Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs)...

Full description

Autores:
Castro, Jorge Iván
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/807
Acceso en línea:
https://hdl.handle.net/20.500.12834/807
Palabra clave:
antimicrobial
biocompatibility
cell viability
histology
nanobioglass
nanocomposites
polylactic acid
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_0d58c448e1609cf5d6d27a333ddfcd2d
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/807
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
title Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
spellingShingle Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
antimicrobial
biocompatibility
cell viability
histology
nanobioglass
nanocomposites
polylactic acid
title_short Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
title_full Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
title_fullStr Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
title_full_unstemmed Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
title_sort Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications
dc.creator.fl_str_mv Castro, Jorge Iván
dc.contributor.author.none.fl_str_mv Castro, Jorge Iván
dc.contributor.other.none.fl_str_mv Valencia Llano, Carlos Humberto
López Tenorio, Diego
Saavedra, Marcela
Zapata, Paula
Navia Porras, Diana Paola
Delgado Ospina, Johannes
N. Chaur, Manuel
Mina Hernández, José Hermínsul
Grande Tovar, Carlos David
dc.subject.keywords.spa.fl_str_mv antimicrobial
biocompatibility
cell viability
histology
nanobioglass
nanocomposites
polylactic acid
topic antimicrobial
biocompatibility
cell viability
histology
nanobioglass
nanocomposites
polylactic acid
description Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 0.44 to 2.85 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 C to 63 C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-15T19:24:53Z
dc.date.available.none.fl_str_mv 2022-11-15T19:24:53Z
dc.date.issued.none.fl_str_mv 2022-06-06
dc.date.submitted.none.fl_str_mv 2022-03-17
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.; Navia-Porras, D.P.; Delgado-Ospina, J.; Chaur, M.N.; Hernández, J.H.M.; Grande-Tovar, C.D. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022, 27, 3640. https://doi.org/10.3390/ molecules27113640
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/807
dc.identifier.doi.none.fl_str_mv 10.3390/ molecules27113640
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
identifier_str_mv Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.; Navia-Porras, D.P.; Delgado-Ospina, J.; Chaur, M.N.; Hernández, J.H.M.; Grande-Tovar, C.D. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022, 27, 3640. https://doi.org/10.3390/ molecules27113640
10.3390/ molecules27113640
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/807
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Química
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Molecules
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/1/molecules-27-03640.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/3/license.txt
bitstream.checksum.fl_str_mv 22a24c5e0a852f8f86fe20557f848289
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1808413939913981952
spelling Castro, Jorge Iván1e9148aa-03c6-48ae-951a-2cba30f0c017Valencia Llano, Carlos HumbertoLópez Tenorio, DiegoSaavedra, MarcelaZapata, PaulaNavia Porras, Diana PaolaDelgado Ospina, JohannesN. Chaur, ManuelMina Hernández, José HermínsulGrande Tovar, Carlos David2022-11-15T19:24:53Z2022-11-15T19:24:53Z2022-06-062022-03-17Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.; Navia-Porras, D.P.; Delgado-Ospina, J.; Chaur, M.N.; Hernández, J.H.M.; Grande-Tovar, C.D. Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022, 27, 3640. https://doi.org/10.3390/ molecules27113640https://hdl.handle.net/20.500.12834/80710.3390/ molecules27113640Universidad del AtlánticoRepositorio Universidad del AtlánticoScaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 0.44 to 2.85 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 C to 63 C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MoleculesBiocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical ApplicationsPúblico generalantimicrobialbiocompatibilitycell viabilityhistologynanobioglassnanocompositespolylactic acidinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaQuímicaSede NorteChristy, P.N.; Basha, S.K.; Kumari, V.S.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Biopolymeric Nanocomposite Scaffolds for Bone Tissue Engineering Applications—A Review. J. Drug Deliv. Sci. Technol. 2020, 55, 101452. [CrossRef]Kanimozhi, K.; KhaleelBasha, S.; SuganthaKumari, V.; Kaviyarasu, K. Development and Characterization of Sodium Alginate/ Poly (Vinyl Alcohol) Blend Scaffold with Ciprofloxacin Loaded in Controlled Drug Delivery System. J. Nanosci. Nanotechnol. 2019, 19, 2493–2500. [CrossRef]Malik, S.; Sundarrajan, S.; Hussain, T. Sustainable Nanofibers in Tissue Engineering and Biomedical Applications. Mater. Des. Processing Commun. 2021, 3(6), 1–22. [CrossRef]Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.A.; Kenny, J.M. Multifunctional Nanostructured PLA Materials for Packaging and Tissue Engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [CrossRef]Canales, D.; Saavedra, M.; Flores, M.T.; Bejarano, J.; Ortiz, J.A.; Orihuela, P.; Alfaro, A.; Pabón, E.; Palza, H.; Zapata, P.A. Effect of Bioglass Nanoparticles on the Properties and Bioactivity of Poly (Lactic Acid) Films. J. Biomed. Mater. Res.-Part A 2020, 108, 2032–2043. [CrossRef]Xie, X.; Chen, Y.; Wang, X.; Xu, X.; Shen, Y.; Aldalbahi, A.; Fetz, A.E.; Bowlin, G.L.; El-Newehy, M.; Mo, X. Electrospinning Nanofiber Scaffolds for Soft and Hard Tissue Regeneration. J. Mater. Sci. Technol. 2020, 59, 243–261. [CrossRef]Boccaccini, A.R.; Erol, M.; Stark,W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review. Compos. Sci. Technol. 2010, 70, 1764–1776. [CrossRef]García-Martínez, V.; Gude, M.R.; Calvo, S.; Ureña, A. Efecto de La Adición de Nanoláminas de Grafeno En Las Propiedades de Laminados de Fibra de Carbono y Benzoxacina. Mater. Compuestos 2019, 3, 6–9.Wahid, F.; Khan, T.; Hussain, Z.; Ullah, H. Nanocomposite Scaffolds for Tissue Engineering; Properties, Preparation and Applications. In Applications of Nanocomposite Materials in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 701–735.Conoscenti, G.; Carfì Pavia, F.; Ciraldo, F.E.; Liverani, L.; Brucato, V.; La Carrubba, V.; Boccaccini, A.R. In Vitro Degradation and Bioactivity of Composite Poly-l-Lactic (PLLA)/Bioactive Glass (BG) Scaffolds: Comparison of 45S5 and 1393BG Compositions. J. Mater. Sci. 2018, 53, 2362–2374. [CrossRef]Day, R.M.; Boccaccini, A.R.; Shurey, S.; Roether, J.A.; Forbes, A.; Hench, L.L.; Gabe, S.M. Assessment of Polyglycolic Acid Mesh and Bioactive Glass for Soft-Tissue Engineering Scaffolds. Biomaterials 2004, 25, 5857–5866. [CrossRef]Durgalakshmi, D.; Balakumar, S. Analysis of Solvent Induced Porous PMMA–Bioglass Monoliths by the Phase Separation Method–Mechanical and in Vitro Biocompatible Studies. Phys. Chem. Chem. Phys. 2015, 17, 1247–1256. [CrossRef] [PubMed]Montazerian, M.; Dutra Zanotto, E. History and Trends of Bioactive Glass-ceramics. J. Biomed. Mater. Res. Part A 2016, 104, 1231–1249. [CrossRef]Bellucci, D.; Chiellini, F.; Ciardelli, G.; Gazzarri, M.; Gentile, P.; Sola, A.; Cannillo, V. Processing and Characterization of Innovative Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2012, 23, 1397–1409. [CrossRef] [PubMed]Bi, L.; Jung, S.; Day, D.; Neidig, K.; Dusevich, V.; Eick, D.; Bonewald, L. Evaluation of Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in Critical-sized Rat Calvarial Defects Implanted with Bioactive Glass Scaffolds. J. Biomed. Mater. Res. Part A 2012, 100, 3267–3275. [CrossRef]Rahaman, M.N.; Day, D.E.; Bal, B.S.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive Glass in Tissue Engineering. Acta Biomater. 2011, 7, 2355–2373. [CrossRef]Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [CrossRef]Hench, L.L.; Polak, J.M. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [CrossRef]Filho, O.P.; La Torre, G.P.; Hench, L.L. Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Jpn. Soc. Biomater. 1996, 30, 509–514. [CrossRef]Clupper, D.C.; Hench, L.L. Crystallization Kinetics of Tape Cast Bioactive Glass 45S5. J. Non-Cryst. Solids 2003, 318, 43–48. [CrossRef]Li, P.; Yang, Q.; Zhang, F.; Kokubo, T. The Effect of Residual Glassy Phase in a Bioactive Glass-Ceramic on the Formation of Its Surface Apatite Layerin Vitro. J. Mater. Sci. Mater. Med. 1992, 3, 452–456. [CrossRef]Vert, M.; Li, S.M.; Spenlehauer, G.; Guérin, P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. [CrossRef]Wu, F.; Wei, J.; Liu, C.; O’Neill, B.; Ngothai, Y. Fabrication and Properties of Porous Scaffold of Zein/PCL Biocomposite for Bone Tissue Engineering. Compos. Part B Eng. 2012, 43, 2192–2197. [CrossRef]Chen, Y.; Mak, A.F.T.; Wang, M.; Li, J.; Wong, M.S. PLLA Scaffolds with Biomimetic Apatite Coating and Biomimetic Apatite/ Collagen Composite Coating to Enhance Osteoblast-like Cells Attachment and Activity. Surf. Coat. Technol. 2006, 201, 575–580. [CrossRef]Hong, Z.; Reis, R.L.; Mano, J.F. Preparation and in Vitro Characterization of Scaffolds of Poly(l-Lactic Acid) Containing Bioactive Glass Ceramic Nanoparticles. Acta Biomater. 2008, 4, 1297–1306. [CrossRef]Lin, C.C.; Huang, L.C.; Shen, P. Na2CaSi2O6-P2O5 Based Bioactive Glasses. Part 1: Elasticity and Structure. J. Non-Cryst. Solids 2005, 351, 3195–3203. [CrossRef]Boccaccini, A.R.; Chen, Q.; Lefebvre, L. Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass– ceramics. Faraday Discuss. 2007, 136, 27–44. [CrossRef] [PubMed]Glass, B.; Engineering, T.; Ranga, N.; Gahlyan, S.; Duhan, S. Antibacterial Efficiency of Zn, Mg and Sr Doped Bioactive Glass for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2020, 20, 2465–2472. [CrossRef]Krikorian, V.; Pochan, D.J. Crystallization Behavior of Poly(L-Lactic Acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 2005, 38, 6520–6527. [CrossRef]Blaker, J.J.; Nazhat, S.N.; Maquet, V.; Boccaccini, A.R. Long-Term in Vitro Degradation of PDLLA/Bioglass® Bone Scaffolds in Acellular Simulated Body Fluid. Acta Biomater. 2011, 7, 829–840. [CrossRef] [PubMed]Fan, Y.; Nishida, H.; Hoshihara, S.; Shirai, Y.; Tokiwa, Y.; Endo, T. Pyrolysis Kinetics of Poly (L-Lactide) with Carboxyl and Calcium Salt End Structures. Polym. Degrad. Stab. 2003, 79, 547–562. [CrossRef]Mao, D.; Li, Q.; Li, D.; Chen, Y.; Chen, X.; Xu, X. Fabrication of 3D Porous Poly (Lactic Acid)-Based Composite Scaffolds with Tunable Biodegradation for Bone Tissue Engineering. Mater. Des. 2018, 142, 1–10. [CrossRef]Schick, C. Differential Scanning Calorimetry (DSC) of Semicrystalline Polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611. [CrossRef] [PubMed]Loyo, C.; Moreno-Serna, V.; Fuentes, J.; Amigo, N.; Sepúlveda, F.A.; Ortiz, J.A.; Rivas, L.M.; Ulloa, M.T.; Benavente, R.; Zapata, P.A. PLA/CaO Nanocomposites with Antimicrobial and Photodegradation Properties. Polym. Degrad. Stab. 2022, 197, 109865. [CrossRef]Epp, J. X-ray Diffraction (XRD) Techniques for Materials Characterization; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081000571.Lefebvre, L.; Gremillard, L.; Chevalier, J.; Zenati, R.; Bernache-Assolant, D. Sintering Behaviour of 45S5 Bioactive Glass. Acta Biomater. 2008, 4, 1894–1903. [CrossRef]Rose, A.S.J.L.; Selvarajan, P.; Perumal, S. Growth, Structural, Spectral, Mechanical, Thermal and Dielectric Characterization of Phosphoric Acid Admixtured l-Alanine (PLA) Single Crystals. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2011, 81, 270–275. [CrossRef]Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering. Biomaterials 2006, 27, 2414–2425. [CrossRef]Schwartz, Z.; Boyan, B.D. Underlying Mechanisms at the Bone–Biomaterial Interface. J. Cell. Biochem. 1994, 56, 340–347. [CrossRef]Tu, C.; Cai, Q.; Yang, J.;Wan, Y.; Bei, J.;Wang, S. The Fabrication and Characterization of Poly (Lactic Acid) Scaffolds for Tissue Engineering by Improved Solid–Liquid Phase Separation. Polym. Adv. Technol. 2003, 14, 565–573. [CrossRef]Adams, L.K.; Lyon, D.Y.; Alvarez, P.J.J. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnOWater Suspensions. Water Res. 2006, 40, 3527–3532. [CrossRef]Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and Their Antimicrobial Properties against Pathogens Including Bacteria, Fungi, Parasites and Viruses. Microb. Pathog. 2018, 123, 505–526. [CrossRef]Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. [CrossRef]Possolli, N.M.; Da Silva, D.F.; Vieira, J.; Maurmann, N.; Pranke, P.; Demétrio, K.B.; Angioletto, E.; Montedo, O.R.K.; Arcaro, S. Dissolution, bioactivity behavior, and cytotoxicity of 19. 58Li2O 11. 10ZrO2 69. 32SiO2 glass–ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 67–78. [CrossRef]Atkinson, I.; Anghel, E.M.; Petrescu, S.; Seciu, A.M.; Stefan, L.M.; Mocioiu, O.C.; Predoana, L.; Voicescu, M.; Somacescu, S.; Culita, D. Cerium-Containing Mesoporous Bioactive Glasses: Material Characterization, in Vitro Bioactivity, Biocompatibility and Cytotoxicity Evaluation. Microporous Mesoporous Mater. 2019, 276, 76–88. [CrossRef]Spirandeli, B.R.; Ribas, R.G.; Amaral, S.S.; Martins, E.F.; Esposito, E.; Vasconcellos, L.M.R.; Campos, T.M.B.; Thim, G.P.; Trichês, E.S. Incorporation of 45S5 Bioglass via Sol-Gel in -TCP Scaffolds: Bioactivity and Antimicrobial Activity Evaluation. Mater. Sci. Eng. C 2021, 131, 112453. [CrossRef] [PubMed]Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly (Lactic Acid) Nanofibrous Scaffolds for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [CrossRef] [PubMed]Diomede, F.; Gugliandolo, A.; Cardelli, P.; Merciaro, I.; Ettorre, V.; Traini, T.; Bedini, R.; Scionti, D.; Bramanti, A.; Nanci, A. Three-Dimensional Printed PLA Scaffold and Human Gingival Stem Cell-Derived Extracellular Vesicles: A New Tool for Bone Defect Repair. Stem Cell Res. Ther. 2018, 9, 1–21. [CrossRef]Gritsch, L.; Perrin, E.; Chenal, J.-M.; Fredholm, Y.; Maçon, A.L.; Chevalier, J.; Boccaccini, A.R. Combining Bioresorbable Polyesters and Bioactive Glasses: Orthopedic Applications of Composite Implants and Bone Tissue Engineering Scaffolds. Appl. Mater. Today 2021, 22, 100923. [CrossRef]Bahremandi-Toloue, E.; Mohammadalizadeh, Z.; Mukherjee, S.; Karbasi, S. Incorporation of Inorganic Bioceramics into Electrospun Scaffolds for Tissue Engineering Applications: A Review. Ceram. Int. 2021, 48(9), 8803–8837. [CrossRef]Rahmati, M.; Mozafari, M. Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomater. Sci. Eng. 2019, 6, 4–20. [CrossRef] [PubMed]Sui, H.;Wang, F.;Weng, Z.; Song, H.; Fang, Y.; Tang, X.; Shen, X. A Wheat Germ-Derived Peptide YDWPGGRN Facilitates Skin Wound-Healing Processes. Biochem. Biophys. Res. Commun. 2020, 524, 943–950. [CrossRef]Sheikh, Z.; Brooks, P.J.; Barzilay, O.; Fine, N.; Glogauer, M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials 2015, 8, 5671–5701. [CrossRef] [PubMed]Sharabi, M. Structural Mechanisms in Soft Fibrous Tissues: A Review. Front. Mater. 2022, 8, 793647. [CrossRef]Kapogianni, E.; Alkildani, S.; Radenkovic, M.; Xiong, X.; Krastev, R.; Stöwe, I.; Bielenstein, J.; Jung, O.; Najman, S.; Barbeck, M. The Early Fragmentation of a Bovine Dermis-Derived Collagen Barrier Membrane Contributes to Transmembraneous Vascularization—A Possible Paradigm Shift for Guided Bone Regeneration. Membranes 2021, 11, 185. [CrossRef]Kwee, B.J.; Mooney, D.J. Manipulating the Intersection of Angiogenesis and Inflammation. Ann. Biomed. Eng. 2015, 43, 628–640. [CrossRef] [PubMed]Onuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [CrossRef]Alnojeidi, H.; Kilani, R.T.; Ghahary, A. Evaluating the Biocompatibility of an Injectable Wound Matrix in a Murine Model. Gels 2022, 8, 49. [CrossRef]Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. Semin. Immunol. 2008, 20, 86–100. [CrossRef]Klopfleisch, R.; Jung, F. The Pathology of the Foreign Body Reaction against Biomaterials. J. Biomed. Mater. Res. Part A 2017, 105, 927–940. [CrossRef]Carvalho, J.R.G.; Conde, G.; Antonioli, M.L.; Santana, C.H.; Littiere, T.O.; Dias, P.P.; Chinelatto, M.A.; Canola, P.A.; Zara, F.J.; Ferraz, G.C. Long-Term Evaluation of Poly (Lactic Acid)(PLA) Implants in a Horse: An Experimental Pilot Study. Molecules 2021, 26, 7224. [CrossRef]Maluf-Meiken, L.C.V.; Silva, D.R.M.; Duek, E.A.R.; Alberto-Rincon, M.C. Morphometrical Analysis of Multinucleated Giant Cells in Subdermal Implants of Poly-Lactic Acid in Rats. J. Mater. Sci. Mater. Med. 2006, 17, 481–485. [CrossRef]Minata, M.K.; Motta, A.C.; Barbo, M.D.L.P.; Rincon, M.D.C.A.; Duek, E.A. Estudo Da Biocompatibilidade Da Blenda de Poli (L-Ácido Láctico)/Policaprolactona-Triol. Polímeros 2013, 23, 242–247. [CrossRef]Gueldenpfennig, T.; Houshmand, A.; Najman, S.; Stojanovic, S.; Korzinskas, T.; Smeets, R.; Gosau, M.; Pissarek, J.; Emmert, S.; Jung, O. The Condensation of Collagen Leads to an Extended Standing Time and a Decreased Pro-Inflammatory Tissue Response to a Newly Developed Pericardium-Based Barrier Membrane for Guided Bone Regeneration. In Vivo 2020, 34, 985–1000. [CrossRef] [PubMed]Fonseca, C.; Ochoa, A.; Ulloa, M.T.; Alvarez, E.; Canales, D.; Zapata, P.A. Poly (Lactic Acid)/TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater. Sci. Eng. C 2015, 57, 314–320. [CrossRef]Shelembe, B.; Mahlangeni, N.; Moodley, R. Biosynthesis and Bioactivities of Metal Nanoparticles Mediated by Helichrysum Aureonitens. J. Anal. Sci. Technol. 2022, 13, 1–11. [CrossRef]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALmolecules-27-03640.pdfmolecules-27-03640.pdfapplication/pdf8450242https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/1/molecules-27-03640.pdf22a24c5e0a852f8f86fe20557f848289MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/807/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/807oai:repositorio.uniatlantico.edu.co:20.500.12834/8072022-11-15 14:24:54.334DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==