A Generalized of Nörlund Ideal Convergent Double Sequence Spaces

In this paper, by using the Nörlund mean Nt and the notion of ideal double convergence, we introduce new sequence spaces c I2 0 (Nt ), cI2 (Nt ), and ℓ I2∞(Nt ). Besides, we study some topological and algebraic properties on these spaces. Furthermore, some inclusion concerning these spaces are prove...

Full description

Autores:
RODRÍGUEZ, EDUIN
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/810
Acceso en línea:
https://hdl.handle.net/20.500.12834/810
Palabra clave:
Nörlund I2-convergence, Nörlund I2-Cauchy, Nörlund I2-bounded
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_3da64ab9cdb1eca9e60fa883d3f35db9
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/810
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
title A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
spellingShingle A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
Nörlund I2-convergence, Nörlund I2-Cauchy, Nörlund I2-bounded
title_short A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
title_full A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
title_fullStr A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
title_full_unstemmed A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
title_sort A Generalized of Nörlund Ideal Convergent Double Sequence Spaces
dc.creator.fl_str_mv RODRÍGUEZ, EDUIN
dc.contributor.author.none.fl_str_mv RODRÍGUEZ, EDUIN
dc.contributor.other.none.fl_str_mv GRANADOS, CARLOS
BERMÚDEZ, JUDITH
dc.subject.keywords.spa.fl_str_mv Nörlund I2-convergence, Nörlund I2-Cauchy, Nörlund I2-bounded
topic Nörlund I2-convergence, Nörlund I2-Cauchy, Nörlund I2-bounded
description In this paper, by using the Nörlund mean Nt and the notion of ideal double convergence, we introduce new sequence spaces c I2 0 (Nt ), cI2 (Nt ), and ℓ I2∞(Nt ). Besides, we study some topological and algebraic properties on these spaces. Furthermore, some inclusion concerning these spaces are proved.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-29
dc.date.submitted.none.fl_str_mv 2021-05-30
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:25:28Z
dc.date.available.none.fl_str_mv 2022-11-15T19:25:28Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/810
dc.identifier.doi.none.fl_str_mv 10.37394/23206.2021.20.60
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/810
identifier_str_mv 10.37394/23206.2021.20.60
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv WSEAS TRANSACTIONS on MATHEMATICS
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/1/b225106-0212021.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/3/license.txt
bitstream.checksum.fl_str_mv 2c9cd6b4aa767e5b27905b24528cdd3b
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203408684417024
spelling RODRÍGUEZ, EDUINacbec09e-0684-4932-bd12-fe44ed001b7dGRANADOS, CARLOSBERMÚDEZ, JUDITH2022-11-15T19:25:28Z2022-11-15T19:25:28Z2021-10-292021-05-30https://hdl.handle.net/20.500.12834/81010.37394/23206.2021.20.60Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this paper, by using the Nörlund mean Nt and the notion of ideal double convergence, we introduce new sequence spaces c I2 0 (Nt ), cI2 (Nt ), and ℓ I2∞(Nt ). Besides, we study some topological and algebraic properties on these spaces. Furthermore, some inclusion concerning these spaces are proved.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2WSEAS TRANSACTIONS on MATHEMATICSA Generalized of Nörlund Ideal Convergent Double Sequence SpacesPúblico generalNörlund I2-convergence, Nörlund I2-Cauchy, Nörlund I2-boundedinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaSede Norte[1] C. Boonpok, On L ⋆ -closed sets and some low separation axioms in ideal topological spaces, WSEAS Transactions on Mathematics, 19(2020), 334-342.[2] C. Boonpok and C. Viriyapong , Almost weak continuity for multifunctions in ideal topological spaces, WSEAS Transactions on Mathematics, 19(2020), 367-372[3] C. Boonpok and P. Pue-On , Continuity for multifunctions in ideal topological spaces, WSEAS Transactions on Mathematics, 19(2020), 624- 631.[4] P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I ∗ -convergence of double sequences, Mathematica Slovaca, 58, No. 5 (2008), 605-620.[5] E. Dundar and B. Altay, I2-convergence and I2-Cauchy double sequences, Mathematica Acta Scientia, 34B, No. 2 (2013), 343-353.[6] C. Granados, New notions of triple sequences on ideal spaces in metric spaces, Advances in the Theory of Nonlinear Analysis and its Application, 5(3)(2021), 362-367.[7] C. Granados, A generalization of the strongly Cesaro ideal convergence through double sequence spaces, International Journal of Applied Mathematics, 34(3)(2021), 525-533.[8] C. Granados, Convergencia estadística en medida para sucesiones triples de funciones con valores difusos, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., (2021). https://doi.org/10.18257/raccefyn.1456[9] C. Granados, A. Dhital, Statistical Convergence of Double Sequences in Neutrosophic Normed Spaces, Neutrosophic Sets and Systems, 42(2021), 333-344.[10] C. Granados, A.K. Das, B.O. Osu, Mλm,n,p -statistical convergence for triple sequences, The Journal of Analysis, (2021). https://doi.org/10.1007/s41478-021-00355-0[11] C. Granados, J. Sanabria, E. Rosas and C. Carpintero, On contra Λ s I -continuous functions and their applications, Journal of Mathematical and Computational Science, 11(3)(2021), 2834- 2846[12] C. Granados, Conjuntos pre regulr pc-I-abiertos vía ideales sobre espacios topológicos, Ciencia en Desarrollo, 12(1)(2021), 43-53.[13] C. Granados, New results on semi-Iconvergence, Transactions of A. Razmadze Mathematical Institute, 175(2)(2021), 199-204.[14] C. Granados, Pre-Isn-open sets and some notions related to pre-I-convergence, Journal of Mathematical Control Science and Applications, 7(1)(2021), 1-9.[15] G.H. Hardy. divergent series, American Mathematical Soc, 334 (2000) 1-400[16] B. Hazarika, A. Alotaibi and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Computing, 24 (2020), 6613-6622.[17] V. Khan, H. Fatima, S. Addullah and K. Alshlool, On paranorm BVσ I-convergence double sequence spaces defined by an Orlicz function, Analysis, 37, No 3 (2017), 157-167.[18] A. Khan, A. Abdullah and K. Alshlool, A study of Nörlund ideal convergent sequence spaces, Yugoslav Journal of Operations Research, 2021.[19] O. Kisi, Lacunary statistical convergence in measure for double sequences of fuzzy valued functions 2021 (2021), 1-12.[20] P. Kostyrko, M. Macaj, and T. Salat. Statistical convergence and I-convergence, Real Analysis Exchange, 25(1) (1999) 49.[21] E. Mursaleen and O. Edely, Statistical convergence of double sequence, J. Math. Anal. Appl., 288 (2003), 223-231.[22] J. Sanabria, C. Granados, E. Rosas and C. Carpintero, Contra-continuous functions defined through ΛI -closed sets, WSEAS Transactions on Mathematics 19(2020), 632-638.[23] A. Yuri, T. Safonova and A. Terekhov, Approximation Functionals and Their Application, WSEAS Transactions on Mathematics, 20(2021), 489-495.http://purl.org/coar/resource_type/c_6501ORIGINALb225106-0212021.pdfb225106-0212021.pdfapplication/pdf952583https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/1/b225106-0212021.pdf2c9cd6b4aa767e5b27905b24528cdd3bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/810/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/810oai:repositorio.uniatlantico.edu.co:20.500.12834/8102022-11-15 14:25:29.266DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==