Martingale optimal transport: an application to robust option pricing

Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses...

Full description

Autores:
Corredor Montenegro, David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74196
Acceso en línea:
https://hdl.handle.net/1992/74196
Palabra clave:
Robust option pricing
Martingale optimal transport
Deep learning
Matemáticas
Rights
openAccess
License
Attribution-ShareAlike 4.0 International
id UNIANDES2_ff564b231f01496b560e55f3c93677f0
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74196
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Martingale optimal transport: an application to robust option pricing
title Martingale optimal transport: an application to robust option pricing
spellingShingle Martingale optimal transport: an application to robust option pricing
Robust option pricing
Martingale optimal transport
Deep learning
Matemáticas
title_short Martingale optimal transport: an application to robust option pricing
title_full Martingale optimal transport: an application to robust option pricing
title_fullStr Martingale optimal transport: an application to robust option pricing
title_full_unstemmed Martingale optimal transport: an application to robust option pricing
title_sort Martingale optimal transport: an application to robust option pricing
dc.creator.fl_str_mv Corredor Montenegro, David
dc.contributor.advisor.none.fl_str_mv Junca Peláez, Mauricio José
dc.contributor.author.none.fl_str_mv Corredor Montenegro, David
dc.contributor.jury.none.fl_str_mv Jara Pinzón, Diego
dc.subject.keyword.eng.fl_str_mv Robust option pricing
Martingale optimal transport
Deep learning
topic Robust option pricing
Martingale optimal transport
Deep learning
Matemáticas
dc.subject.themes.spa.fl_str_mv Matemáticas
description Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses model risk by proposing a robust approach to the pricing and hedging of financial derivatives, aimed at minimizing exposure to model inaccuracies. Traditional valuation methods rely heavily on a fixed probability measure, leading to disparate outcomes in the valuation of the same financial derivative across different models. Our approach seeks to establish bounds within which the true value of a derivative is likely to fall, by considering all models consistent with market prices that preclude arbitrage opportunities. This effectively encompasses all martingale measures aligned with observed market marginals. This motivation sets the stage for exploring the Martingale Optimal Transport Problem (MOT), the core focus of our thesis. We present it’s primal and dual formulation in the most general setting, and provide a financial interpretation of its dual in terms of super-hedging (super-replication) strategies. Additionally, following the work of Eckstein and Kupper [15], we approximate the problem in two dimensions (i) by penalizing the “complicating super-replication constraints” in the objective function; and (ii) by constraining the solution space to be functions that can be specified with finitely many parameters (a specific class of neural networks). This relaxed version of the problem is shown to converge to the optimal value when the approximation quality increases. This relaxed version of the problem is numerically solved, as it ends up being an unconstrained smooth optimization problem that can be solved with gradient decent type of algorithms. We implemented this solution algorithm and test it in various settings. We use simple scenarios to validate the behavior of the algorithm and some more general settings to evaluate the performance and efficiency of the algorithm. In both settings we conclude that the algorithm is consistent with the theory. Despite all the convergence results and how we leverage the deep learning tools for solving the unconstrained optimization problem, we still see that we cannot escape the course of dimensionality, as the solution time and dimensions required for solving the problem are still significant.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-06-06
dc.date.accessioned.none.fl_str_mv 2024-04-04T18:23:03Z
dc.date.available.none.fl_str_mv 2024-04-04T18:23:03Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74196
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74196
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 34 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/6ee54784-7240-4d93-837f-13feea9b728e/download
https://repositorio.uniandes.edu.co/bitstreams/c545650a-8804-44d1-9c63-b1de437767b5/download
https://repositorio.uniandes.edu.co/bitstreams/f45cb174-d259-4749-85fd-67f5970a6bbc/download
https://repositorio.uniandes.edu.co/bitstreams/117fac2e-e8c9-4f55-a233-d3e28035ad73/download
https://repositorio.uniandes.edu.co/bitstreams/7fe1df9f-3f99-4ac9-aa5d-20cb51d233e7/download
https://repositorio.uniandes.edu.co/bitstreams/e10ae645-f014-4edf-b82a-e31f02309fc1/download
https://repositorio.uniandes.edu.co/bitstreams/b9f9fdeb-6404-4d93-8682-6f42ed4701a3/download
https://repositorio.uniandes.edu.co/bitstreams/48c1ffd0-638d-4a44-9de6-050bbdb0f768/download
https://repositorio.uniandes.edu.co/bitstreams/ce9c9e75-01ff-4f39-a16f-d7f07cc2c068/download
https://repositorio.uniandes.edu.co/bitstreams/10273602-6caa-4ca8-9af0-3200105a3106/download
https://repositorio.uniandes.edu.co/bitstreams/24ecbc16-41ac-40be-9fbd-62d8a07a2bfd/download
bitstream.checksum.fl_str_mv 84a900c9dd4b2a10095a94649e1ce116
ae9e573a68e7f92501b6913cc846c39f
21820eab8e5c3b3b1437a4bf52f946d5
4b2321ca9e6f7b1eea0d355acf90b4bd
768bb900552c483df56a438953ec5009
99892d810eb4b2efe0889b51e5bbeee1
b78af346a09a7b4b1b9d1e60347a9012
236d05f66564ddd0e9500ffeb6cfb229
d4323481be683ae63add2bd4e4eaa5fd
7d414d13451b1f1e06fc5bad8e332f04
744f7ec1951f895739dd1ee50750b7fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134068996800512
spelling Junca Peláez, Mauricio Josévirtual::17848-1Corredor Montenegro, DavidJara Pinzón, Diego2024-04-04T18:23:03Z2024-04-04T18:23:03Z2023-06-06https://hdl.handle.net/1992/74196instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses model risk by proposing a robust approach to the pricing and hedging of financial derivatives, aimed at minimizing exposure to model inaccuracies. Traditional valuation methods rely heavily on a fixed probability measure, leading to disparate outcomes in the valuation of the same financial derivative across different models. Our approach seeks to establish bounds within which the true value of a derivative is likely to fall, by considering all models consistent with market prices that preclude arbitrage opportunities. This effectively encompasses all martingale measures aligned with observed market marginals. This motivation sets the stage for exploring the Martingale Optimal Transport Problem (MOT), the core focus of our thesis. We present it’s primal and dual formulation in the most general setting, and provide a financial interpretation of its dual in terms of super-hedging (super-replication) strategies. Additionally, following the work of Eckstein and Kupper [15], we approximate the problem in two dimensions (i) by penalizing the “complicating super-replication constraints” in the objective function; and (ii) by constraining the solution space to be functions that can be specified with finitely many parameters (a specific class of neural networks). This relaxed version of the problem is shown to converge to the optimal value when the approximation quality increases. This relaxed version of the problem is numerically solved, as it ends up being an unconstrained smooth optimization problem that can be solved with gradient decent type of algorithms. We implemented this solution algorithm and test it in various settings. We use simple scenarios to validate the behavior of the algorithm and some more general settings to evaluate the performance and efficiency of the algorithm. In both settings we conclude that the algorithm is consistent with the theory. Despite all the convergence results and how we leverage the deep learning tools for solving the unconstrained optimization problem, we still see that we cannot escape the course of dimensionality, as the solution time and dimensions required for solving the problem are still significant.Pregrado34 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martingale optimal transport: an application to robust option pricingTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRobust option pricingMartingale optimal transportDeep learningMatemáticas201533535Publicationhttps://scholar.google.es/citations?user=CoIlxH0AAAAJvirtual::17848-10000-0002-5541-0758virtual::17848-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861virtual::17848-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::17848-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::17848-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/6ee54784-7240-4d93-837f-13feea9b728e/download84a900c9dd4b2a10095a94649e1ce116MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c545650a-8804-44d1-9c63-b1de437767b5/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALMOT-Robust-Option-Pricing.pdfMOT-Robust-Option-Pricing.pdfapplication/pdf1607579https://repositorio.uniandes.edu.co/bitstreams/f45cb174-d259-4749-85fd-67f5970a6bbc/download21820eab8e5c3b3b1437a4bf52f946d5MD53Slides-MOT-Robust-Option-Pricing.pdfSlides-MOT-Robust-Option-Pricing.pdfapplication/pdf3047639https://repositorio.uniandes.edu.co/bitstreams/117fac2e-e8c9-4f55-a233-d3e28035ad73/download4b2321ca9e6f7b1eea0d355acf90b4bdMD54autorizacion-tesis-David-CorredorFirma.pdfautorizacion-tesis-David-CorredorFirma.pdfHIDEapplication/pdf213520https://repositorio.uniandes.edu.co/bitstreams/7fe1df9f-3f99-4ac9-aa5d-20cb51d233e7/download768bb900552c483df56a438953ec5009MD55TEXTMOT-Robust-Option-Pricing.pdf.txtMOT-Robust-Option-Pricing.pdf.txtExtracted texttext/plain79945https://repositorio.uniandes.edu.co/bitstreams/e10ae645-f014-4edf-b82a-e31f02309fc1/download99892d810eb4b2efe0889b51e5bbeee1MD56Slides-MOT-Robust-Option-Pricing.pdf.txtSlides-MOT-Robust-Option-Pricing.pdf.txtExtracted texttext/plain55207https://repositorio.uniandes.edu.co/bitstreams/b9f9fdeb-6404-4d93-8682-6f42ed4701a3/downloadb78af346a09a7b4b1b9d1e60347a9012MD58autorizacion-tesis-David-CorredorFirma.pdf.txtautorizacion-tesis-David-CorredorFirma.pdf.txtExtracted texttext/plain2015https://repositorio.uniandes.edu.co/bitstreams/48c1ffd0-638d-4a44-9de6-050bbdb0f768/download236d05f66564ddd0e9500ffeb6cfb229MD510THUMBNAILMOT-Robust-Option-Pricing.pdf.jpgMOT-Robust-Option-Pricing.pdf.jpgGenerated Thumbnailimage/jpeg6388https://repositorio.uniandes.edu.co/bitstreams/ce9c9e75-01ff-4f39-a16f-d7f07cc2c068/downloadd4323481be683ae63add2bd4e4eaa5fdMD57Slides-MOT-Robust-Option-Pricing.pdf.jpgSlides-MOT-Robust-Option-Pricing.pdf.jpgGenerated Thumbnailimage/jpeg5795https://repositorio.uniandes.edu.co/bitstreams/10273602-6caa-4ca8-9af0-3200105a3106/download7d414d13451b1f1e06fc5bad8e332f04MD59autorizacion-tesis-David-CorredorFirma.pdf.jpgautorizacion-tesis-David-CorredorFirma.pdf.jpgGenerated Thumbnailimage/jpeg10857https://repositorio.uniandes.edu.co/bitstreams/24ecbc16-41ac-40be-9fbd-62d8a07a2bfd/download744f7ec1951f895739dd1ee50750b7feMD5111992/74196oai:repositorio.uniandes.edu.co:1992/741962024-04-05 03:09:23.962http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K