Barrow holographic dark energy with Granda–Oliveros cutoff

A study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model...

Full description

Autores:
Oliveros, A
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/777
Acceso en línea:
https://hdl.handle.net/20.500.12834/777
Palabra clave:
Holographic
Barrow
Dark Energy
Granda-Oliveros cutoff
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_3feb87907cbdd1204fd471ed857b01dc
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/777
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Barrow holographic dark energy with Granda–Oliveros cutoff
title Barrow holographic dark energy with Granda–Oliveros cutoff
spellingShingle Barrow holographic dark energy with Granda–Oliveros cutoff
Holographic
Barrow
Dark Energy
Granda-Oliveros cutoff
title_short Barrow holographic dark energy with Granda–Oliveros cutoff
title_full Barrow holographic dark energy with Granda–Oliveros cutoff
title_fullStr Barrow holographic dark energy with Granda–Oliveros cutoff
title_full_unstemmed Barrow holographic dark energy with Granda–Oliveros cutoff
title_sort Barrow holographic dark energy with Granda–Oliveros cutoff
dc.creator.fl_str_mv Oliveros, A
dc.contributor.author.none.fl_str_mv Oliveros, A
dc.contributor.other.none.fl_str_mv Sabogal, M. A.
Acero, Mario A.
dc.subject.keywords.spa.fl_str_mv Holographic
Barrow
Dark Energy
Granda-Oliveros cutoff
topic Holographic
Barrow
Dark Energy
Granda-Oliveros cutoff
description A study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model it is possible to obtain an accelerated expansion regime of the universe at late times. We also obtain that increasing Δ causes the EoS parameter to transition from quintessence to phantom. In addition, we show that the model can be used to describe the know eras of dominance. Finally, after studying the stability of the proposed model, a fit of the corresponding parameters is preformed, utilizing the measurements of the expansion rate of the universe, H(z). The best fit of the parameters is found to be (α,β,Δ)=(1.00+0.02−0.02,0.69+0.03−0.02,0.000+0.004−0.000) at 1σ C.L, for which the Bekenstein-Hawking relation is favored.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:14:23Z
dc.date.available.none.fl_str_mv 2022-11-15T19:14:23Z
dc.date.issued.none.fl_str_mv 2022-07-07
dc.date.submitted.none.fl_str_mv 2022-03-26
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-z
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/777
dc.identifier.doi.none.fl_str_mv 10.1140/epjp/s13360-022-02994-z
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-z
10.1140/epjp/s13360-022-02994-z
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/777
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Física
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Eur. Phys. J. Plus
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/1/s13360-022-02994-z.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/3/license.txt
bitstream.checksum.fl_str_mv 7633667e559df8f49aecb1a8efadf760
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1808413940450852864
spelling Oliveros, A26af6649-764e-4c81-9d05-5c4836dda956Sabogal, M. A.Acero, Mario A.2022-11-15T19:14:23Z2022-11-15T19:14:23Z2022-07-072022-03-26Oliveros, A., Sabogal, M.A. & Acero, M.A. Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus 137, 783 (2022). https://doi.org/10.1140/epjp/s13360-022-02994-zhttps://hdl.handle.net/20.500.12834/77710.1140/epjp/s13360-022-02994-zUniversidad del AtlánticoRepositorio Universidad del AtlánticoA study on the effects of implementing the Granda-Oliveros infrared cutoff in the recently introduced Barrow Holographic Dark Energy model is presented, and its cosmological evolution is investigated. We find how the deformation parameter, Δ, affects the values of H(z), and find that from this model it is possible to obtain an accelerated expansion regime of the universe at late times. We also obtain that increasing Δ causes the EoS parameter to transition from quintessence to phantom. In addition, we show that the model can be used to describe the know eras of dominance. Finally, after studying the stability of the proposed model, a fit of the corresponding parameters is preformed, utilizing the measurements of the expansion rate of the universe, H(z). The best fit of the parameters is found to be (α,β,Δ)=(1.00+0.02−0.02,0.69+0.03−0.02,0.000+0.004−0.000) at 1σ C.L, for which the Bekenstein-Hawking relation is favored.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Eur. Phys. J. PlusBarrow holographic dark energy with Granda–Oliveros cutoffPúblico generalHolographicBarrowDark EnergyGranda-Oliveros cutoffinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede NorteA.G. Riess et al., Supernova search team. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499 [arXiv:astro-ph/9805201 [astro-ph]]S. Perlmutter et al., Supernova cosmology project. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221 [arXiv:astro-ph/9812133 [astroph]]G.’t Hooft, Conf. Proc. C. 930308, 284–296 (1993). [arXiv:gr-qc/9310026 [gr-qc]]L. Susskind, J. Math. Phys. 36, 6377–6396 (1995). https://doi.org/10.1063/1.531249 [arXiv:hep-th/9409089 [hep-th]]R. Bousso, JHEP 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004 [arXiv:hep-th/9905177 [hep-th]]A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971–4974 (1999). https://doi.org/10.1103/PhysRevLett.82.4971 [arXiv:hep-th/9803132 [hep-th]]S. Wang, Y. Wang, M. Li, Phys. Rept. 696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003 [arXiv:1612.00345 [astro-ph.CO]]S. Nojiri, S.D. Odintsov, Gen. Rel. Grav. 38, 1285–1304 (2006). https://doi.org/10.1007/s10714-006-0301-6 [arXiv:hep-th/0506212 [hep-th]]S. Nojiri, S.D. Odintsov, Eur. Phys. J. C 77(8), 528 (2017). https://doi.org/10.1140/epjc/s10052-017-5097-x [arXiv:1703.06372 [hep-th]]S. Nojiri, S.D. Odintsov, T. Paul, Symmetry 13(6), 928 (2021). https://doi.org/10.3390/sym13060928 [arXiv:2105.08438 [gr-qc]]S. Nojiri, S.D. Odintsov, V.K. Oikonomou, T. Paul, Phys. Rev. D 102(2), 023540 (2020). https://doi.org/10.1103/PhysRevD.102.023540 [arXiv:2007. 06829 [gr-qc]]E.N. Saridakis, Phys. Rev. D 102(12), 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525 [arXiv:2005.04115 [gr-qc]]J.D. Barrow, Phys. Lett. B 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643 [arXiv:2004.09444 [gr-qc]]J.D. Bekenstein, Phys. Rev. D 7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333S. W. Hawking, Commun. Math. Phys. 43, 199-220 (1975) [erratum: Commun. Math. Phys. 46, 206 (1976)] https://doi.org/10.1007/BF02345020F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Eur. Phys. J. C 80(9), 826 (2020). https://doi.org/10.1140/epjc/s10052-020-8360-5 [arXiv:2005. 10302 [gr-qc]]A.A. Mamon, A. Paliathanasis, S. Saha, Eur. Phys. J. Plus 136(1), 134 (2021). https://doi.org/10.1140/epjp/s13360-021-01130-7 [arXiv:2007.16020 [gr-qc]]M.P. Dabrowski, V. Salzano, Phys. Rev. D 102(6), 064047 (2020). https://doi.org/10.1103/PhysRevD.102.064047 [arXiv:2009.08306 [astro-ph.CO]]S. Srivastava, U.K. Sharma, Int. J. Geom. Meth. Mod. Phys. 18(01), 2150014 (2021). https://doi.org/10.1142/S0219887821500146 [arXiv:2010.09439 [physics.gen-ph]]A. Pradhan, A. Dixit, V.K. Bhardwaj, Int. J. Mod. Phys. A 36(04), 2150030 (2021). https://doi.org/10.1142/S0217751X21500305 [arXiv:2101.00176 [gr-qc]]P. Adhikary, S. Das, S. Basilakos, E.N. Saridakis, Phys. Rev. D 104(12), 123519 (2021). https://doi.org/10.1103/PhysRevD.104.123519 [arXiv:2104. 13118 [gr-qc]]G. Leon, J. Magaña, A. Hernández-Almada,M.A. García-Aspeitia, T. Verdugo, V. Motta, JCAP 12(12), 032 (2021). https://doi.org/10.1088/1475-7516/ 2021/12/032 [arXiv:2108.10998 [astro-ph.CO]]M. Asghari, A. Sheykhi, Eur. Phys. J. C 82(5), 388 (2022). https://doi.org/10.1140/epjc/s10052-022-10262-8 [arXiv:2110.00059 [gr-qc]]K. Jusufi, M. Azreg-Aïnou, M. Jamil, E.N. Saridakis, Universe 8(2), 102 (2022). https://doi.org/10.3390/universe8020102 [arXiv:2110.07258 [gr-qc]]N. K. P and T. K. Mathew, [arXiv:2112.07310 [gr-qc]]S. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 825, 136844 (2022). https://doi.org/10.1016/j.physletb.2021.136844 [arXiv:2112.10159 [gr-qc]]S. Nojiri, S.D. Odintsov, V. Faraoni, Phys. Rev. D 105(4), 044042 (2022). https://doi.org/10.1103/PhysRevD.105.044042 [arXiv:2201.02424 [gr-qc]]Q. Huang, H. Huang, B. Xu, F. Tu, J. Chen, Eur. Phys. J. C 81(8), 686 (2021). https://doi.org/10.1140/epjc/s10052-021-09480-3 [arXiv:2201.11414 [gr-qc]]G.G. Luciano, E.N. Saridakis, Eur. Phys. J. C 82, 558 (2022). https://doi.org/10.1140/epjc/s10052-022-10530-7. [arXiv:2203.12010 [gr-qc]]L.-H. Wang, M.-S. Ma, Phys. Lett. B 831, 1 (2022). https://doi.org/10.1016/j.physletb.2022.137181 [arXiv:2205.13208 [gr-qc]]S. Di Gennaro, Y.Ch. Ong. [arxiv:2205.09311 [gr-qc]]S. Nojiri, S.D. Odintsov, T. Paul, Phys. Lett. B 831, 137189 (2022). https://doi.org/10.1016/j.physletb.2022.137189 [arXiv:2205.08876 [gr-qc]]B. Farsi, A. Sheykhi. [arXiv:2205.04138 [gr-qc]]M. Li, Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014 [arXiv:0403127 [hep-th]]L.N. Granda, A. Oliveros, Phys. Lett. B 669, 275–277 (2008). https://doi.org/10.1016/j.physletb.2008.10.017 [arXiv:0810.3149 [gr-qc]]L.N. Granda, A. Oliveros, Phys. Lett. B 671, 199–202 (2009). https://doi.org/10.1016/j.physletb.2008.12.025 [arXiv:0810.3663 [gr-qc]]N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] https://doi.org/10.1051/0004-6361/ 201833910[arXiv:1807.06209[astro-ph.CO]]Y. Wang, L. Xu, Phys. Rev. D 81, 083523 (2010). https://doi.org/10.1103/PhysRevD.81.083523 [arXiv:1004.3340 [astro-ph.CO]]S. Rani, N. Azhar, Universe 7(8), 268 (2021). https://doi.org/10.3390/universe7080268J.F. Jesus, R. Valentim, A.A. Escobal, S.H. Pereira, JCAP 04, 053 (2020). https://doi.org/10.1088/1475-7516/2020/04/053 [arXiv:1909.00090 [astroph. CO]]B. Feng, M. Li, Y.S. Piao, X. Zhang, Phys. Lett. B 634, 101–105 (2006). https://doi.org/10.1016/j.physletb.2006.01.066 [arXiv:astro-ph/0407432 [astro-ph]]S. Maity, P. Rudra, J. Holography Appl. Phys. 2(1), 1–12 (2022). https://doi.org/10.22128/jhap.2022.464.1012 [arXiv:2202.08160[gr-qc]]S. Cao, T.J. Zhang, X. Wang, T. Zhang, Universe 7(3), 57 (2021). https://doi.org/10.3390/universe7030057 [arXiv:2103.03670 [astro-ph.CO]]A. Zyla et al. [Particle Data Group], PTEP 2020(8), 083C01 (2020) https://doi.org/10.1093/ptep/ptaa104A.A. Mamon, Mod. Phys. Lett. A 33(10 &11), 1850056 (2018). https://doi.org/10.1142/S0217732318500566 [arXiv:1702.04916 [gr-qc]]S. Capozziello, Ruchika, A.A. Sen, Mon. Not. Roy. Astron. Soc. 484, 4484 (2019). https://doi.org/10.1093/mnras/stz176 [arXiv:1806.03943 [astroph. CO]]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs13360-022-02994-z.pdfs13360-022-02994-z.pdfapplication/pdf3608249https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/1/s13360-022-02994-z.pdf7633667e559df8f49aecb1a8efadf760MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/777/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/777oai:repositorio.uniatlantico.edu.co:20.500.12834/7772022-11-15 14:14:24.794DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==