Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response

The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1 H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line pa...

Full description

Autores:
Burboa-Schettino, Pia
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/924
Acceso en línea:
https://hdl.handle.net/20.500.12834/924
Palabra clave:
Anti-proinflammatory; Platelet-activating factor; Pyrazoles;
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_19eb4fa0e7e5fe8d473bd9140d012914
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/924
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
title Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
spellingShingle Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
Anti-proinflammatory; Platelet-activating factor; Pyrazoles;
title_short Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
title_full Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
title_fullStr Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
title_full_unstemmed Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
title_sort Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response
dc.creator.fl_str_mv Burboa-Schettino, Pia
dc.contributor.author.none.fl_str_mv Burboa-Schettino, Pia
dc.contributor.other.none.fl_str_mv Bustos, Carlos
Molins, Elies
Figueroa, Xavier F
Llanquinao, Jesus
Zarate, Ximena
Vallejos, Gabriel
Diaz-Uribe, Carlos
Vallejo, William
Schott, Eduardo
dc.subject.keywords.spa.fl_str_mv Anti-proinflammatory; Platelet-activating factor; Pyrazoles;
topic Anti-proinflammatory; Platelet-activating factor; Pyrazoles;
description The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1 H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line panel, showing moderate to good activity against different cell lines. Furthermore, the anti-proinflammatory activity test of a set of pyrazoles of the form (E)-4-((4-bro mophenyl)diazenyl)-3,5-dimethyl-1-R-phenyl-1H-pyrazole was performed, this is based on the study of the blockage of the increase in intracellular [Ca2+] observed in response to plateletactivating factor (PAF) treatment of four pyrazoles (i.e. 6, 8, 9 and 10), which successfully displayed [Ca2+] channel inhibition. Therefore, the obtained intracellular [Ca2+] signal results indicate that the pyrazole family characterized in this study, in particular compounds 6 and 10, are potent blockers of the PAF-initiated Ca2+ signaling that mediates the hyperpermeability typically observed during the development of inflammation.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-24
dc.date.submitted.none.fl_str_mv 2020-03-21
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:01:54Z
dc.date.available.none.fl_str_mv 2022-11-15T21:01:54Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/924
dc.identifier.doi.none.fl_str_mv 10.1016/j.arabjc.2020.05.042
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/924
identifier_str_mv 10.1016/j.arabjc.2020.05.042
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Arabian Journal of Chemistry
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/1/1-s2.0-S1878535220301969-main.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/3/license.txt
bitstream.checksum.fl_str_mv 996858c7dfe79a4a867911b0b8130a0e
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203418922713088
spelling Burboa-Schettino, Pia852eefc5-a7c8-42ca-ab8c-12e254a0884dBustos, CarlosMolins, EliesFigueroa, Xavier FLlanquinao, JesusZarate, XimenaVallejos, GabrielDiaz-Uribe, CarlosVallejo, WilliamSchott, Eduardo2022-11-15T21:01:54Z2022-11-15T21:01:54Z2020-06-242020-03-21https://hdl.handle.net/20.500.12834/92410.1016/j.arabjc.2020.05.042Universidad del AtlánticoRepositorio Universidad del AtlánticoThe synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1 H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line panel, showing moderate to good activity against different cell lines. Furthermore, the anti-proinflammatory activity test of a set of pyrazoles of the form (E)-4-((4-bro mophenyl)diazenyl)-3,5-dimethyl-1-R-phenyl-1H-pyrazole was performed, this is based on the study of the blockage of the increase in intracellular [Ca2+] observed in response to plateletactivating factor (PAF) treatment of four pyrazoles (i.e. 6, 8, 9 and 10), which successfully displayed [Ca2+] channel inhibition. Therefore, the obtained intracellular [Ca2+] signal results indicate that the pyrazole family characterized in this study, in particular compounds 6 and 10, are potent blockers of the PAF-initiated Ca2+ signaling that mediates the hyperpermeability typically observed during the development of inflammation.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arabian Journal of ChemistryDesign, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory responsePúblico generalAnti-proinflammatory; Platelet-activating factor; Pyrazoles;info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede NorteAbunada, N.M., Hassaneen, H.M., Abu Samaha, A.S.M., Miqdad, O. A., 2009. Synthesis and antimicrobial evaluation of some new pyrazole, pyrazoline and chromeno[3,4-c]pyrazole derivatives. J. Braz. Chem. Soc. 20, 975–987. https://doi.org/10.1590/S0103- 50532009000500024.Aggarwal, V.K., de Vicente, J., Bonnert, R.V., 2003. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem. 68, 5381–5383. https://doi.org/10.1021/jo0268409.B’Bhatt, H., Sharma, S., 2017. Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem. 10, S1590–S1596. https://doi.org/10.1016/j. arabjc.2013.05.029.Baraldi, P.G., Beria, I., Cozzi, P., Bianchi, N., Gambari, R., Romagnoli, R., 2003. Synthesis and growth inhibition activity of alpha-bromoacrylic heterocyclic and benzoheterocyclic derivatives of distamycin A modified on the amidino moiety. Bioorg. Med. Chem. 11, 965–975.Bardakos, V., Sucrow, W., Fehlauer, A., 1975. Enhydrazine, 10. Einige aliphatische Enhydrazone. Chem. Ber. 108, 2161–2170. https://doi. org/10.1002/cber.19751080702.Barrett, A.G.M., 1991. Heterosubstituted nitroalkenes in synthesis. Chem. Soc. Rev. 20, 95. https://doi.org/10.1039/cs9912000095Barrett, A.G.M., Graboski, G.G., 1986. Conjugated Nitroalkenes: Versatile Intermediates in Organic Synthesis. Chem. Rev. 86, 751– 762. https://doi.org/10.1021/cr00075a002.Bertolasi, V., Pretto, L., Ferretti, V., Gilli, P., Gilli, G., 2006. Interplay between steric and electronic factors in determining the strength of intramolecular N-H O resonance-assisted hydrogen bonds in benaminones. Acta Crystallogr. Sect. B Struct. Sci. 62, 1112–1120. https://doi.org/10.1107/S0108768106036421.Bezenc¸on, O., Remenˇ, L., Richard, S., Roch, C., Kessler, M., Ertel, E. A., Moon, R., Mawet, J., Pfeifer, T., Capeleto, B., 2017. Discovery and evaluation of Cav3.2-selective T-type calcium channel blockers. Bioorganic Med. Chem. Lett. 27, 5326–5331. https://doi.org/ 10.1016/j.bmcl.2017.09.062Bishop, B., Brands, K., Gibb, A., Kennedy, D., 2003. Regioselective Synthesis of 1,3,5-Substituted Pyrazoles from Acetylenic Ketones and Hydrazines. Synthesis (Stuttg). 2004, 43–52. https://doi.org/ 10.1055/s-2003-44376.Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Spagna, R., 2005. SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 38, 381–388. https://doi.org/ 10.1107/S002188980403225X.Bustos, C., Pe´rez-Cerda, M., Alvarez-Thon, L., Barrales-Salcedo, E., Garland, M.T., 2012. (E)-3,5-Dimethyl-1-p-tolyl-4-(p-tolyldiazenyl)-1H-pyrazole. Acta Crystallogr. Sect. E Struct. Reports Online 68, o353–o354. https://doi.org/10.1107/S1600536812000360Bustos, C., Sa´nchez, C., Schott, E., Alvarez-Thon, L., Fuentealba, M., 2007. 3,5-Dimethyl-1-(4-nitro-phen-yl)-4-[(E)-(2,3,4,5,6-penta-fluoro-phen-yl) diazen-yl]-1H-pyrazole. Acta Crystallogr. Sect. E Struct. Reports Online 63, o1138–o1139. https://doi.org/10.1107/ S160053680605464XBustos, C., Schott, E., Rı´os, M., Sa´nchez, C., Ca´rcamo, J.-G., 2009. Facile Synthesis Of Isoxazoles And Pyrazoles From Β-Diketohydrazones. J. Chil. Chem. Soc. 54, 267–268.Card, G.L., Blasdel, L., England, B.P., Zhang, C., Suzuki, Y., Gillette, S., Fong, D., Ibrahim, P.N., Artis, D.R., Bollag, G., Milburn, M. V., Kim, S.-H., Schlessinger, J., Zhang, K.Y.J., 2005. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat. Biotechnol. 23, 201–207. https:// doi.org/10.1038/nbt1059.Cossi, M., Scalmani, G., Rega, N., Barone, V., 2002. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 117, 43. https://doi.org/10.1063/1.1480445.Dago, C.D., Le Maux, P., Roisnel, T., Brigaudeau, C., Bekro, Y.A., Mignen, O., Bazureau, J.P., 2018. Preliminary structure-activity relationship (SAR) of a novel series of pyrazole SKF-96365 analogues as potential store-operated calcium entry (SOCE) inhibitors. Int. J. Mol. Sci. 19. https://doi.org/10.3390/ ijms19030856Deng, X., Mani, N.S., 2006. Reaction of N-monosubstituted hydrazones with nitroolefins: a novel regioselective pyrazole synthesis. Org. Lett. 8, 3505–3508. https://doi.org/10.1021/ol061226vDenmark, S.E., Baiazitov, R.Y., Nguyen, S.T., 2001. Tandem double intramolecular [4 + 2]/[3 + 2] cycloadditions of nitroalkenes. Org. Lett. 3, 2907–2910. https://doi.org/10.1021/ol016385nElguero, J., 1996. In: Comprehensive Heterocyclic Chemistry II. Elsevier, pp. 1–75. https://doi.org/10.1016/B978-008096518- 5.00059-9Elguero, J., 1984. In: Comprehensive Heterocyclic Chemistry. Elsevier, pp. 167–303. https://doi.org/10.1016/B978-008096519-2.00072-2.Elguero, J., Guerrero, A., Go´mez de la Torre, F., De la Hoz, A., Jalo´n, F.A., Manzano, B.R., Rodrı´guez, A., 2001. New complexes with pyrazole-containing ligands and different metallic centres. Comparative study of their fluxional behaviour involving M-N bond rupture. New J. Chem. 25, 1050–1060. https://doi.org/10.1039/ b102318gEscario, J.A., Igea, A.M., Contreras, M., Martinez-Fernandez, A.R., Claramunt, R., Lopez, C., 1988. Antiparasitic activity of nine pyrazole derivatives against Trichomonas vaginalis, Entamoeba invadens and Plsmodium berghei. Ann. Trop. Med. Parasitol. 82, 257–262. https://doi.org/10.1080/00034983.1988.11812241Farrugia, L.J., 1999. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32, 837–838. https://doi.org/ 10.1107/S0021889899006020.Foti, F., Grassi, G., Risitano, F., 1999. First synthesis of a bromonitrilimine. Direct formation of 3- bromopyrazole derivatives. Tetrahedron Lett. 40, 2605–2606. https://doi.org/10.1016/S0040- 4039(99)00227-0Gaete, P.S., Lillo, M.A., Ardiles, N.M., Pe´rez, F.R., Figueroa, X.F., 2012. Ca 2+-activated K + channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase. Free Radic. Biol. Med. 52, 860–870. https://doi.org/10.1016/j. freeradbiomed.2011.11.036.Grigg, R., Dowling, M., Jordan, M.W., Sridharan, V., 1987. X=YZH Systems as potential 1,3-dipoles : Part 13. Prototropic generation of azomethine imines from hydrazones. Tetrahedron 43, 5873–5886.Hay, P.J., Wadt, W.R., 1985. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299. https://doi.org/ 10.1063/1.448975.Huisgen, R., Huisgen, R., 1963. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chemie Int. Ed. English 2, 565–598. https://doi. org/10.1002/anie.196305651Jiang, Y., Wen, K., Zhou, X., Schwegler-Berry, D., Castranova, V., He, P., 2008. Three-dimensional localization and quantification of PAF-induced gap formation in intact venular microvessels. Am. J. Physiol. Circ. Physiol. 295, H898–H906. https://doi.org/10.1152/ ajpheart.00309.2008.Jung, M.E., Trifunovich, I.D., 1992. Efficient synthesis of 20 ,30 - dideoxynucleosides and 20 ,30 -dideoxy C-nucleosides from D-glucosamine. Tetrahedron Lett. 33, 2921–2924. https://doi.org/ 10.1016/S0040-4039(00)79561-X.Kumar, J.S.D., Prabhakaran, J., Arango, V., Parsey, R.V., Underwood, M.D., Simpson, N.R., Kassir, S.A., Majo, V.J., Van Heertum, R.L., Mann, J.J., 2004. Synthesis of [O-methyl-11C]1- (2-chlorophenyl)-5-(4- methoxyphenyl)-4-methyl-1H-pyrazole-3- carboxylic acid piperidin-1-ylamide: A potential PET ligand for CB1 receptors. Bioorganic Med. Chem. Lett. 14, 2393–2396. https://doi.org/10.1016/j.bmcl.2004.03.034.Kumar, R., Arora, J., Ruhil, S., Phougat, N., Chhillar, A.K., Prasad, A.K., 2014. Synthesis and Antimicrobial Studies of Pyrimidine Pyrazole Heterocycles. Adv. Chem. 2014, 1–12. https://doi.org/ 10.1155/2014/329681.Le Fevre, G., Hamelin, J., 1980. Addition de phe´nylhydrazones aux ole´pines en milieu neutre. Tetrahedron 36, 887–891. https://doi.org/ 10.1016/0040-4020(80)80039-1.Lillo, M.A., Gaete, P.S., Puebla, M., Ardiles, N.M., Poblete, I., Becerra, A., Simon, F., Figueroa, X.F., 2018. Critical contribution of Na+-Ca2+ exchanger to the Ca2+-mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J. 32, 2137–2147. https://doi.org/10.1096/fj.201700365RRM.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A.R., J.R. Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A., Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B.S., A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L., Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J.D., J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A.P., n.d. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, EUAMakino, K., Kim, H.S., Kurasawa, Y., 1998. Synthesis of Pyrazoles. J. Heterocycl. Chem. 35, 489–497.Mancera, M., Rodriguez, E., Roff, I., Galbis, J.A., 1988. Stereoselective Syntheses of Nitropyrazolines by 1,3-Dipolar Cycloaddition of Diazoalkanes to Sugar Nitro Olefins. J. Org. Chem. 53, 5648–5651.Menozzi, G., Mosti, L., Fossa, P., Mattioli, F., Ghia, M., 1997. xDialkylaminoalkyl ethers of phenyl-(5-substituted 1-phenyl-1Hpyrazol-4-yl)methanols with analgesic and anti-inflammatory activity. J. Heterocycl. Chem. 34, 963–968.Miller, R.D., Reiser, O., 1993. The synthesis of Electron DonorAcceptor Substituted Pyrazoles. J. Heterocycl. Chem. 30, 755–763.Nakano, Y., Hamaguchi, M., Nagai, T., 1989. A synthetic route to bicyclic pyrazolenines via 3-chloropyrazolines and the ring opening of pyrazolenines to diazoalkenes. J. Org. Chem. 54, 5912–5919.Norris, T., Colon-Cruz, R., Ripin, D.H.B., 2005. New hydroxypyrazoline intermediates, subtle regio-selectivity and relative reaction rate variations observed during acid catalyzed and neutral pyrazole cyclization. Org. Biomol. Chem. 3, 1844–1849. https://doi. org/10.1039/b500413f.Osella, D., Milone, L., Nervi, C., Ravera, M., 1995. Electronic interactions in organometallic dimers. An electrochemical approach. J. Organomet. Chem. 488, 1–7.Padwa, A., 2009. 1,3-Dipolar cycloaddition chemistry. Volumes 1 and 2. Edited by Albert Padwa. John Wiley and Sons. New York, 1984. Volume 1: XIII + 817 pages. Volume 2: XIII + 704 pages. ISBN 0-471-08364-X (set). $295.00 for the two-volume set. J. Heterocycl. Chem. 23, 1899–1899. https://doi.org/10.1002/jhet.5570230658.Parham, W.E., Bleasdale, J.L., 1951. The Condensation of Diazo Compounds with Nitroo¨lefins. II. 3-Bromo- and 3-Nitropyrazoles. J. Am. Chem. Soc. 73, 4664–4666. https://doi.org/10.1021/ja01154a051.Parham, W.E., Braxton, H.G., O’Connor, P.R., 1961. Reaction of Diazo Compounds with Nitroolefins. VI. The Reaction of Diphenyldiazomethane with 1-Nitropropene. J. Org. Chem. 26, 1805–1807. https://doi.org/10.1021/jo01065a027.Penning, T.D., Talley, J.J., Bertenshaw, S.R., Carter, J.S., Collins, P. W., Docter, S., Graneto, M.J., Lee, L.F., Malecha, J.W., Miyashiro, J.M., Rogers, R.S., Rogier, D.J., Yu, S.S., Anderson, G.D., Burton, E.G., Cogburn, J.N., Gregory, S.A., Koboldt, C.M., Perkins, W.E., Seibert, K., Veenhuizen, A.W., Zhang, Y.Y., Isakson, P.C., 1997. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 40, 1347–1365. https://doi.org/10.1021/jm960803q.Rassolov, V.A., Ratner, M.A., Pople, J.A., Redfern, P.C., Curtiss, L. A., 2001. 6–31G* basis set for third-row atoms. J. Comput. Chem. 22, 976–984. https://doi.org/10.1002/jcc.1058.abs.Sammelson, R.E., Caboni, P., Durkin, K.A., Casida, J.E., 2004. GABA receptor antagonists and insecticides: common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyltrioxabicyclooctanes. Bioorg. Med. Chem. 12, 3345–3355. https://doi.org/ 10.1016/j.bmc.2004.03.069Sheldrick, G.M., 1990. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. Sect. A 46, 467–473. https:// doi.org/10.1107/S0108767390000277Shoemaker, R.H., 2006. The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer., 813–823 https://doi.org/ 10.1038/nrc1951Sikorski, A., Trzybin´ski, D., 2013. Networks of intermolecular interactions involving nitro groups in the crystals of three polymorphs of 9-aminoacridinium 2,4-dinitrobenzoate 2,4-dinitrobenzoic acid. J. Mol. Struct. 1049, 90–98. https://doi.org/ 10.1016/j.molstruc.2013.06.031Surendra Kumar, R., Arif, I.A., Ahamed, A., Idhayadhulla, A., 2016. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci. 23, 614–620. https://doi.org/10.1016/j. sjbs.2015.07.005Terrett, N.K., Bell, A.S., Brown, D., Ellis, P., 1996. Sildenafil (Viagra), a potent and selective inhibitor of Type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. 6, 1819–1824.Tiruppathi, C., Minshall, R.D., Paria, B.C., Vogel, S.M., Malik, A.B., 2002. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul. Pharmacol. 39, 173–185. https://doi.org/ 10.1016/S1537-1891(03)00007-7Wustrow, D.J., Capiris, T., Rubin, R., Knobelsdorf, J.A., Akunne, H., Davis, M.D., Mackenzie, R., Pugsley, T.A., Zoski, K.T., Heffner, T.G., Wise, L.D., 1998. Pyrazolo[1,5-a]pyrimidine CRF-1 receptor antagonists. Bioorg. Med. Chem. Lett. 8, 2067–2070.Yanai, T., Tew, D.P., Handy, N.C., 2004. A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57. https://doi.org/ 10.1016/j.cplett.2004.06.011.Yao, H.C., 1964. Azohydrazone Conversion. II. The Coupling of Diazonium Ion with b-Diketones. J. Am. Chem. Soc. 29, 2959– 2963.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S1878535220301969-main.pdf1-s2.0-S1878535220301969-main.pdfapplication/pdf1926282https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/1/1-s2.0-S1878535220301969-main.pdf996858c7dfe79a4a867911b0b8130a0eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/924/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/924oai:repositorio.uniatlantico.edu.co:20.500.12834/9242022-11-15 16:01:56.108DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==