Barrow holographic dark energy with Granda–Oliveros cutoff
A study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model...
- Autores:
-
Oliveros, A
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/777
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/777
- Palabra clave:
- Holographic
Barrow
Dark Energy
Granda-Oliveros cutoff
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_3feb87907cbdd1204fd471ed857b01dc |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/777 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Barrow holographic dark energy with Granda–Oliveros cutoff |
title |
Barrow holographic dark energy with Granda–Oliveros cutoff |
spellingShingle |
Barrow holographic dark energy with Granda–Oliveros cutoff Holographic Barrow Dark Energy Granda-Oliveros cutoff |
title_short |
Barrow holographic dark energy with Granda–Oliveros cutoff |
title_full |
Barrow holographic dark energy with Granda–Oliveros cutoff |
title_fullStr |
Barrow holographic dark energy with Granda–Oliveros cutoff |
title_full_unstemmed |
Barrow holographic dark energy with Granda–Oliveros cutoff |
title_sort |
Barrow holographic dark energy with Granda–Oliveros cutoff |
dc.creator.fl_str_mv |
Oliveros, A |
dc.contributor.author.none.fl_str_mv |
Oliveros, A |
dc.contributor.other.none.fl_str_mv |
Sabogal, M. A. Acero, Mario A. |
dc.subject.keywords.spa.fl_str_mv |
Holographic Barrow Dark Energy Granda-Oliveros cutoff |
topic |
Holographic Barrow Dark Energy Granda-Oliveros cutoff |
description |
A study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model it is possible to obtain an accelerated expansion regime of the universe at late times. We also obtain that increasing Δ causes the EoS parameter to transition from quintessence to phantom. In addition, we show that the model can be used to describe the know eras of dominance. Finally, after studying the stability of the proposed model, a fit of the corresponding parameters is preformed, utilizing the measurements of the expansion rate of the universe, H(z). The best fit of the parameters is found to be (α,β,Δ)=(1.00+0.02−0.02,0.69+0.03−0.02,0.000+0.004−0.000) at 1σ C.L, for which the Bekenstein-Hawking relation is favored. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:14:23Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:14:23Z |
dc.date.issued.none.fl_str_mv |
2022-07-07 |
dc.date.submitted.none.fl_str_mv |
2022-03-26 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-z |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/777 |
dc.identifier.doi.none.fl_str_mv |
10.1140/epjp/s13360-022-02994-z |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
identifier_str_mv |
Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-z 10.1140/epjp/s13360-022-02994-z Universidad del Atlántico Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/777 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Física |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Eur. Phys. J. Plus |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/1/s13360-022-02994-z.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/3/license.txt |
bitstream.checksum.fl_str_mv |
7633667e559df8f49aecb1a8efadf760 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203421561978880 |
spelling |
Oliveros, A26af6649-764e-4c81-9d05-5c4836dda956Sabogal, M. A.Acero, Mario A.2022-11-15T19:14:23Z2022-11-15T19:14:23Z2022-07-072022-03-26Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-zhttps://hdl.handle.net/20.500.12834/77710.1140/epjp/s13360-022-02994-zUniversidad del AtlánticoRepositorio Universidad del AtlánticoA study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model it is possible to obtain an accelerated expansion regime of the universe at late times. We also obtain that increasing Δ causes the EoS parameter to transition from quintessence to phantom. In addition, we show that the model can be used to describe the know eras of dominance. Finally, after studying the stability of the proposed model, a fit of the corresponding parameters is preformed, utilizing the measurements of the expansion rate of the universe, H(z). The best fit of the parameters is found to be (α,β,Δ)=(1.00+0.02−0.02,0.69+0.03−0.02,0.000+0.004−0.000) at 1σ C.L, for which the Bekenstein-Hawking relation is favored.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Eur. Phys. J. PlusBarrow holographic dark energy with Granda–Oliveros cutoffPúblico generalHolographicBarrowDark EnergyGranda-Oliveros cutoffinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede NorteA.G. Riess et al., Supernova search team. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499 [arXiv:astro-ph/9805201 [astro-ph]]S. Perlmutter et al., Supernova cosmology project. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221 [arXiv:astro-ph/9812133 [astroph]]G.’t Hooft, Conf. Proc. C. 930308, 284–296 (1993). [arXiv:gr-qc/9310026 [gr-qc]]L. Susskind, J. Math. Phys. 36, 6377–6396 (1995). https://doi.org/10.1063/1.531249 [arXiv:hep-th/9409089 [hep-th]]R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004 [arXiv:hep-th/9905177 [hep-th]]A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971–4974 (1999). https://doi.org/10.1103/PhysRevLett.82.4971 [arXiv:hep-th/9803132 [hep-th]]S. Wang, Y. Wang, M. Li, Phys. Rept. 696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003 [arXiv:1612.00345 [astro-ph.CO]]S. Nojiri, S.D. Odintsov, Gen. Rel. Grav. 38, 1285–1304 (2006). https://doi.org/10.1007/s10714-006-0301-6 [arXiv:hep-th/0506212 [hep-th]]S. Nojiri, S.D. Odintsov, Eur. Phys. J. C 77(8), 528 (2017). https://doi.org/10.1140/epjc/s10052-017-5097-x [arXiv:1703.06372 [hep-th]]S. Nojiri, S.D. Odintsov, T. Paul, Symmetry 13(6), 928 (2021). https://doi.org/10.3390/sym13060928 [arXiv:2105.08438 [gr-qc]]S. Nojiri, S.D. Odintsov, V.K. Oikonomou, T. Paul, Phys. Rev. D 102(2), 023540 (2020). https://doi.org/10.1103/PhysRevD.102.023540 [arXiv:2007. 06829 [gr-qc]]E.N. Saridakis, Phys. Rev. D 102(12), 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525 [arXiv:2005.04115 [gr-qc]]J.D. Barrow, Phys. Lett. B 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643 [arXiv:2004.09444 [gr-qc]]J.D. Bekenstein, Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333S. W. Hawking, Commun. Math. Phys. 43, 199-220 (1975) [erratum: Commun. Math. Phys. 46, 206 (1976)] https://doi.org/10.1007/BF02345020F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Eur. Phys. J. C 80(9), 826 (2020). https://doi.org/10.1140/epjc/s10052-020-8360-5 [arXiv:2005. 10302 [gr-qc]]A.A. Mamon, A. Paliathanasis, S. Saha, Eur. Phys. J. Plus 136(1), 134 (2021). https://doi.org/10.1140/epjp/s13360-021-01130-7 [arXiv:2007.16020 [gr-qc]]M.P. Dabrowski, V. Salzano, Phys. Rev. D 102(6), 064047 (2020). https://doi.org/10.1103/PhysRevD.102.064047 [arXiv:2009.08306 [astro-ph.CO]]S. Srivastava, U.K. Sharma, Int. J. Geom. Meth. Mod. Phys. 18(01), 2150014 (2021). https://doi.org/10.1142/S0219887821500146 [arXiv:2010.09439 [physics.gen-ph]]A. Pradhan, A. Dixit, V.K. Bhardwaj, Int. J. Mod. Phys. A 36(04), 2150030 (2021). https://doi.org/10.1142/S0217751X21500305 [arXiv:2101.00176 [gr-qc]]P. Adhikary, S. Das, S. Basilakos, E.N. Saridakis, Phys. Rev. D 104(12), 123519 (2021). https://doi.org/10.1103/PhysRevD.104.123519 [arXiv:2104. 13118 [gr-qc]]G. Leon, J. Magaña, A. Hernández-Almada,M.A. García-Aspeitia, T. Verdugo, V. Motta, JCAP 12(12), 032 (2021). https://doi.org/10.1088/1475-7516/ 2021/12/032 [arXiv:2108.10998 [astro-ph.CO]]M. Asghari, A. Sheykhi, Eur. Phys. J. C 82(5), 388 (2022). https://doi.org/10.1140/epjc/s10052-022-10262-8 [arXiv:2110.00059 [gr-qc]]K. Jusufi, M. Azreg-Aïnou, M. Jamil, E.N. Saridakis, Universe 8(2), 102 (2022). https://doi.org/10.3390/universe8020102 [arXiv:2110.07258 [gr-qc]]N. K. P and T. K. Mathew, [arXiv:2112.07310 [gr-qc]]S. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 825, 136844 (2022). https://doi.org/10.1016/j.physletb.2021.136844 [arXiv:2112.10159 [gr-qc]]S. Nojiri, S.D. Odintsov, V. Faraoni, Phys. Rev. D 105(4), 044042 (2022). https://doi.org/10.1103/PhysRevD.105.044042 [arXiv:2201.02424 [gr-qc]]Q. Huang, H. Huang, B. Xu, F. Tu, J. Chen, Eur. Phys. J. C 81(8), 686 (2021). https://doi.org/10.1140/epjc/s10052-021-09480-3 [arXiv:2201.11414 [gr-qc]]G.G. Luciano, E.N. Saridakis, Eur. Phys. J. C 82, 558 (2022). https://doi.org/10.1140/epjc/s10052-022-10530-7. [arXiv:2203.12010 [gr-qc]]L.-H. Wang, M.-S. Ma, Phys. Lett. B 831, 1 (2022). https://doi.org/10.1016/j.physletb.2022.137181 [arXiv:2205.13208 [gr-qc]]S. Di Gennaro, Y.Ch. Ong. [arxiv:2205.09311 [gr-qc]]S. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 831, 137189 (2022). https://doi.org/10.1016/j.physletb.2022.137189 [arXiv:2205.08876 [gr-qc]]B. Farsi, A. Sheykhi. [arXiv:2205.04138 [gr-qc]]M. Li, Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014 [arXiv:0403127 [hep-th]]L.N. Granda, A. Oliveros, Phys. Lett. B 669, 275–277 (2008). https://doi.org/10.1016/j.physletb.2008.10.017 [arXiv:0810.3149 [gr-qc]]L.N. Granda, A. Oliveros, Phys. Lett. B 671, 199–202 (2009). https://doi.org/10.1016/j.physletb.2008.12.025 [arXiv:0810.3663 [gr-qc]]N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] https://doi.org/10.1051/0004-6361/ 201833910[arXiv:1807.06209[astro-ph.CO]]Y. Wang, L. Xu, Phys. Rev. D 81, 083523 (2010). https://doi.org/10.1103/PhysRevD.81.083523 [arXiv:1004.3340 [astro-ph.CO]]S. Rani, N. Azhar, Universe 7(8), 268 (2021). https://doi.org/10.3390/universe7080268J.F. Jesus, R. Valentim, A.A. Escobal, S.H. Pereira, JCAP 04, 053 (2020). https://doi.org/10.1088/1475-7516/2020/04/053 [arXiv:1909.00090 [astroph. CO]]B. Feng, M. Li, Y.S. Piao, X. Zhang, Phys. Lett. B 634, 101–105 (2006). https://doi.org/10.1016/j.physletb.2006.01.066 [arXiv:astro-ph/0407432 [astro-ph]]S. Maity, P. Rudra, J. Holography Appl. Phys. 2(1), 1–12 (2022). https://doi.org/10.22128/jhap.2022.464.1012 [arXiv:2202.08160[gr-qc]]S. Cao, T.J. Zhang, X. Wang, T. Zhang, Universe 7(3), 57 (2021). https://doi.org/10.3390/universe7030057 [arXiv:2103.03670 [astro-ph.CO]]A. Zyla et al. [Particle Data Group], PTEP 2020(8), 083C01 (2020) https://doi.org/10.1093/ptep/ptaa104A.A. Mamon, Mod. Phys. Lett. A 33(10 &11), 1850056 (2018). https://doi.org/10.1142/S0217732318500566 [arXiv:1702.04916 [gr-qc]]S. Capozziello, Ruchika, A.A. Sen, Mon. Not. Roy. Astron. Soc. 484, 4484 (2019). https://doi.org/10.1093/mnras/stz176 [arXiv:1806.03943 [astroph. CO]]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs13360-022-02994-z.pdfs13360-022-02994-z.pdfapplication/pdf3608249https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/1/s13360-022-02994-z.pdf7633667e559df8f49aecb1a8efadf760MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/777oai:repositorio.uniatlantico.edu.co:20.500.12834/7772022-11-15 14:14:24.794DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |