Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system
In this research, the implementation of an integrated system composed of a dual-fuel engine (Diesel-Hydrogen), a PEM electrolyzer and a thermoelectric generator is envisioned. In order to know the optimal operating conditions of each sub-system, the exergetic efficiency and destroyed exergy were stu...
- Autores:
-
De Armas-Calderón, Nelly
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/846
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/846
- Palabra clave:
- diesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generator
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_04469952191eb43b80eeb10c0d11e502 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/846 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
dc.title.alternative.spa.fl_str_mv |
Análisis exergético de un sistema integrado de motor de combustible dual, electrolizador PEM y generador termoeléctrico |
title |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
spellingShingle |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system diesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generator |
title_short |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
title_full |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
title_fullStr |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
title_full_unstemmed |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
title_sort |
Exergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated system |
dc.creator.fl_str_mv |
De Armas-Calderón, Nelly |
dc.contributor.author.none.fl_str_mv |
De Armas-Calderón, Nelly |
dc.contributor.other.none.fl_str_mv |
Lizarazo-Bohórquez, Cristina Duarte-Forero, Jorge |
dc.subject.keywords.spa.fl_str_mv |
diesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generator |
topic |
diesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generator |
description |
In this research, the implementation of an integrated system composed of a dual-fuel engine (Diesel-Hydrogen), a PEM electrolyzer and a thermoelectric generator is envisioned. In order to know the optimal operating conditions of each sub-system, the exergetic efficiency and destroyed exergy were studied. It was estimated that for the dual combustion engine, the destroyed exergy would increase as a function of the concentration of methane in its mixture. By varying the electrical input to the electrolyzer, it was found that when the input current was 2A, the exergetic efficiency would go up to 92.59%, while for a current of 5A, the efficiency decreased in 51.80%. Finally, the exergetic efficiency of TEG decreased by increasing the hot flow temperature; 86.68% of the decrease in efficiency occurred for temperatures between 470K and 510K. On the other hand, the destroyed exergy increased linearly with an increase in the inlet temperature of exhaust gases. |
publishDate |
2019 |
dc.date.submitted.none.fl_str_mv |
2019-12-21 |
dc.date.issued.none.fl_str_mv |
2020-08-12 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T19:43:51Z |
dc.date.available.none.fl_str_mv |
2022-11-15T19:43:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/846 |
dc.identifier.doi.none.fl_str_mv |
10.15446/dyna.v87n215.84305 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/846 |
identifier_str_mv |
10.15446/dyna.v87n215.84305 Universidad del Atlántico Repositorio Universidad del Atlántico |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Universidad Nacional de Colombia |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/1/84305-Texto%20del%20art%c3%adculo-503120-1-10-20201109.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/3/license.txt |
bitstream.checksum.fl_str_mv |
df4a90edf0e58d63baf1e1304438d6ed 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203418705657856 |
spelling |
De Armas-Calderón, Nellyd4a59b11-47b6-491b-bcc2-4d9cd06f6ecfLizarazo-Bohórquez, CristinaDuarte-Forero, Jorge2022-11-15T19:43:51Z2022-11-15T19:43:51Z2020-08-122019-12-21https://hdl.handle.net/20.500.12834/84610.15446/dyna.v87n215.84305Universidad del AtlánticoRepositorio Universidad del AtlánticoIn this research, the implementation of an integrated system composed of a dual-fuel engine (Diesel-Hydrogen), a PEM electrolyzer and a thermoelectric generator is envisioned. In order to know the optimal operating conditions of each sub-system, the exergetic efficiency and destroyed exergy were studied. It was estimated that for the dual combustion engine, the destroyed exergy would increase as a function of the concentration of methane in its mixture. By varying the electrical input to the electrolyzer, it was found that when the input current was 2A, the exergetic efficiency would go up to 92.59%, while for a current of 5A, the efficiency decreased in 51.80%. Finally, the exergetic efficiency of TEG decreased by increasing the hot flow temperature; 86.68% of the decrease in efficiency occurred for temperatures between 470K and 510K. On the other hand, the destroyed exergy increased linearly with an increase in the inlet temperature of exhaust gases.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Universidad Nacional de ColombiaExergetic analysis of a dual-fuel engine, PEM electrolyzer and thermoelectric generator integrated systemAnálisis exergético de un sistema integrado de motor de combustible dual, electrolizador PEM y generador termoeléctricoPúblico generaldiesel engine; electrolyzer; exergetic analysis; hybrid systems; thermoelectric generatorinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaIngeniería MecánicaSede Norte[1] Gautam, P., Kumar, S. and Lokhandwala, S., Energy-Aware Intelligence in Megacities. Chapter 11, Elsevier B.V., 2019. DOI: 10.1016/B978-0-444-64083-3.00011-7[2] Preston, S.H. The effect of population growth on environmental quality, Population Research and Policy Review, 15(2), pp. 95-108, 1996. DOI: 10.1007/BF00126129[3] Shi, A., The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data., Ecological Economics, 44(1), pp. 29-42, 2003. DOI: 10.1016/S0921- 8009(02)00223-9.[4] Brovkin, V., Sitch, S., Von Bloh, W., Claussen, M., Bauer, E. and Cramer, W., Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology 10(8), pp. 1253-1266, 2004. DOI: 10.1111/j.1365- 2486.2004.00812.x[5] Kurihara, H. and Shirayama, Y., Effects of increased atmospheric CO2 on sea urchin early development, 274, pp. 161-169, 2004. DOI: 10.3354/meps274161.[6] Bilgen, S., Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, pp. 890-902, 2014. DOI: 10.1016/j.rser.2014.07.004.[7] Hansen, J., Ruedy, R., Sato, M. and Lo, K., Global surface temperature change. Reviews of Geophysics, 48(4), 2010. DOI: 10.1029/2010RG000345[8] New, M., Liverman, D., Schroder, H. and Anderson, K., Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications, 2011. DOI: 10.1098/rsta.2010.0303.[9] Revankar, S.T., Nuclear Hydrogen Production. Elsevier Inc., 2019. DOI: 10.1016/B978-0-12-813975-2.00004-1.[10] Champier, D., Thermoelectric generators: a review of applications. Energy Conversion and Management, 140, pp. 167-181, 2017. DOI: 10.1016/j.enconman.2017.02.070[11] Demir, M.E. and Dincer, I., Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production. International Journal of Hydrogen Energy, 42(51), pp. 30044-30056, 2017. DOI: 10.1016/j.ijhydene.2017.09.001[12] Islam, S., Dincer, I. and Yilbas, B.S., Energetic and exergetic performance analyses of a solar energy-based integrated system for multigeneration including thermoelectric generators. Energy, 93, pp. 1246-1258, 2015. DOI: 10.1016/j.energy.2015.09.111[13] Kazim, A.M., Exergoeconomic analysis of a PEM electrolyser at various operating temperatures and pressures. International Journal of Energy Research, 29(6), pp. 539-548, 2005. DOI: 10.1002/er.1073.[14] Ni, M., Leung, M.K. and Leung, D.Y., Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management, 49(10), pp. 2748-2756, 2008. DOI: 10.1016/j.enconman.2008.03.018.[15] Sorgulu, F. and Dincer, I., Thermodynamic analyses of a solar-based combined cycle integrated with electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 43(2), pp. 1047-1059, 2018. DOI: 10.1016/j.ijhydene.2017.09.126.[16] Al Zahrani, A.A. and Dincer, I., Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 42(33), pp. 21404-21413, 2017. DOI: 10.1016/j.ijhydene.2017.03.186[17] da Costa, Y.J.R., de Lima, A.G.B., Bezerra Filho, C.R. and de AraujoLima, L., Energetic and exergetic analyses of a dual-fuel diesel engine. Renewable and Sustainable Energy Reviews, 16(7), pp. 4651-4660, 2012. DOI: 10.1016/j.rser.2012.04.013[18] Rufino, C.H., de Lima, A.J., Mattos, A.P., Allah, F.U., Bernal, J.L., Ferreira, J.V. and Gallo, W.L.Exergetic analysis of a spark-ignition engine fuelled with ethanol. Energy Conversion and Management, 192, pp. 20-29, 2019. DOI: 10.1016/j.enconman.2019.04.035.[19] Balli, O., Sohret, Y. and Karakoc, H.T., The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43(23), pp. 10848-10858, 2018. DOI: 10.1016/j.ijhydene.2017.12.178.[20] Amador-Diaz, G., Duarte-Forero, J., Garcia, J., Rincon, A., Fontalvo, A., Bula, A. and Vazquez-Padilla, R., Maximum power from fluid flow by applying the first and second laws of thermodynamics. Journal of Energy Resources Technology. ASME, 139(3)pp. 1-8, 2017. DOI: 10.1115/1.4035021[21] Duarte-Forero, J.E., Estrada, W.G. y Guerrero, J.S., Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. Inge Cuc, 14(1), pp. 122-132, 2018. DOI: 10.17981/ingecuc.14.1.2018.11.[22] Consuegra, F., Bula, A., Guillín, W., Sánchez, J. and Duarte-Forero, J.E., Instantaneous in-cylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines. Energies, 12 (8), 2019. DOI: 10.3390/en12081437.[23] Narvaez-Pallares, H., Villareal-Acosta, S., Duarte-Forero, J.E. and Rincon-Montenegro, A., Implementación de un banco para pruebas en motor Diésel monocilíndrico con aplicaciones investigativas. Scientia et technica, 22(4), pp. 330-340, 2017. DOI: 10.22517/23447214.16111[24] Bejan, A., Tsatsaronis, G. and Moran, M.J., Thermal Design and Optimization, John Wiley, USA, 1995[25] Cengel, Y.A. and Boles, M., Termodinámica-Cengel 7th Ed., McGrow Hill, México, 2011.[26] Kotas, T.J., Appendix C Chemical exergy of industrial fuels, in: The Exergy Method of Thermal Plant Analysis, 1985, pp. 267-269. DOI: 10.1016/C2013-0-00894-8.[27] Caliskan, H., Dincer, I. and Hepbasli, A., Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: modeling and case study. Applied Thermal Engineering, 61(2), pp. 784-798, 2013. DOI: 10.1016/j.applthermaleng.2012.04.026[28] Demir, M.E. and Dincer, I., Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production. Desalination, 404, pp. 59-71, 2017. DOI: 10.1016/j.desal.2016.10.016[29] Esmaili, P., Dincer, I. and Naterer, G.F., Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts. International Journal of Hydrogen Energy. International Journal of Hydrogen Energy, 37(9), pp. 7365-7372, 2012. DOI: 10.1016/j.ijhydene.2012.01.076[30] Carmo, M., Fritz, D.L., Mergel, J. and Stolten, D., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 8(1), pp. 4901-4934, 2013. DOI: 10.1016/j.ijhydene.2013.01.151http://purl.org/coar/resource_type/c_6501ORIGINAL84305-Texto del artículo-503120-1-10-20201109.pdf84305-Texto del artículo-503120-1-10-20201109.pdfapplication/pdf1202371https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/1/84305-Texto%20del%20art%c3%adculo-503120-1-10-20201109.pdfdf4a90edf0e58d63baf1e1304438d6edMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/846/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/846oai:repositorio.uniatlantico.edu.co:20.500.12834/8462022-11-15 14:43:52.829DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |