Localized vortex beams in anisotropic Lieb lattices

We address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with s...

Full description

Autores:
Mejia-Cortes, Cristian
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/1026
Acceso en línea:
https://hdl.handle.net/20.500.12834/1026
Palabra clave:
Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides.
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_092880ba324f776da37fbcc06e1f5185
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/1026
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Localized vortex beams in anisotropic Lieb lattices
title Localized vortex beams in anisotropic Lieb lattices
spellingShingle Localized vortex beams in anisotropic Lieb lattices
Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides.
title_short Localized vortex beams in anisotropic Lieb lattices
title_full Localized vortex beams in anisotropic Lieb lattices
title_fullStr Localized vortex beams in anisotropic Lieb lattices
title_full_unstemmed Localized vortex beams in anisotropic Lieb lattices
title_sort Localized vortex beams in anisotropic Lieb lattices
dc.creator.fl_str_mv Mejia-Cortes, Cristian
dc.contributor.author.none.fl_str_mv Mejia-Cortes, Cristian
dc.contributor.other.none.fl_str_mv Castillo-Barake, Jorge
dc.subject.keywords.spa.fl_str_mv Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides.
topic Anisotropy, Geometry, Nonlinear equations, Topology, Waveguides.
description We address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with symmetric and asymmetric pro les, ranging from topological charge S = 1 to S = 3. By taking into account the presence of anisotropy, which is inherent to experimental realization of waveguide arrays, we identify di erent stability behaviors according to their topological charge. Our ndings might give insight on experimental feasibility to observe these kind of vortex states.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-07-01
dc.date.submitted.none.fl_str_mv 2020-05-19
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:34:09Z
dc.date.available.none.fl_str_mv 2022-11-15T21:34:09Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/1026
dc.identifier.doi.none.fl_str_mv 10.1364/OL.397222
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/1026
identifier_str_mv 10.1364/OL.397222
Universidad del Atlántico
Repositorio Universidad del Atlántico
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Física
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv OSA - The Optical Society
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/1/Localized_vortex_beams_in_anisotropic_Lieb_lattice.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/3/license.txt
bitstream.checksum.fl_str_mv 433d87d5c225f163e017212a940c1a3f
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203418038763520
spelling Mejia-Cortes, Cristianec3f4244-4c80-47ad-8480-4220452e7f7bCastillo-Barake, Jorge2022-11-15T21:34:09Z2022-11-15T21:34:09Z2020-07-012020-05-19https://hdl.handle.net/20.500.12834/102610.1364/OL.397222Universidad del AtlánticoRepositorio Universidad del AtlánticoWe address the issue of nonlinear modes in a two-dimensional waveguide array, spatially distributed in the Lieb lattice geometry, and modeled by a saturable nonlinear Schr odinger equation. In particular, we analyze the existence and stability of vortex-type solutions nding localized patterns with symmetric and asymmetric pro les, ranging from topological charge S = 1 to S = 3. By taking into account the presence of anisotropy, which is inherent to experimental realization of waveguide arrays, we identify di erent stability behaviors according to their topological charge. Our ndings might give insight on experimental feasibility to observe these kind of vortex states.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2OSA - The Optical SocietyLocalized vortex beams in anisotropic Lieb latticesPúblico generalAnisotropy, Geometry, Nonlinear equations, Topology, Waveguides.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaFísicaSede Norte[1] G. Molina-Terriza, J. P. Torres, and L. Torner, Phys. Rev. Lett. 88, 013601 (2001).[2] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).[3] X. Zhuang, Science 305, 188 (2004), https://science.sciencemag.org/content/305/5681/188.full.pdf.[4] I. A. Favre-Bulle, A. B. Stilgoe, E. K. Scott, and H. Rubinsztein-Dunlop, Nanophotonics 8, 1023 (2019).5] J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Nature Physics 4, 282 (2008).[6] S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 86, 4358 (2001).[7] P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).[8] Y. V. Kartashov, C. Hang, G. Huang, and L. Torner, Optica 3, 1048 (2016).[9] T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. Lett. 93, 063901 (2004).[10] D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Phys. Rev. Lett. 92, 123903 (2004).[11] J. Armijo, R. Allio, and C. Mej a-Cort es, Opt. Express 22, 20574 (2014).[12] A. Szameit and S. Nolte, Journal of Physics B: Atomic, Molecular and Optical Physics 43, 163001 (2010).[13] G. R. Castillo, L. Labrador-P aez, F. Chen, S. Camacho-L opez, and J. R. V. de Aldana, J. Lightwave Technol. 35, 2520 (2017).[14] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mej a-Cort es, S. Weimann, A. Szameit, and M. I. Molina, Phys. Rev. Lett. 114, 245503 (2015).[15] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Ohberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett. 114, 245504 (2015).[16] B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E 64, 026601 (2001).[17] C. Mej a-Cort es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Phys. Rev. A 83, 043837 (2011).[18] C. Mej a-Cort es, J. M. Soto-Crespo, R. A. Vicencio, and M. I. Molina, Phys. Rev. A 86, 023834 (2012).[19] B. Real and R. A. Vicencio, Phys. Rev. A 98, 053845 (2018).[20] J. Soto-Crespo, N. Akhmediev, C. Mej a-Cort es, and N. Devine, Opt. Express 17, 4236 (2009).[21] Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, Phys. Rev. Lett. 95, 123902 (2005).[22] B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Tr ager, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, Applied Physics B 86, 399 (2007).http://purl.org/coar/resource_type/c_6501ORIGINALLocalized_vortex_beams_in_anisotropic_Lieb_lattice.pdfLocalized_vortex_beams_in_anisotropic_Lieb_lattice.pdfapplication/pdf4975564https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/1/Localized_vortex_beams_in_anisotropic_Lieb_lattice.pdf433d87d5c225f163e017212a940c1a3fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/1026/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/1026oai:repositorio.uniatlantico.edu.co:20.500.12834/10262022-11-15 16:34:10.112DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==