Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response

The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1 H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line pa...

Full description

Autores:
Burboa-Schettino, Pia
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/924
Acceso en línea:
https://hdl.handle.net/20.500.12834/924
Palabra clave:
Anti-proinflammatory; Platelet-activating factor; Pyrazoles;
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
Description
Summary:The synthesis and characterization of the full family of 11 pyrazoles were performed by means of UV–Vis, FTIR, 1 H NMR, 13C NMR, two-dimensional NMR experiments and DFT simulations. As pyrazoles are known for showing diverse biological actions, they were also tested in the NCI-60 cancer cell line panel, showing moderate to good activity against different cell lines. Furthermore, the anti-proinflammatory activity test of a set of pyrazoles of the form (E)-4-((4-bro mophenyl)diazenyl)-3,5-dimethyl-1-R-phenyl-1H-pyrazole was performed, this is based on the study of the blockage of the increase in intracellular [Ca2+] observed in response to plateletactivating factor (PAF) treatment of four pyrazoles (i.e. 6, 8, 9 and 10), which successfully displayed [Ca2+] channel inhibition. Therefore, the obtained intracellular [Ca2+] signal results indicate that the pyrazole family characterized in this study, in particular compounds 6 and 10, are potent blockers of the PAF-initiated Ca2+ signaling that mediates the hyperpermeability typically observed during the development of inflammation.