Martingale optimal transport: an application to robust option pricing
Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses...
- Autores:
-
Corredor Montenegro, David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74196
- Acceso en línea:
- https://hdl.handle.net/1992/74196
- Palabra clave:
- Robust option pricing
Martingale optimal transport
Deep learning
Matemáticas
- Rights
- openAccess
- License
- Attribution-ShareAlike 4.0 International
id |
UNIANDES2_ff564b231f01496b560e55f3c93677f0 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74196 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Martingale optimal transport: an application to robust option pricing |
title |
Martingale optimal transport: an application to robust option pricing |
spellingShingle |
Martingale optimal transport: an application to robust option pricing Robust option pricing Martingale optimal transport Deep learning Matemáticas |
title_short |
Martingale optimal transport: an application to robust option pricing |
title_full |
Martingale optimal transport: an application to robust option pricing |
title_fullStr |
Martingale optimal transport: an application to robust option pricing |
title_full_unstemmed |
Martingale optimal transport: an application to robust option pricing |
title_sort |
Martingale optimal transport: an application to robust option pricing |
dc.creator.fl_str_mv |
Corredor Montenegro, David |
dc.contributor.advisor.none.fl_str_mv |
Junca Peláez, Mauricio José |
dc.contributor.author.none.fl_str_mv |
Corredor Montenegro, David |
dc.contributor.jury.none.fl_str_mv |
Jara Pinzón, Diego |
dc.subject.keyword.eng.fl_str_mv |
Robust option pricing Martingale optimal transport Deep learning |
topic |
Robust option pricing Martingale optimal transport Deep learning Matemáticas |
dc.subject.themes.spa.fl_str_mv |
Matemáticas |
description |
Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses model risk by proposing a robust approach to the pricing and hedging of financial derivatives, aimed at minimizing exposure to model inaccuracies. Traditional valuation methods rely heavily on a fixed probability measure, leading to disparate outcomes in the valuation of the same financial derivative across different models. Our approach seeks to establish bounds within which the true value of a derivative is likely to fall, by considering all models consistent with market prices that preclude arbitrage opportunities. This effectively encompasses all martingale measures aligned with observed market marginals. This motivation sets the stage for exploring the Martingale Optimal Transport Problem (MOT), the core focus of our thesis. We present it’s primal and dual formulation in the most general setting, and provide a financial interpretation of its dual in terms of super-hedging (super-replication) strategies. Additionally, following the work of Eckstein and Kupper [15], we approximate the problem in two dimensions (i) by penalizing the “complicating super-replication constraints” in the objective function; and (ii) by constraining the solution space to be functions that can be specified with finitely many parameters (a specific class of neural networks). This relaxed version of the problem is shown to converge to the optimal value when the approximation quality increases. This relaxed version of the problem is numerically solved, as it ends up being an unconstrained smooth optimization problem that can be solved with gradient decent type of algorithms. We implemented this solution algorithm and test it in various settings. We use simple scenarios to validate the behavior of the algorithm and some more general settings to evaluate the performance and efficiency of the algorithm. In both settings we conclude that the algorithm is consistent with the theory. Despite all the convergence results and how we leverage the deep learning tools for solving the unconstrained optimization problem, we still see that we cannot escape the course of dimensionality, as the solution time and dimensions required for solving the problem are still significant. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-06 |
dc.date.accessioned.none.fl_str_mv |
2024-04-04T18:23:03Z |
dc.date.available.none.fl_str_mv |
2024-04-04T18:23:03Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74196 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74196 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
34 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/6ee54784-7240-4d93-837f-13feea9b728e/download https://repositorio.uniandes.edu.co/bitstreams/c545650a-8804-44d1-9c63-b1de437767b5/download https://repositorio.uniandes.edu.co/bitstreams/f45cb174-d259-4749-85fd-67f5970a6bbc/download https://repositorio.uniandes.edu.co/bitstreams/117fac2e-e8c9-4f55-a233-d3e28035ad73/download https://repositorio.uniandes.edu.co/bitstreams/7fe1df9f-3f99-4ac9-aa5d-20cb51d233e7/download https://repositorio.uniandes.edu.co/bitstreams/e10ae645-f014-4edf-b82a-e31f02309fc1/download https://repositorio.uniandes.edu.co/bitstreams/b9f9fdeb-6404-4d93-8682-6f42ed4701a3/download https://repositorio.uniandes.edu.co/bitstreams/48c1ffd0-638d-4a44-9de6-050bbdb0f768/download https://repositorio.uniandes.edu.co/bitstreams/ce9c9e75-01ff-4f39-a16f-d7f07cc2c068/download https://repositorio.uniandes.edu.co/bitstreams/10273602-6caa-4ca8-9af0-3200105a3106/download https://repositorio.uniandes.edu.co/bitstreams/24ecbc16-41ac-40be-9fbd-62d8a07a2bfd/download |
bitstream.checksum.fl_str_mv |
84a900c9dd4b2a10095a94649e1ce116 ae9e573a68e7f92501b6913cc846c39f 21820eab8e5c3b3b1437a4bf52f946d5 4b2321ca9e6f7b1eea0d355acf90b4bd 768bb900552c483df56a438953ec5009 99892d810eb4b2efe0889b51e5bbeee1 b78af346a09a7b4b1b9d1e60347a9012 236d05f66564ddd0e9500ffeb6cfb229 d4323481be683ae63add2bd4e4eaa5fd 7d414d13451b1f1e06fc5bad8e332f04 744f7ec1951f895739dd1ee50750b7fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134068996800512 |
spelling |
Junca Peláez, Mauricio Josévirtual::17848-1Corredor Montenegro, DavidJara Pinzón, Diego2024-04-04T18:23:03Z2024-04-04T18:23:03Z2023-06-06https://hdl.handle.net/1992/74196instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Financial markets are inherently fraught with uncertainty, translating directly into various forms of risk. Among these, model risk—the risk associated with making poor decisions based on inadequate mod- els—stands out for its profound implications on financial decision-making. This thesis addresses model risk by proposing a robust approach to the pricing and hedging of financial derivatives, aimed at minimizing exposure to model inaccuracies. Traditional valuation methods rely heavily on a fixed probability measure, leading to disparate outcomes in the valuation of the same financial derivative across different models. Our approach seeks to establish bounds within which the true value of a derivative is likely to fall, by considering all models consistent with market prices that preclude arbitrage opportunities. This effectively encompasses all martingale measures aligned with observed market marginals. This motivation sets the stage for exploring the Martingale Optimal Transport Problem (MOT), the core focus of our thesis. We present it’s primal and dual formulation in the most general setting, and provide a financial interpretation of its dual in terms of super-hedging (super-replication) strategies. Additionally, following the work of Eckstein and Kupper [15], we approximate the problem in two dimensions (i) by penalizing the “complicating super-replication constraints” in the objective function; and (ii) by constraining the solution space to be functions that can be specified with finitely many parameters (a specific class of neural networks). This relaxed version of the problem is shown to converge to the optimal value when the approximation quality increases. This relaxed version of the problem is numerically solved, as it ends up being an unconstrained smooth optimization problem that can be solved with gradient decent type of algorithms. We implemented this solution algorithm and test it in various settings. We use simple scenarios to validate the behavior of the algorithm and some more general settings to evaluate the performance and efficiency of the algorithm. In both settings we conclude that the algorithm is consistent with the theory. Despite all the convergence results and how we leverage the deep learning tools for solving the unconstrained optimization problem, we still see that we cannot escape the course of dimensionality, as the solution time and dimensions required for solving the problem are still significant.Pregrado34 páginasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martingale optimal transport: an application to robust option pricingTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRobust option pricingMartingale optimal transportDeep learningMatemáticas201533535Publicationhttps://scholar.google.es/citations?user=CoIlxH0AAAAJvirtual::17848-10000-0002-5541-0758virtual::17848-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861virtual::17848-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::17848-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::17848-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/6ee54784-7240-4d93-837f-13feea9b728e/download84a900c9dd4b2a10095a94649e1ce116MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c545650a-8804-44d1-9c63-b1de437767b5/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALMOT-Robust-Option-Pricing.pdfMOT-Robust-Option-Pricing.pdfapplication/pdf1607579https://repositorio.uniandes.edu.co/bitstreams/f45cb174-d259-4749-85fd-67f5970a6bbc/download21820eab8e5c3b3b1437a4bf52f946d5MD53Slides-MOT-Robust-Option-Pricing.pdfSlides-MOT-Robust-Option-Pricing.pdfapplication/pdf3047639https://repositorio.uniandes.edu.co/bitstreams/117fac2e-e8c9-4f55-a233-d3e28035ad73/download4b2321ca9e6f7b1eea0d355acf90b4bdMD54autorizacion-tesis-David-CorredorFirma.pdfautorizacion-tesis-David-CorredorFirma.pdfHIDEapplication/pdf213520https://repositorio.uniandes.edu.co/bitstreams/7fe1df9f-3f99-4ac9-aa5d-20cb51d233e7/download768bb900552c483df56a438953ec5009MD55TEXTMOT-Robust-Option-Pricing.pdf.txtMOT-Robust-Option-Pricing.pdf.txtExtracted texttext/plain79945https://repositorio.uniandes.edu.co/bitstreams/e10ae645-f014-4edf-b82a-e31f02309fc1/download99892d810eb4b2efe0889b51e5bbeee1MD56Slides-MOT-Robust-Option-Pricing.pdf.txtSlides-MOT-Robust-Option-Pricing.pdf.txtExtracted texttext/plain55207https://repositorio.uniandes.edu.co/bitstreams/b9f9fdeb-6404-4d93-8682-6f42ed4701a3/downloadb78af346a09a7b4b1b9d1e60347a9012MD58autorizacion-tesis-David-CorredorFirma.pdf.txtautorizacion-tesis-David-CorredorFirma.pdf.txtExtracted texttext/plain2015https://repositorio.uniandes.edu.co/bitstreams/48c1ffd0-638d-4a44-9de6-050bbdb0f768/download236d05f66564ddd0e9500ffeb6cfb229MD510THUMBNAILMOT-Robust-Option-Pricing.pdf.jpgMOT-Robust-Option-Pricing.pdf.jpgGenerated Thumbnailimage/jpeg6388https://repositorio.uniandes.edu.co/bitstreams/ce9c9e75-01ff-4f39-a16f-d7f07cc2c068/downloadd4323481be683ae63add2bd4e4eaa5fdMD57Slides-MOT-Robust-Option-Pricing.pdf.jpgSlides-MOT-Robust-Option-Pricing.pdf.jpgGenerated Thumbnailimage/jpeg5795https://repositorio.uniandes.edu.co/bitstreams/10273602-6caa-4ca8-9af0-3200105a3106/download7d414d13451b1f1e06fc5bad8e332f04MD59autorizacion-tesis-David-CorredorFirma.pdf.jpgautorizacion-tesis-David-CorredorFirma.pdf.jpgGenerated Thumbnailimage/jpeg10857https://repositorio.uniandes.edu.co/bitstreams/24ecbc16-41ac-40be-9fbd-62d8a07a2bfd/download744f7ec1951f895739dd1ee50750b7feMD5111992/74196oai:repositorio.uniandes.edu.co:1992/741962024-04-05 03:09:23.962http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |