 0nm. Furthermore, this paper shows some inclusion relations on these spaces which are established and proved.application/pdfengInternational Journal of Applied MathematicsA GENERALIZATION OF THE STRONGLY CESARO ´ IDEAL CONVERGENCE THROUGH DOUBLE SEQUENCE SPACESC I nm space; C I 0nm space; double ideal sequenceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norteinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2[1] M. Faisal, Some results on strongly Ces´aro ideal convergent sequence spaces, Journal of Mathematics, 2020 (2020), 1-4.[2] G. Hardy and J. Littlewood, Sur la s´erie de fourier d´une fonction a carr´e sommable, Comptes rendus de l’Acad´emie des Sciences, 156 (1913), 1307- 1309[3] V. Khan, H. Fatima, S. Addullah and K. Alshlool, On paranorm BVσ I-convergence double sequence spaces defined by an Orlicz function, Analysis, 37, No 3 (2017), 157-167.4] H. Nakano, Concave modulars,Journal of the Mathematical Society of Japan, 5, No 1 (1953), 29-49[5] T. Salat, B. C. Tripathy, and M. Ziman, On some properties of Iconvergence, Tatra Mountains Mathematical Publications, 28 (2004), 279- 286.[6] H. Sengul, Some Cesaro-type summability spaces defined by a modulus function of order (α, β), Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 66, No 2 (2017), 80-90.[7] I. Maddox, Sequence spaces defined by a modulus, Mathematical Proceedings of the Cambridge Philosophical Society, 100, No 1 (1986), 161-166[8] M. Et and H. Sengul, Some cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28, No 8 (2014), 1593-16029] W. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canadian Journal of Mathematics, 25, No 5 (1973), 973-978.[10] H. Fast, Sur la convergence statistique, Colloquium Mathematicum, 2, No 3-4 (1951), 241-244.[11] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum, 2, No 1 (1951), 73-74.12] J. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.[13] J. Fridy, Statistical limit points, Proceedings of the American Mathematical Society, 118, No 4 (1993), 1187[14] P. Kostyrko, T. Wilczynski, and W. Wilczynski, I-conver-gence, Real Analysis Exchange, 26, No 2 (2000), 669-686http://purl.org/coar/resource_type/c_6501ORIGINAL8.pdf8.pdfapplication/pdf83597https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/956/1/8.pdf29d26a7018ce6f0065a375a94e00ad8fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/956/2/license.txt67e239713705720ef0b79c50b2ececcaMD5220.500.12834/956oai:repositorio.uniatlantico.edu.co:20.500.12834/9562022-11-15 16:14:36.786DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |