Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1

In this work were studied the effects of shoulder geometry of tool on microstructure evolution and mechanical properties of friction stir welded joints of AA1100 aluminum alloy using a milling machine. Three designs of shoulder geometry were evaluated with the aim to induce different distributions o...

Full description

Autores:
Unfried-Silgado, Jimy
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1177
Acceso en línea:
https://hdl.handle.net/20.500.12834/1177
Palabra clave:
Friction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_2b4392d2b59e626ff2b5766d2ac9d0b0
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1177
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
dc.title.alternative.spa.fl_str_mv Efectos de la geometría del hombro de la herramienta sobre las propiedades mecánicas de juntas soldadas por fricción-agitación de aleación de aluminio AA1100
title Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
spellingShingle Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
Friction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.
title_short Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
title_full Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
title_fullStr Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
title_full_unstemmed Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
title_sort Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1
dc.creator.fl_str_mv Unfried-Silgado, Jimy
dc.contributor.author.none.fl_str_mv Unfried-Silgado, Jimy
dc.contributor.other.none.fl_str_mv Torres-Ardila, Alexander
Carrasco-García, Juan Carlos
Rodríguez-Fernández, Johnnatan
dc.subject.keywords.spa.fl_str_mv Friction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.
topic Friction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.
description In this work were studied the effects of shoulder geometry of tool on microstructure evolution and mechanical properties of friction stir welded joints of AA1100 aluminum alloy using a milling machine. Three designs of shoulder geometry were evaluated with the aim to induce different distributions of thermal cycles in welding regions. Thermal cycles were measured using thermocouples and a data system acquisition. A microstructural characterization and crystallographic analysis of the welded regions were carried out using optical, scanning electron microscopy, and electron backscattering diffraction. The mechanical properties were measured by transverse tension, guided bend and hardness tests. The weldability behavior was established based on the experimental data. Results showed that the features shoulder tools produced an important effect on the thermal cycles, generating a plasticized wide region and biggest grain size in stir zone when compared with flat shoulder tool.
publishDate 2016
dc.date.submitted.none.fl_str_mv 2016-02-17
dc.date.issued.none.fl_str_mv 2018-11-04
dc.date.accessioned.none.fl_str_mv 2023-03-09T15:49:55Z
dc.date.available.none.fl_str_mv 2023-03-09T15:49:55Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1177
dc.identifier.doi.none.fl_str_mv 10.15446/dyna.v84n200.55787
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1177
identifier_str_mv 10.15446/dyna.v84n200.55787
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.sede.spa.fl_str_mv Sede Norte
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/1/0012-7353-dyna-84-200-00202.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/3/license.txt
bitstream.checksum.fl_str_mv 3d89ae24bf4b1b5e8b07997e2fd6ea91
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203416682954752
spelling Unfried-Silgado, Jimyba5cc61b-7a14-43f3-8bdb-f34a591dd067Torres-Ardila, AlexanderCarrasco-García, Juan CarlosRodríguez-Fernández, Johnnatan2023-03-09T15:49:55Z2023-03-09T15:49:55Z2018-11-042016-02-17https://hdl.handle.net/20.500.12834/117710.15446/dyna.v84n200.55787Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this work were studied the effects of shoulder geometry of tool on microstructure evolution and mechanical properties of friction stir welded joints of AA1100 aluminum alloy using a milling machine. Three designs of shoulder geometry were evaluated with the aim to induce different distributions of thermal cycles in welding regions. Thermal cycles were measured using thermocouples and a data system acquisition. A microstructural characterization and crystallographic analysis of the welded regions were carried out using optical, scanning electron microscopy, and electron backscattering diffraction. The mechanical properties were measured by transverse tension, guided bend and hardness tests. The weldability behavior was established based on the experimental data. Results showed that the features shoulder tools produced an important effect on the thermal cycles, generating a plasticized wide region and biggest grain size in stir zone when compared with flat shoulder tool.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy1Efectos de la geometría del hombro de la herramienta sobre las propiedades mecánicas de juntas soldadas por fricción-agitación de aleación de aluminio AA1100Público generalFriction Stir Welding, aluminum alloys, tools, microstructure, mechanical properties.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templemith, P. and Dawes, C.J., Patent Application, No. 9125978.8, 1991[2] Nandan, R., DebRoy, T. and Bhadeshia, H.K.D.H., Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science. 53(6), pp. 980-1023, 2008. DOI: 10.1016/j.pmatsci.2008.05.001[3] Çam, G. and Mistikoglu, S., Recent developments in friction stir welding of al-alloys. J. of Materi Eng and Perform, 23(6), pp. 1936-1953, 2014. DOI: 10.1007/s11665-014-0968-x[4] Mishra, R.S. and Ma, Z.Y., Review: Friction stir welding and processing. Materials Science and Engineering, 50, pp. 1-78, 2005. DOI: 0.1016/j.mser.2005.07.001[5] Threadgill, P.L., Leonard, A.J., Shercliff, H.R. and Withers, P.J., Friction stir welding of aluminium alloys. International Material reviews, 54(2), pp. 49-93, 2009. DOI: 10.1179/174328009X411136[6] Zimmer-Chevret, S., Langlois, L., Laye, J. and Bigot, R., Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. International Journal of Advanced Manufacturing Technology, 47(1-2), pp. 201-215, 2010. DOI: 10.1007/s00170-009-2188-3[7] Singh-Sidhu, M. and Singh-Chatha, S., Friction stir welding – process and its variables: A review. International Journal of Emerging Technology and Advanced Engineering. [online]. 2(12), pp. 275-279, 2012. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.2731&rep= rep1&type=pdf[8] Zimmer, S., Langlois, L., Laye, J. et al., Influence of processing parameters on the tool and workpiece mechanical interaction during friction stir welding. International Journal of Material Forming, 2(1), pp. 299-302, 2009. DOI: 10.1007/s12289-009-0496-7[9] Mohanty, H.K., Mahapatra, M.M., Kumar, P. et al., Effect of Tool Shoulder and Pin Probe Profiles on Friction Stirred Aluminum Welds – a Comparative Study. Journal of Marine Science and Application, 11(2), pp. 200-207, 2012. DOI: 10.1007/s11804-012-1123-4[10] Mohanty, H.K., Mahapatra, M.M., Kumar, P. et al., Modeling the effects of tool shoulder and probe profile geometries on friction stirred aluminum welds using response surface methodology. Journal of Marine Science and Application, 11(4), pp. 493-503, 2012. DOI: 10.1007/s11804-012-1160-z[11] Fujii, H., Cui, L., Maeda, M. and Nogi, K., Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Materials Science and Engineering: A, 419 (1–2), pp. 25-31, 2006. DOI: 10.1016/j.msea.2005.11.045[12] Liu, H., Fujii, H., Maeda, M. and Nogi, K. Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy. Journal of Materials Science Letters, 22 (6), pp. 441-444, 2003. DOI: 10.1023/A:1022959627794[13] Zapata, J., Valderrama, J., Hoyos, E. and López, D., Mechanical properties comparison of friction stir welding butt joints of AA1100 made in a conventional milling machine and a FSW machine. DYNA, [online]. 80(182), pp. 115-123, 2013. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012- 73532013000600014[14] Buglioni, L., Tufaro, L. and Svoboda, H., Thermal cycles and residual stresses in FSW of aluminum alloys: Experimental measurements and numerical models. Procedia Materials Science, 9, pp. 87-96, 2015. DOI: 10.1016/j.mspro.2015.04.011[15] Sakthivel, T., Sengar, G. and Mukhopadhyay, J., Effect of welding speed on microstructure and mechanical properties of friction-stir –welded aluminum. Int. J. Adv. Manuf. Technol., 43(5), pp. 468-473, 2009. DOI: 10.1007/s00170-008-1727-7[16] Liu, H., Fujii, H., Maeda, M. and Nogi, K. Friction stir welding characteristics of two aluminum alloys. Trans. Nonferrous Met. Soc. China, [online]. 13(5), pp. 1108-1111, 2003. Available at: http://www.cqvip.com/qk/85276x/200305/8542003.html[17] Scheneider, J.A., Temperature distribution and resulting metal flow. Chapter 3: Friction stir welding and processing, Ed. Mishra, R.S. and Mahoney M.W., ASM International, 37 P. 2007. DOI: 10.1361/fswp2007p037[18] Arbegast, W.J., A flow-partitioned deformation zone model for defect formation during friction stirs welding. Scripta Materialia, 58, pp. 372-376, 2008. DOI: 10.1016/j.scriptamat.2007.10.031[19] Sato, Y.S., Urata, M., and Kokawa, H., Parameters controlling microstructure and hardness during friction-stir welding of precipitationhardenable aluminum alloy 6063. Metall. Mat. Trans. A, 33A, pp. 625-635, 2002. DOI: 10.1007/s11661-002-0124-3[20] Gourdet, S. and Montheillet, F., A model of continuous dynamic recrystallization. Acta Mat. 51, pp. 2685-2699, 2003. DOI: 10.1016/S1359- 6454(03)00078-8[21] Reynolds, A.P., Microstructure development in aluminum alloy friction stir welds. Chapter 4: Friction stir welding and processing. ASM international, 2007. DOI: 10.1361/fswp2007p051http://purl.org/coar/resource_type/c_6501ORIGINAL0012-7353-dyna-84-200-00202.pdf0012-7353-dyna-84-200-00202.pdfapplication/pdf1479968https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/1/0012-7353-dyna-84-200-00202.pdf3d89ae24bf4b1b5e8b07997e2fd6ea91MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1177/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1177oai:repositorio.uniatlantico.edu.co:20.500.12834/11772023-03-09 10:49:57.686DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==