Localized vortex beams in anisotropic Lieb lattices
We address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with s...
- Autores:
-
Mejia-Cortes, Cristian
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/1026
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/1026
- Palabra clave:
- Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides.
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_092880ba324f776da37fbcc06e1f5185 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/1026 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Localized vortex beams in anisotropic Lieb lattices |
title |
Localized vortex beams in anisotropic Lieb lattices |
spellingShingle |
Localized vortex beams in anisotropic Lieb lattices Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides. |
title_short |
Localized vortex beams in anisotropic Lieb lattices |
title_full |
Localized vortex beams in anisotropic Lieb lattices |
title_fullStr |
Localized vortex beams in anisotropic Lieb lattices |
title_full_unstemmed |
Localized vortex beams in anisotropic Lieb lattices |
title_sort |
Localized vortex beams in anisotropic Lieb lattices |
dc.creator.fl_str_mv |
Mejia-Cortes, Cristian |
dc.contributor.author.none.fl_str_mv |
Mejia-Cortes, Cristian |
dc.contributor.other.none.fl_str_mv |
Castillo-Barake, Jorge |
dc.subject.keywords.spa.fl_str_mv |
Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides. |
topic |
Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides. |
description |
We address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with symmetric and asymmetric pro les, ranging from topological charge S = 1 to S = 3. By taking into account the presence of anisotropy, which is inherent to experimental realization of waveguide arrays, we identify di erent stability behaviors according to their topological charge. Our ndings might give insight on experimental feasibility to observe these kind of vortex states. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-07-01 |
dc.date.submitted.none.fl_str_mv |
2020-05-19 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:34:09Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:34:09Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/1026 |
dc.identifier.doi.none.fl_str_mv |
10.1364/OL.397222 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/1026 |
identifier_str_mv |
10.1364/OL.397222 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Física |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
OSA - The Optical Society |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/1/Localized_vortex_beams_in_anisotropic_Lieb_lattice.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/3/license.txt |
bitstream.checksum.fl_str_mv |
433d87d5c225f163e017212a940c1a3f 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203418038763520 |
spelling |
Mejia-Cortes, Cristianec3f4244-4c80-47ad-8480-4220452e7f7bCastillo-Barake, Jorge2022-11-15T21:34:09Z2022-11-15T21:34:09Z2020-07-012020-05-19https://hdl.handle.net/20.500.12834/102610.1364/OL.397222Universidad del AtlánticoRepositorio Universidad del AtlánticoWe address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with symmetric and asymmetric pro les, ranging from topological charge S = 1 to S = 3. By taking into account the presence of anisotropy, which is inherent to experimental realization of waveguide arrays, we identify di erent stability behaviors according to their topological charge. Our ndings might give insight on experimental feasibility to observe these kind of vortex states.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2OSA - The Optical SocietyLocalized vortex beams in anisotropic Lieb latticesPúblico generalAnisotropy, Geometry, Nonlinear equations, Topology, Waveguides.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede Norte[1] G. Molina-Terriza, J. P. Torres, and L. Torner, Phys. Rev. Lett. 88, 013601 (2001).[2] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).[3] X. Zhuang, Science 305, 188 (2004), https://science.sciencemag.org/content/305/5681/188.full.pdf.[4] I. A. Favre-Bulle, A. B. Stilgoe, E. K. Scott, and H. Rubinsztein-Dunlop, Nanophotonics 8, 1023 (2019).5] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Nature Physics 4, 282 (2008).[6] S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 86, 4358 (2001).[7] P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).[8] Y. V. Kartashov, C. Hang, G. Huang, and L. Torner, Optica 3, 1048 (2016).[9] T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. Lett. 93, 063901 (2004).[10] D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Phys. Rev. Lett. 92, 123903 (2004).[11] J. Armijo, R. Allio, and C. Mej a-Cort es, Opt. Express 22, 20574 (2014).[12] A. Szameit and S. Nolte, Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001 (2010).[13] G. R. Castillo, L. Labrador-P aez, F. Chen, S. Camacho-L opez, and J. R. V. de Aldana, J. Lightwave Technol. 35, 2520 (2017).[14] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mej a-Cort es, S. Weimann, A. Szameit, and M. I. Molina, Phys. Rev. Lett. 114, 245503 (2015).[15] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Ohberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett. 114, 245504 (2015).[16] B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601 (2001).[17] C. Mej a-Cort es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Phys. Rev. A 83, 043837 (2011).[18] C. Mej a-Cort es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Phys. Rev. A 86, 023834 (2012).[19] B. Real and R. A. Vicencio, Phys. Rev. A 98, 053845 (2018).[20] J. Soto-Crespo, N. Akhmediev, C. Mej a-Cort es, and N. Devine, Opt. Express 17, 4236 (2009).[21] Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, Phys. Rev. Lett. 95, 123902 (2005).[22] B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Tr ager, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, Applied Physics B 86, 399 (2007).http://purl.org/coar/resource_type/c_6501ORIGINALLocalized_vortex_beams_in_anisotropic_Lieb_lattice.pdfLocalized_vortex_beams_in_anisotropic_Lieb_lattice.pdfapplication/pdf4975564https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/1/Localized_vortex_beams_in_anisotropic_Lieb_lattice.pdf433d87d5c225f163e017212a940c1a3fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1026oai:repositorio.uniatlantico.edu.co:20.500.12834/10262022-11-15 16:34:10.112DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |