Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students

Various studies have reported the versatility and great scope of programming tools in all areas of knowledge. Coding is generally of paramount importance to chemistry students regardless of whether they intend to work with theoretical chemistry. Google Colab notebooks can introduce students to progr...

Full description

Autores:
Vallejo, William
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/876
Acceso en línea:
https://hdl.handle.net/20.500.12834/876
https://www.scopus.com/record/display.uri?eid=2-s2.0-85125349094&doi=10.1021%2facsomega.2c00362&origin=inward&txGid=a56e84d95fddb8d7de4fc33ab3e5304d
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_2aa0959f03c89dc7cdaac4710cd02bf2
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/876
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
spellingShingle Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title_short Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title_full Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title_fullStr Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title_full_unstemmed Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
title_sort Google Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students
dc.creator.fl_str_mv Vallejo, William
dc.contributor.author.none.fl_str_mv Vallejo, William
dc.contributor.other.none.fl_str_mv Díaz Uribe, Carlos
Fajardo, Catalina
description Various studies have reported the versatility and great scope of programming tools in all areas of knowledge. Coding is generally of paramount importance to chemistry students regardless of whether they intend to work with theoretical chemistry. Google Colab notebooks can introduce students to programming concepts and could be a convenient tool to assist in the chemistry teaching process. In this article, we implemented Google Colab notebooks to aid in the teaching of thermodynamics in a physical chemistry class. We presented six notebooks, covering introductory concepts of both coding and thermodynamics as a set of learning objects that can be useful in a virtual learning environment. In addition, in some of the notebooks, we included a step-by-step guide on how to run virtual lab simulations. The Colab notebooks were created for students without previous experience in programming. All of the Colab notebooks contain exercises of the activities and the solutions of the proposed exercises. Furthermore, all of the Colab notebooks can be modified and downloaded from the Github repository. Finally, we used the Python programming language and Colab because they are free and widely used by the academic community.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T20:46:33Z
dc.date.available.none.fl_str_mv 2022-11-15T20:46:33Z
dc.date.issued.none.fl_str_mv 2022-02-18
dc.date.submitted.none.fl_str_mv 2022-01
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Vallejo, W., Díaz-Uribe, C., & Fajardo, C. (2022). Google Colab and Virtual Simulations: Practical e-Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students. ACS Omega, 7(8), 7421–7429. https://doi.org/10.1021/acsomega.2c00362
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/876
dc.identifier.doi.none.fl_str_mv 10.1021/acsomega.2c00362
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85125349094&doi=10.1021%2facsomega.2c00362&origin=inward&txGid=a56e84d95fddb8d7de4fc33ab3e5304d
identifier_str_mv Vallejo, W., Díaz-Uribe, C., & Fajardo, C. (2022). Google Colab and Virtual Simulations: Practical e-Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students. ACS Omega, 7(8), 7421–7429. https://doi.org/10.1021/acsomega.2c00362
10.1021/acsomega.2c00362
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/876
https://www.scopus.com/record/display.uri?eid=2-s2.0-85125349094&doi=10.1021%2facsomega.2c00362&origin=inward&txGid=a56e84d95fddb8d7de4fc33ab3e5304d
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Licenciatura en Ciencias Naturales
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv ACS Omega
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/1/acsomega.2c00362.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/3/license.txt
bitstream.checksum.fl_str_mv 34e5fda016bea8e0ff7e07d11942da17
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1828220218467418112
spelling Vallejo, William515f7221-38e6-4d06-8d1f-bf35a10ac2bbDíaz Uribe, CarlosFajardo, Catalina2022-11-15T20:46:33Z2022-11-15T20:46:33Z2022-02-182022-01Vallejo, W., Díaz-Uribe, C., & Fajardo, C. (2022). Google Colab and Virtual Simulations: Practical e-Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to Students. ACS Omega, 7(8), 7421–7429. https://doi.org/10.1021/acsomega.2c00362https://hdl.handle.net/20.500.12834/87610.1021/acsomega.2c00362Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85125349094&doi=10.1021%2facsomega.2c00362&origin=inward&txGid=a56e84d95fddb8d7de4fc33ab3e5304dVarious studies have reported the versatility and great scope of programming tools in all areas of knowledge. Coding is generally of paramount importance to chemistry students regardless of whether they intend to work with theoretical chemistry. Google Colab notebooks can introduce students to programming concepts and could be a convenient tool to assist in the chemistry teaching process. In this article, we implemented Google Colab notebooks to aid in the teaching of thermodynamics in a physical chemistry class. We presented six notebooks, covering introductory concepts of both coding and thermodynamics as a set of learning objects that can be useful in a virtual learning environment. In addition, in some of the notebooks, we included a step-by-step guide on how to run virtual lab simulations. The Colab notebooks were created for students without previous experience in programming. All of the Colab notebooks contain exercises of the activities and the solutions of the proposed exercises. Furthermore, all of the Colab notebooks can be modified and downloaded from the Github repository. Finally, we used the Python programming language and Colab because they are free and widely used by the academic community.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ACS OmegaGoogle Colab and Virtual Simulations: Practical e‑Learning Tools to Support the Teaching of Thermodynamics and to Introduce Coding to StudentsPúblico generalinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaLicenciatura en Ciencias NaturalesSede NorteBrief, U. P. Education during COVID-19 and Beyond; United Nations, 2020; pp 1−26.UNESCO. Global Education Monitoring Report, 2020: Inclusion and Education: All Means AllUNESCO Biblioteca Digital, 3rd ed.; UNNESCO, Ed.; Paris, France, 2020; Vol. 1.United Nations. Human Development Reports 2020, 2020. http://hdr.undp.org/en/2020-report.Francom, G. M. Barriers to Technology Integration: A Time- Series Survey Study. J. Res. Technol. Educ. 2020, 52, 1−16.Organisation for Economic Co-operation and Development. School Education During COVID-19 Were Teachers and Students Ready?; OECD, 2021; pp 1−19.Zalat, M. M.; Hamed, M. S.; Bolbol, S. A. The Experiences, Challenges, and Acceptance of e-Learning as a Tool for Teaching during the COVID-19 Pandemic among University Medical Staff. PLoS One 2021, 16, No. e0248758.Barrot, J. S.; Llenares, I. I.; del Rosario, L. S. Students’ Online Learning Challenges during the Pandemic and How They Cope with Them: The Case of the Philippines. Educ. Inf. Technol. 2021, 7321− 7338.Dhawan, S. Online Learning: A Panacea in the Time of COVID- 19 Crisis. J. Educ. Technol. Syst. 2020, 49, 5−22.Mpungose, C. B. Emergent Transition from Face-to-Face to Online Learning in a South African University in the Context of the Coronavirus Pandemic. Humanit. Soc. Sci. Commun. 2020, 7, No. 113.Almahasees, Z.; Mohsen, K.; Amin, M. O. Faculty’s and Students’ Perceptions of Online Learning During COVID-19. Front. Educ. 2021, No. 638470.Huang, J. Successes and Challenges: Online Teaching and Learning of Chemistry in Higher Education in China in the Time of COVID-19. J. Chem. Educ. 2020, 97, 2810−2814.Kolil, V. K.; Muthupalani, S.; Achuthan, K. Virtual Experimental Platforms in Chemistry Laboratory Education and Its Impact on Experimental Self-Efficacy. Int. J. Educ. Technol. High. Educ. 2020, 17, 1−22.Glassey, J.; Magalhães, F. D. Virtual LabsLove Them or Hate Them, They Are Likely to Be Used More in the Future. Educ. Chem. Eng. 2020, 33, No. 76.Babinčáková, M.; Bernard, P. Online Experimentation during COVID-19 Secondary School: Teaching Methods and Student Perceptions. J. Chem. Educ. 2020, 97, 3295−3300.Josephsen, J.; Kristensen, A. K. Simulation of Laboratory Assignments to Support Students’ Learning of Introductory Inorganic Chemistry. Chem. Educ. Res. Pract. 2006, 7, 266−279.Worrall, A. F.; Mann, P. E. B.; Young, D.; Wormald, M. R.; Cahill, S. T.; Stewart, M. I. Benefits of Simulations as Remote Exercises During the COVID-19 Pandemic: An Enzyme Kinetics Case Study. J. Chem. Educ. 2020, 97, 2733−2737.Tatli, Z.; Ayas, A. Virtual Laboratory Applications in Chemistry Education. Procedia Soc. Behav. Sci. 2010, 9, 938−942.Tomandl, M.; Mieling, T.; Losert-Valiente Kroon, C. M.; Hopf, M.; Arndt, M. Simulated Interactive Research Experiments as Educational Tools for Advanced Science. Sci. Rep. 2015, 5, No. 14108.Garcia-Vedrenne, A. E.; Orland, C.; Ballare, K. M.; Shapiro, B.; Wayne, R. K. Ten Strategies for a Successful Transition to Remote Learning: Lessons Learned with a Flipped Course. Ecol. Evol. 2020, 10, 12620−12634.Kawasaki, H.; Yamasaki, S.; Masuoka, Y.; Iwasa, M.; Fukita, S.; Matsuyama, R. Remote Teaching Due to COVID-19: An Exploration of Its Effectiveness and Issues. Int. J. Environ. Res. Public Health 2021, 18, No. 2672.Youmans, M. K. Going Remote: How Teaching During a Crisis Is Unique to Other Distance Learning Experiences. J. Chem. Educ. 2020, 97, 3374−3380.Hoehn, J. R.; Fox, M. F. J.; Werth, A.; Borish, V.; Lewandowski, H. J. Remote Advanced Lab Course: A Case Study Analysis of Open- Ended Projects. Phys. Rev. Phys. Educ. Res. 2021, 17, No. 020111.Kobayashi, R.; Goumans, T. P. M.; Carstensen, N. O.; Soini, T. M.; Marzari, N.; Timrov, I.; Poncé, S.; Linscott, E. B.; Sewell, C. J.; Pizzi, G.; Ramirez, F.; Bercx, M.; Huber, S. P.; Adorf, C. S.; Talirz, L. Virtual Computational Chemistry Teaching LaboratoriesHands-On at a Distance. J. Chem. Educ. 2021, 98, 3163−3171.Falloon, G. Using Simulations to Teach Young Students Science Concepts: An Experiential Learning Theoretical Analysis. Comput. Educ. 2019, 135, 138−159.de Vries, L. E.; May, M. Virtual Laboratory Simulation in the Education of Laboratory Technicians−Motivation and Study Intensity. Biochem. Mol. Biol. Educ. 2019, 47, 257−262.Dustman, W. A.; King-Keller, S.; Marquez, R. J. Development of Gamified, Interactive, Low-Cost, Flexible Virtual Microbiology Labs That Promote Higher-Order Thinking during Pandemic Instruction. J. Microbiol. Biol. Educ. 2021, 22, ev22i1−2439.Kok, Y.-Y.; Er, H.-M.; Nadarajah, V. D. An Analysis of Health Science Students’ Preparedness and Perception of Interactive Virtual Laboratory Simulation. Med. Sci. Educ. 2021, 1, 1919−19291.Jamshidi, R.; Milanovic, I. Building Virtual Laboratory with Simulations. Comput. Appl. Eng. Educ. 2021, 28, No. 22467.Rosen, D. J.; Kelly, A. M. Epistemology, Socialization, Help Seeking, and Gender-Based Views in in-Person and Online, Hands-on Undergraduate Physics Laboratories. Phys. Rev. Phys. Educ. Res. 2020, 16, No. 020116.Humphrey, E. A.; Wiles, J. R. Lessons Learned through Listening to Biology Students during a Transition to Online Learning in the Wake of the COVID-19 Pandemic. Ecol. Evol. 2021, 11, 3450− 3458.Marchak, D.; Shvarts-Serebro, I.; Blonder, R. Teaching Chemistry by a Creative Approach: Adapting a Teachers’ Course for Active Remote Learning. J. Chem. Educ. 2021, 98, 2809−2819.Oliveira, A.; Behnagh, R. F.; Ni, L.; Mohsinah, A. A.; Burgess, K. J.; Guo, L. Emerging Technologies as Pedagogical Tools for Teaching and Learning Science: A Literature Review. Hum. Behav. Emerging Technol. 2019, 1, 149−160.Faulconer, E. K.; Gruss, A. B. A Review to Weigh the Pros and Cons of Online, Remote, and Distance Science Laboratory Experiences. Int. Rev. Res. Open Distrib. Learn. 2018, 19, 155−168.Udin, W. N.; Ramli, M.; Muzzazinah. Virtual Laboratory for Enhancing Students’ Understanding on Abstract Biology Concepts and Laboratory Skills: A Systematic Review. J. Phys.: Conf. Ser. 2020, 1521, No. 042025.Chotimah, C.; Festiyed. A Meta-Analysis of the Effects of Using PhET Interactive Simulations on Student’s Worksheets toward Senior High School Students Learning Result of Physics. J. Phys.: Conf. Ser. 2020, 1481, No. 012093.University of Colorado. PhET: Free Online Physics, Chemistry, Biology, Earth Science and Math Simulations. https://phet.colorado. edu/ (accessed Sep 10, 2021).University of Carnegie Mellon. ChemCollective: Virtual Labs. http://chemcollective.org/vlabs (accessed Sep 10, 2021).Harvard University. HomepageLabXchange. https://about. labxchange.org/ (accessed Sep 10, 2021).California State University. MERLOT. https://www.merlot. org/merlot/index.htm (accessed Sep 17, 2021).U.S. Department of Education; CSDAVIS; NSF. LibreTexts Free The Textbook. https://libretexts.org/ (accessed Sep 17, 2021).American Association of Chemistry Teachers. Classroom Resources | AACT. https://teachchemistry.org/classroom-resources (accessed Sep 10, 2021).Vallejo, W.; Diaz-Uribe, C.; Fajardo, C. Do-It-Yourself Methodology for Calorimeter Construction Based in Arduino Data Acquisition Device for Introductory Chemical Laboratories. Heliyon 2020, 6, No. e03591.Menke, E. J. Series of Jupyter Notebooks Using Python for an Analytical Chemistry Course. J. Chem. Educ. 2020, 97, 3899−3903.Kim, B.; Henke, G. Easy-to-Use Cloud Computing for Teaching Data Science. J. Stat. Data Sci. Educ. 2021, 29, S103−S111.McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython, 2nd ed.; O’Reilly Media: Sebastopol: California, 2018.Perkel, J. M. The Internet of Things Comes to the Lab. Nature 2017, 542, 125−126.McDonald, A. R. A. Ringer McDonald. In Teaching Programming across the Chemistry Curriculum; ACS Publications: Washington, DC, 2021; pp 1−11.Hocky, G. M.; White, A. D. Natural Language Processing Models That Automate Programming Will Transform Chemistry Research and Teaching. 2021, arXiv:2108.13360. arXiv.org e-Print archive. https://arxiv.org/abs/2108.13360.(49) Weiss, C. J. Scientific Computing for Chemists: An Undergraduate Course in Simulations, Data Processing, and Visualization. J. Chem. Educ. 2017, 94, 592−597.Continuum Analytics. Anaconda|Individual Edition: Your Data Science Toolkit. https://www.anaconda.com/products/individual-d (accessed Sep 9, 2021).Weiss, C. J. Scientific Computing for Chemists, 1st ed.; PIPER, 2020.Lafuente, D.; Cohen, B.; Fiorini, G.; García, A. A.; Bringas, M.; Morzan, E.; Onna, D. A Gentle Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis, and Modeling. J. Chem. Educ. 2021, 98, 2892−2898.Hanwell, M. D.; Harris, C.; Genova, A.; Haghighatlari, M.; Khatib, M.; El; Avery, P.; Hachmann, J.; de Jong, W. A. Open Chemistry, JupyterLab, REST, and Quantum Chemistry. Int. J. Quantum Chem. 2021, 121, No. e26472.Mendez, K. M.; Pritchard, L.; Reinke, S. N.; Broadhurst, D. I. Toward Collaborative Open Data Science in Metabolomics Using Jupyter Notebooks and Cloud Computing. Metabolomics 2019, 15, No. 125.Soh, J.; Singh, P. Hands-on with Azure Databricks. In Data Science Solutions on Azure; Springer, 2020; pp 225−257.Joshi, A. V. Amazon’s Machine Learning Toolkit: Sagemaker. Mach. Learn. Artif. Intell. 2020, 233−243.Google. Welcome to Colaboratory!. https://colab.research. google.com/gist/lzhou1110/2a30a81cb8c175514ed627bc18016774/ hello-colaboratory.ipynb (accessed Jun 21, 2018).Carneiro, T.; Da Nobrega, R. V. M.; Nepomuceno, T.; Bian, G.; Bin; De Albuquerque, V. H. C.; Filho, P. P. R. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677−61685.Johnston, B. Google Colab | Educational & Classroom Technologies. https://mcgrawect.princeton.edu/tool/google-colab/ (accessed Sep 10, 2021).Protopapas, P.; Glickman, M.; Tanner, C. Harvard CS109B | CS109b: Advanced Topics in Data Science, 2021. https://harvardiacs. github.io/2020-CS109B/.Baptista, L. Using Python and Google Colab to Teach Physical Chemistry During Pandemic; ChemRxiv, 2021.Andrew, W. Deep Learning for Molecules and Materials, 2021. https://whitead.github.io/dmol-book/intro.html.Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583−589.Deepmind. Alphafold, 2021. https://github.com/deepmind/ alphafold.Luciano, S. Google colab notebooks are already running Deepmind’s AlphaFold v. 2|by LucianoSphere|Towards Data Science, 2021. https://towardsdatascience.com/google-colab-notebooks-arealready- running-deepminds-alphafold-v-2-92b4531ec127.Sergey, O.; Martin, S. AlphaFold2, 2021. https://colab. research.google.com/github/sokrypton/ColabFold/blob/main/ AlphaFold2.ipynb.Sergey, O.; Martin, S. AlphaFold2_complexes, 2021. https:// colab.research.google.com/github/sokrypton/ColabFold/blob/main/ AlphaFold2_complexes.ipynb#scrollTo=g-rPnOXdjf18.Mulop, N.; Yusof, K. M.; Tasir, Z. A Review on Enhancing the Teaching and Learning of Thermodynamics. Procedia Soc. Behav. Sci. 2012, 56, 703−712.Moore, E. B.; Chamberlain, J. M.; Parson, R.; Perkins, K. K. PhET Interactive Simulations: Transformative Tools for Teaching Chemistry. J. Chem. Educ. 2014, 91, 1191−1197.Ang, J. W. J. Scaffolded Inverse Blended Learning: An Approach to Teach an Online General Chemistry Course. J. Chem. Educ. 2020, 97, 2839−2844.Chans, G. M.; Castro, M. P. Gamification as a Strategy to Increase Motivation and Engagement in Higher Education Chemistry Students. Computers 2021, 10, No. 132.Houseknecht, J. B.; Bachinski, G. J.; Miller, M. H.; White, S. A.; Andrews, D. M. Effectiveness of the Active Learning in Organic Chemistry Faculty Development Workshops. Chem. Educ. Res. Pract. 2020, 21, 387−398.Teixeira, R. L. P.; Teixeira, C. H. S. B. Case Study: Active Learning Methodology Approach in Corrosion and Science Practices. Res. Soc. Dev. 2017, 4, 171−183.Bortnik, B.; Stozhko, N.; Pervukhina, I.; Tchernysheva, A.; Belysheva, G. Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices. Res. Learn. Technol. 2017, 25, No. 1968.Mckinney, W. In Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in Science Conference; IEEE, 2010; pp 56−61.NumFOCUS. pandasPython Data Analysis Library, 2022. https://pandas.pydata.org/.Khalil, M. I. Calculating Enthalpy of Reaction by a Matrix Method. J. Chem. Educ. 2000, 77, 185−187.Kawedhar, M. C. S.; Mulyani, S.; Indriyanti, N. Y. Analogies and Visual Aids Provided by Chemistry Teachers’ in Chemistry Learning: A Case Study of Pre-Service Chemistry Teacher. AIP Conf. Proc. 2019, 2194, No. 020048.Cate, C. Why Should Chemistry Students Learn to Code?| Opinion|RSC Education. In Why Should Chemistry Students Learn to Code?; RSC: England, 2017.Forsman, A. K. Psychosocial Links Between Internet Use and Mental Health in Later Life: A Systematic Review of Quantitative and Qualitative Evidence. J. Appl. Gerontol. 2017, 36, 1471−1518.Lee, Y.-C.; Malcein, L. A.; Kim, S. C. Information and Communications Technology (ICT) Usage during COVID-19: Motivating Factors and Implications. Int. J. Environ. Res. Public Health 2021, 18, No. 3571.Christopoulos, A.; Sprangers, P. Integration of Educational Technology during the Covid-19 Pandemic: An Analysis of Teacher and Student Receptions. Cogent Educ. 2021, 8, No. 1964690.Weiss, C. J. Perspectives: Teaching Chemists to Code. Chem. Eng. News 2017, 95, 30−31.Vallejo, W. Github Repository. https://github.com/wavallejol/ ColabChem (accessed Feb 16, 2022).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALacsomega.2c00362.pdfacsomega.2c00362.pdfapplication/pdf1598554https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/1/acsomega.2c00362.pdf34e5fda016bea8e0ff7e07d11942da17MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/876/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/876oai:repositorio.uniatlantico.edu.co:20.500.12834/8762022-11-15 15:46:34.437DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==