Análisis de la tensión del parámetro de Hubble

En la última década, la discrepancia entre la medición directa de la constante de Hubble y su predicción por el modelo cosmológico estándar (ΛCDM) se ha convertido en un punto crucial en la cosmología contemporánea. A pesar de la propuesta de posibles errores sistemáticos, los cuales carecen de resp...

Full description

Autores:
Zambrano Henríquez, Luisa Fernanda
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73775
Acceso en línea:
https://hdl.handle.net/1992/73775
Palabra clave:
Cosmología
Parámetro de Hubble
Fondo cósmico de microondas
Universo primigenio
Cosmology
Hubble's parameter
Primordial universe
Cosmic Microwave background
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_fedce06493b34194166203af8666c46d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73775
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Análisis de la tensión del parámetro de Hubble
title Análisis de la tensión del parámetro de Hubble
spellingShingle Análisis de la tensión del parámetro de Hubble
Cosmología
Parámetro de Hubble
Fondo cósmico de microondas
Universo primigenio
Cosmology
Hubble's parameter
Primordial universe
Cosmic Microwave background
Física
title_short Análisis de la tensión del parámetro de Hubble
title_full Análisis de la tensión del parámetro de Hubble
title_fullStr Análisis de la tensión del parámetro de Hubble
title_full_unstemmed Análisis de la tensión del parámetro de Hubble
title_sort Análisis de la tensión del parámetro de Hubble
dc.creator.fl_str_mv Zambrano Henríquez, Luisa Fernanda
dc.contributor.advisor.none.fl_str_mv Reyes Lega, Andrés Fernando
dc.contributor.author.none.fl_str_mv Zambrano Henríquez, Luisa Fernanda
dc.contributor.jury.none.fl_str_mv García Varela, José Alejandro
dc.subject.keyword.spa.fl_str_mv Cosmología
Parámetro de Hubble
Fondo cósmico de microondas
Universo primigenio
topic Cosmología
Parámetro de Hubble
Fondo cósmico de microondas
Universo primigenio
Cosmology
Hubble's parameter
Primordial universe
Cosmic Microwave background
Física
dc.subject.keyword.eng.fl_str_mv Cosmology
Hubble's parameter
Primordial universe
Cosmic Microwave background
dc.subject.themes.none.fl_str_mv Física
description En la última década, la discrepancia entre la medición directa de la constante de Hubble y su predicción por el modelo cosmológico estándar (ΛCDM) se ha convertido en un punto crucial en la cosmología contemporánea. A pesar de la propuesta de posibles errores sistemáticos, los cuales carecen de respaldo sólido a partir de los datos disponibles, y de la dificultad que representan los errores elusivos e indefinidos, las explicaciones teóricas directas para esta discrepancia continúan siendo desafiantes de encontrar. Recientemente, la atención se ha volcado hacia modelos que modifican la física en las etapas tempranas o previas a la recombinación dentro de ΛCDM, ofreciendo una ruta prometedora para su resolución, aunque aún carecen de una base observacional consolidada. Esta tesis se propone esclarecer la naturaleza de esta tensión, resaltando los avances recientes en observaciones. Su objetivo es compilar la información más relevante para este problema, abordando tanto las distintas metodologías para medir la constante como las posibles soluciones propuestas. Dirigida a un público amplio, esta discusión, aunque abarcativa, busca encapsular la esencia del problema en medio de una compilación de revisiones especializadas recientes. A través de esta exploración, la tesis aspira a contribuir a la comprensión y búsqueda de una solución para el enigma desconcertante que implica la tensión de Hubble.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-01T20:09:37Z
dc.date.available.none.fl_str_mv 2024-02-01T20:09:37Z
dc.date.issued.none.fl_str_mv 2024-01-23
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73775
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73775
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. G. Riess, W. Yuan et al., “A comprehensive measurement of the local value of the hubble constant with 1 km s1 mpc1 uncertainty from the hubble space telescope and the SH0ES team,” Astrophys. J. Lett., vol. 934, no. 1, p. L7, Jul. 2022.
M. Kamionkowski and A. G. Riess, “The hubble tension and early dark energy,” Annual Review of Nuclear and Particle Science, vol. 73, no. 1, pp. 153–180, 2023.
A. G. Riess, W. Yuan et al., “The accuracy of the hubble constant measurement verified through cepheid amplitudes,” The Astrophysical Journal Letters, vol. 896, no. 2, p.L43, jun 2020. [Online]. Available: https://dx.doi.org/10.3847/2041-8213/ab9900
Planck Collaboration, Aghanim, N. et al., “Planck 2018 results - vi. cosmological parameters,” A&A, vol. 641, p. A6, 2020. [Online]. Available: https://doi.org/10.1051/0004-6361/201833910
D. Baumann, “Cosmology,” 2023, unpublished.
W. L. Freedman, “Measurements of the hubble constant: Tensions in perspective*,” The Astrophysical Journal, vol. 919, no. 1, p. 16, sep 2021. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ac0e95
K. Wang and Q.-G. Huang, “Implications for cosmology from ground-based cosmic microwave background observations,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 06, p. 045, jun 2020. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2020/06/045
Z. Yuan, “A critical review on hubble tension,” 2021.
A. G. Riess, L. Macri et al., “A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder*,” The Astrophysical Journal, vol. 699, no. 1, pp. 539–563, Jun. 2009. [Online]. Available: https://doi.org/10.1088/0004-637x/699/1/539
P. Shah, P. Lemos, and O. Lahav, “A buyer’s guide to the hubble constant,” The Astronomy and Astrophysics Review, vol. 29, pp. 1–69, 2021.
Birrer, Simon and Treu, Tommaso, “Tdcosmo - v. strategies for precise and accurate measurements of the hubble constant with strong lensing,” A&A, vol. 649, p. A61, 2021. [Online]. Available: https://doi.org/10.1051/0004-6361/202039179
T. M. C. Abbott, M. Aguena et al., “Dark energy survey year 3 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D, vol. 105, p. 023520, Jan 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.105.023520
K. Hotokezaka, E. Nakar et al., “A hubble constant measurement from superluminal motion of the jet in gw170817,” Nature Astronomy, vol. 3, no. 10, pp. 940–944, 2019.
C. D. Huang, A. G. Riess et al., “A near-infrared period–luminosity relation for miras in ngc 4258, an anchor for a new distance ladder,” The Astrophysical Journal, vol. 857, no. 1, p. 67, 2018.
N. Khetan, L. Izzo et al., “A new measurement of the hubble constant using type ia su pernovae calibrated with surface brightness fluctuations,” Astronomy & Astrophysics, vol. 647, p. A72, 2021.
M. Reid, D. W. Pesce, and A. Riess, “An improved distance to ngc 4258 and its implications for the hubble constant,” The Astrophysical Journal Letters, vol. 886, no. 2, p. L27, 2019.
M. S. Longair, The Thermal History of the Universe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023, pp. 307–324. [Online]. Available: https://doi.org/10.1007/ 978-3-662-65891-8 9
E. Aubourg, S. Bailey et al., “Cosmological implications of baryon acoustic oscillation measurements,” Phys. Rev. D, vol. 92, p. 123516, Dec 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.92.123516
L. Breuval, P. Kervella et al., “The milky way cepheid leavitt law based on gaia dr2 parallaxes of companion stars and host open cluster populations,” Astronomy & Astrophysics, vol. 643, p. A115, 2020.
W. L. Freedman, B. F. Madore et al., “The carnegie-chicago hubble program. viii. an independent determination of the hubble constant based on the tip of the red giant branch*,” The Astrophysical Journal, vol. 882, no. 1, p. 34, aug 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab2f73
J.-C. Hamilton, “What have we learned from observational cosmology?” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, vol. 46, pp. 70–85, 2014, philosophy of cosmology.
C. Pigozzo, M. Dantas et al., “Observational tests for (t)cdm cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 08, p. 022, aug 2011. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2011/08/022
R. Maartens, “Is the universe homogeneous?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1957, pp. 5115–5137, Dec. 2011. [Online]. Available: https://doi.org/10.1098/rsta.2011.0289
Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 06, p. 059, jun 2020. [Online]. Available: https://dx.doi.org/10.1088/1475 7516/2020/06/059
J. C. Sanabria, “Cosmología moderna - notas de clase,” 2023, unpublished.
F. Avila, C. P. Novaes et al., “The angular scale of homogeneity in the local Universe with the SDSS blue galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 488, no. 1, pp. 1481–1487, 07 2019. [Online]. Available: https://doi.org/10.1093/mnras/stz1765
C. A. Bengaly, R. Maartens, and M. G. Santos, “Probing the cosmological principle in the counts of radio galaxies at different frequencies,” Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 04, p. 031, apr 2018. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2018/04/031
C. A. Bengaly, R. Maartens et al., “Testing the cosmological principle in the radio sky,” Journal of Cosmology and Astroparticle Physics, vol. 2019, no. 09, p. 025, sep 2019. [Online]. Available: https://dx.doi.org/10.1088/1475 7516/2019/09/025
Z. Chang, H.-N. Lin et al., “A tomographic test of cosmological principle using the JLA compilation of type Ia supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 478, no. 3, pp. 3633–3639, 05 2018. [Online]. Available: https://doi.org/10.1093/mnras/sty1120
P. Laurent, J.-M. L. Goff et al., “A 14 h3 gpc3 study of cosmic homogeneity using boss dr12 quasar sample,” Journal of Cosmology and Astroparticle Physics, vol. 2016, no. 11, p. 060, nov 2016. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2016/11/060
M. I. Scrimgeour, T. Davis et al., “The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity,” Monthly Notices of the Royal Astronomical Society, vol. 425, no. 1, pp. 116–134, 09 2012. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2012.21402.x
S. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2003.
P. A. Laviolette, “Is the Universe Really Expanding?” , vol. 301, p. 544, Feb. 1986.
P. Astier and R. Pain, “Observational evidence of the accelerated expansion of the universe,” Comptes Rendus Physique, vol. 13, no. 6, pp. 521–538, 2012, understanding the Dark Universe. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S1631070512000503
S. R. Green and R. M. Wald, “How well is our universe described by an flrw model?” Classical and Quantum Gravity, vol. 31, no. 23, p. 234003, nov 2014. [Online]. Available: https://dx.doi.org/10.1088/0264-9381/31/23/234003
D. W. Hogg, “Distance measures in cosmology,” arXiv preprint astro-ph/9905116, 1999.
W. L. Freedman and B. F. Madore, “The hubble constant,” Annual Review of Astro nomy and Astrophysics, vol. 48, no. 1, pp. 673–710, 2010.
G. A. Tammann, A. Sandage, and B. Reindl, “The expansion field: the value of h0,” The Astronomy and Astrophysics Review, vol. 15, no. 4, pp. 289–331, Jul 2008. [Online]. Available: https://doi.org/10.1007/s00159-008-0012-y
Taubenberger, S., Suyu, S. H. et al., “The hubble constant determined through an inverse distance ladder including quasar time delays and type ia supernovae,” A&A, vol. 628, p. L7, 2019. [Online]. Available: https://doi.org/10.1051/0004-6361/201935980
G. Bargiacchi, M. Benetti et al., “Quasar cosmology: dark energy evolution and spatial curvature,” 2022.
Planck Collaboration, Adam, R. et al., “Planck 2015 results - i. overview of products and scientific results,” A&A, vol. 594, p. A1, 2016. [Online]. Available: https://doi.org/10.1051/0004-6361/201527101
D. Baumann, Cosmology. Cambridge University Press, 2022.
W. Hu and M. White, “The cosmic symphony,” Scientific American, vol. 290, no. 2, pp. 44–53, 2004. [Online]. Available: http://www.jstor.org/stable/26047596
D. H. Weinberg, M. J. Mortonson et al., “Observational probes of cosmic acceleration,” Physics Reports, vol. 530, no. 2, pp. 87–255, 2013, observational Probes of Cosmic Acceleration. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157313001592
G. Smoot, C. Bennett et al., “First results of the cobe satellite measurement of the anisotropy of the cosmic microwave background radiation,” Advances in Space Research, vol. 11, no. 2, pp. 193–205, 1991. [Online]. Available: https://www.sciencedirect.com/science/article/pii/027311779190490B
J. M. Kovac, E. M. Leitch et al., “Detection of polarization in the cosmic microwave background using DASI,” Nature, vol. 420, no. 6917, pp. 772–787, Dec. 2002. [Online]. Available: https://doi.org/10.1038/nature01269
D. Hanson, A. Challinor, and A. Lewis, “Weak lensing of the CMB,” General Relativity and Gravitation, vol. 42, no. 9, pp. 2197–2218, Jun. 2010. [Online]. Available: https://doi.org/10.1007/s10714-010-1036-y
A. Lewis and A. Challinor, “Weak gravitational lensing of the cmb,” Physics reports, vol. 429, no. 1, pp. 1–65, 2006.
F. Bianchini, W. L. K. Wu et al., “Constraints on cosmological parameters from the 500 degsup2/sup SPTPOL lensing power spectrum,” The Astrophysical Journal, vol. 888, no. 2, p. 119, Jan. 2020. [Online]. Available: https://doi.org/10.3847/1538-4357/ab6082
C. L. Bennett, M. Bay et al., “Theimicrowave anisotropy probe/imission,” The Astrophysical Journal, vol. 583, no. 1, pp. 1–23, Jan. 2003. [Online]. Available: https://doi.org/10.1086/345346
E. Komatsu, J. Dunkley et al., “Five-year wilkinson microwave anisotropy probe* observations: Cosmological interpretation,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, pp. 330–376, Feb. 2009. [Online]. Available: https://doi.org/10.1088/0067-0049/180/2/330
W. J. Percival, S. Cole et al., “Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey,” Monthly Notices of the Royal Astronomical Society, vol. 381, no. 3, pp. 1053–1066, 10 2007. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2007.12268.x
N. Jarosik, C. L. Bennett et al., “Seven-year wilkinson microwave anisotropy probe (wmap*) observations: Sky maps, systematic errors, and basic results,” The Astrophysical Journal Supplement Series, vol. 192, no. 2, p. 14, Jan. 2011. [Online]. Available: https://doi.org/10.1088/0067-0049/192/2/14
W. J. Percival, B. A. Reid et al., “Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample,” Monthly Notices of the Royal
Astronomical Society, vol. 401, no. 4, pp. 2148–2168, 01 2010. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2009.15812.x
C. L. Bennett, D. Larson et al., “Nine-year wilkinson microwave anisotropy probe (wmap) observations: Final maps and results,” The Astrophysical Journal Supplement Series, vol. 208, no. 2, p. 20, Sep. 2013. [Online]. Available: https://doi.org/10.1088/0067-0049/208/2/20
Planck Collaboration, Ade, P. A. R. et al., “Planck 2013 results. i. overview of products and scientific results,” A&A, vol. 571, p. A1, 2014. [Online]. Available: https://doi.org/10.1051/0004-6361/201321529
A. G. Riess, “The expansion of the universe is faster than expected,” Nature Reviews Physics, vol. 2, no. 1, pp. 10–12, Dec. 2019. [Online]. Available: https://doi.org/10.1038/s42254-019-0137-0
R. J. Thornton, P. A. R. Ade et al., “The atacama cosmology telescope: The polarization-sensitive actpol instrument,” The Astrophysical Journal Supplement Series, vol. 227, no. 2, p. 21, dec 2016. [Online]. Available: https://dx.doi.org/10.3847/1538-4365/227/2/21
“South pole telescope (spt) overview.” [Online]. Available: https://lambda.gsfc.nasa.gov/product/spt/
K. T. Story, C. L. Reichardt et al., “A measurement of the cosmic microwave background damping tail from the 2500-square-degree spt-sz survey,” The Astrophysical Journal, vol. 779, no. 1, p. 86, nov 2013. [Online]. Available: https://dx.doi.org/10.1088/0004-637X/779/1/86
J. W. Henning, J. T. Sayre et al., “Measurements of the temperature and e-mode polarization of the cmb from 500 square degrees of sptpol data,” The Astrophysical Journal, vol. 852, no. 2, p. 97, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa9ff4
C. Blake and K. Glazebrook, “Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler,” The Astrophysical Journal, vol. 594, no. 2, pp. 665–673, Sep. 2003. [Online]. Available: https://doi.org/10.1086/376983
E. A. Kazin, J. Koda et al., “The WiggleZ Dark Energy Survey: improved distance measurements to z=1 with reconstruction of the baryonic acoustic feature,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 4, pp. 3524 3542, 05 2014. [Online]. Available: https://doi.org/10.1093/mnras/stu778
D. J. Eisenstein, H.-J. Seo et al., “Improving cosmological distance measurements by reconstruction of the baryon acoustic peak,” The Astrophysical Journal, vol. 664, no. 2, p. 675, aug 2007. [Online]. Available: https://dx.doi.org/10.1086/518712
D. Parkinson, S. Riemer-Sørensen et al., “The wigglez dark energy survey: Final data release and cosmological results,” Phys. Rev. D, vol. 86, p. 103518, Nov 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.86.103518
K. S. Dawson, D. J. Schlegel et al., “The baryon oscillation spectroscopic survey of sdss-iii,” The Astronomical Journal, vol. 145, no. 1, p. 10, dec 2012. [Online]. Available: https://dx.doi.org/10.1088/0004-6256/145/1/10
G. E. Addison, D. J. Watts et al., “Elucidating cdm: Impact of baryon acoustic oscillation measurements on the hubble constant discrepancy,” The Astrophysical Journal, vol. 853, no. 2, p. 119, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aaa1ed
K. L. Greene and F.-Y. Cyr-Racine, “Hubble distancing: focusing on distance measurements in cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 06, p. 002, jun 2022. [Online]. Available: https://dx.doi.org/10.1088/ 1475-7516/2022/06/002
A. Z. Bonanos, K. Z. Stanek et al., “The first direct distance determination to a detached eclipsing binary in m33*,” The Astrophysical Journal, vol. 652, no. 1, p. 313, nov 2006. [Online]. Available: https://dx.doi.org/10.1086/508140
B. Paczynski, “Detached eclipsing binaries as primary distance and age indicators,” 1996.
I. B. Thompson, J. Kaluzny et al., “Cluster ages experiment: The age and distance of the globular cluster centauri determined from observations of the eclipsing binary oglegc 17,” The Astronomical Journal, vol. 121, no. 6, p. 3089, jun 2001. [Online]. Available: https://dx.doi.org/10.1086/321084
G. Pietrzýski, D. Graczyk et al., “A distance to the large magellanic cloud that is precise to one per cent,” Nature, vol. 567, no. 7747, pp. 200–203, 2019.
B. A. Remple, G. C. Angelou, and A. Weiss, “Determining fundamental parameters of detached double-lined eclipsing binary systems via a statistically robust machine learning method,” Monthly Notices of the Royal Astronomical Society, vol. 507, no. 2, pp. 1795–1813, 07 2021. [Online]. Available: https://doi.org/10.1093/mnras/stab2030
J. Southworth, B. Smalley et al., “Absolute dimensions of detached eclipsing binaries— I. The metallic-lined system WW Aurigae,” Monthly Notices of the Royal Astronomical Society, vol. 363, no. 2, pp. 529–542, 10 2005. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2005.09462.x
A. Salsi, N. Nardetto et al., “Progress on the calibration of surface brightness–color relations for early-and late-type stars,” Astronomy & Astrophysics, vol. 652, p. A26, 2021.
J. Braatz, M. Reid et al., “Measuring the hubble constant with observations of water vapor megamasers,” Proceedings of the International Astronomical Union, vol. 8, no. S289, p. 255–261, 2012.
C. Henkel, J. A. Braatz et al., “Cosmology and the hubble constant: On the megamaser cosmology project (mcp),” Proceedings of the International Astronomical Union, vol. 8, no. S287, p. 301–310, 2012.
K. Lo, “Mega-masers and galaxies,” Annual Review of Astronomy and Astrophysics, vol. 43, no. 1, pp. 625–676, 2005. [Online]. Available: https://doi.org/10.1146/annurev.astro.41.011802.094927
K. Hachisuka, A. Brunthaler et al., “Water maser motions in w3(oh) and a determination of its distance,” The Astrophysical Journal, vol. 645, no. 1, p. 337, jul 2006. [Online]. Available: https://dx.doi.org/10.1086/502962
N. Jackson, “The hubble constant,” Living Reviews in Relativity, vol. 18, no. 1, Sep. 2015. [Online]. Available: https://doi.org/10.1007/lrr-2015-281] J. Braatz, J. Condon et al., “A measurement of the hubble constant by the megamaser cosmology project,” Proceedings of the International Astronomical Union, vol. 13, no. S336, p. 86–91, 2017.
D. W. Pesce, J. A. Braatz et al., “The megamaser cosmology project. xiii. combined hubble constant constraints,” The Astrophysical Journal Letters, vol. 891, no. 1, p. L1, feb 2020. [Online]. Available: https://dx.doi.org/10.3847/20418213/ab75f0
G. Wallerstein, “The cepheids of population ii and related stars,” Publications of the Astronomical Society of the Pacific, vol. 114, no. 797, p. 689, jul 2002. [Online]. Available: https://dx.doi.org/10.1086/341698
H. S. Leavitt and E. C. Pickering, “Periods of 25 variable stars in the small magellanic cloud.” Harvard College Observatory Circular, vol. 173, pp. 1-3, vol. 173, pp. 1–3, 1912. 85] G. F. Benedict, B. E. McArthur et al., “Hubble space telescope fine guidance sensor parallaxes of galactic cepheid variable stars: period-luminosity relations,” The Astro nomical Journal, vol. 133, no. 4, p. 1810, 2007.86] W. L. Freedman, B. F. Madore et al., “Final results from the hubble space telescope key project to measure the hubble constant*,” The Astrophysical Journal, vol. 553, no. 1, p. 47, may 2001. [Online]. Available: https://dx.doi.org/10.1086/320638
A. Bhardwaj, S. M. Kanbur et al., “Large Magellanic Cloud Near-Infrared Synoptic Survey – III. A statistical study of non-linearity in the Leavitt Laws,” Monthly Notices of the Royal Astronomical Society, vol. 457, no. 2, pp. 1644–1665, 02 2016. [Online]. Available: https://doi.org/10.1093/mnras/stw040
A. Bhardwaj, A. G. Riess et al., “High-resolution spectroscopic metallicities of milky way cepheid standards and their impact on the leavitt law and the hubble constant,” The Astrophysical Journal Letters, vol. 955, no. 1, p. L13, 2023. 89] A. Udalski, L. Wyrzykowski et al., “The Optical Gravitational Lensing Experiment. Cepheids in the galaxy IC1613: No dependence of the Period-Luminosity relation on metallicity,” , vol. 51, pp. 221–245, 2001
W. Gieren, J. Storm et al., “The effect of metallicity on cepheid period-luminosity relations from a baade-wesselink analysis of cepheids in the milky way and magellanic clouds,” Astronomy & Astrophysics, vol. 620, p. A99, 2018.
Z. Zhang, B. Jiang et al., “Dependence of pulsation mode of Cepheids on Metallicity,” , vol. 928, no. 2, p. 139, 2022.
G. Bono, F. Caputo et al., “Cepheids in external galaxies. I. the maser-host galaxy NGC 4258 and the metallicity dependence of Period-Luminosity and Period-Wesenheit relations,” , vol. 684, no. 1, pp. 102–117, 2008
C. Ngeow and S. M. Kanbur, “The Hubble constant from type Ia supernovae calibrated with the linear and nonlinear Cepheid Period-Luminosity Relations,” , vol. 642, no. 1, pp. L29–L32, 2006.
W. L. Freedman, B. F. Madore et al., “Calibration of the tip of the red giant branch,” The Astrophysical Journal, vol. 891, no. 1, p. 57, 2020.
K. B. W. McQuinn, M. Boyer et al., “Using the tip of the red giant branch as a distance indicator in the near infrared,” The Astrophysical Journal, vol. 880, no. 1, p. 63, jul 2019. [Online]. Available: https://dx.doi.org/10.3847/1538 4357/ab2627
M. G. Lee, W. L. Freedman, and B. F. Madore, “The tip of the red giant branch as a distance indicator for resolved galaxies,” Astrophysical Journal v. 417, p. 553, vol. 417, p. 553, 1993.
G. S. Anand, R. B. Tully et al., “Comparing tip of the red giant branch distance scales: an independent reduction of the carnegie-chicago hubble program and the value of the hubble constant,” The Astrophysical Journal, vol. 932, no. 1, p. 15, 2022.
R. L. Beaton, W. L. Freedman et al., “The carnegie-chicago hubble program. i. an independent approach to the extragalactic distance scale using only population ii distance indicators*,” The Astrophysical Journal, vol. 832, no. 2, p. 210, dec 2016. [Online]. Available: https://dx.doi.org/10.3847/0004-637X/832/2/210
D. Hatt, R. L. Beaton et al., “The carnegie-chicago hubble program. ii. the distance to ic 1613: The tip of the red giant branch and rr lyrae period–luminosity relations*,” The Astrophysical Journal, vol. 845, no. 2, p. 146, aug 2017. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa7f73
D. Hatt, W. L. Freedman et al., “The carnegie-chicago hubble program. iv. the distance to ngc 4424, ngc 4526, and ngc 4356 via the tip of the red giant branch,” The Astrophysical Journal, vol. 861, no. 2, p. 104, jul 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aac9cc
T. J. Hoyt, W. L. Freedman et al., “The carnegie chicago hubble program. vi. tip of the red giant branch distances to m66 and m96 of the leo i group,” The Astrophysical Journal, vol. 882, no. 2, p. 150, sep 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab1f81
R. L. Beaton, M. Seibert et al., “The carnegie-chicago hubble program. vii. the distance to m101 via the optical tip of the red giant branch method*,” The Astrophysical Journal, vol. 885, no. 2, p. 141, nov 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab4263
I. S. Jang, T. J. Hoyt et al., “The carnegie–chicago hubble program. ix. calibration of the tip of the red giant branch method in the megamaser host galaxy, ngc 4258 (m106)*,” The Astrophysical Journal, vol. 906, no. 2, p. 125, jan 2021. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/abc8e9
A. J. Ruiter, “Type ia supernova sub-classes and progenitor origin,” Proceedings of the International Astronomical Union, vol. 15, no. S357, p. 1–15, 2019. 105] C. Ashall, P. Mazzali et al., “Luminosity distributions of Type Ia supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 460, no. 4, pp. 3529–3544, 05, 2016. [Online]. Available: https://doi.org/10.1093/mnras/stw1214
D. Lennarz, D. Altmann, and C. Wiebusch, “A unified supernova catalogue,” Astro nomy & Astrophysics, vol. 538, p. A120, 2012.
S. Papadogiannakis, A. Goobar et al., “R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory,” Monthly Notices of the Royal Astronomical Society, vol. 483, no. 4, pp. 5045–5076, 12 2018. [Online]. Available: https://doi.org/10.1093/mnras/sty3301
A. Sandage, “H0= 43+/-11 km/s/mpc based on angular diameters of high-luminosity field spiral galaxies,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 402, no. 1, p. 3-14., vol. 402, pp. 3–14, 1993.
G. De Vaucouleurs and W. Peters, “Hubble ratio and solar motion from 200 spiral galaxies having distances derived from the luminosity index,” Astrophysical Journal, Part 1, vol. 248, Sept. 1, 1981, p. 395-407., vol. 248, pp. 395–407, 1981.
A. G. Riess, L. Macri et al., “A 3 % solution: determination of the hubble constant with the hubble space telescope and wide field camera 3,” The Astrophysical Journal, vol. 730, no. 2, p. 119, 2011.
I. Ribas, E. L. Fitzpatrick et al., “Fundamental properties and distances of large ma gellanic cloud eclipsing binaries. iii. eros 1044,” The Astrophysical Journal, vol. 574, no. 2, p. 771, 2002.
G. Efstathiou, “H0 revisited,” Monthly Notices of the Royal Astronomical Society, vol. 440, no. 2, pp. 1138–1152, 03 2014. [Online]. Available: https: //doi.org/10.1093/mnras/stu278
A. G. Riess, L. M. Macri et al., “A 2.4 % determination of the local value of the hubble constant,” The Astrophysical Journal, vol. 826, no. 1, p. 56, 2016. 114] A. Brown, A. Vallenari et al., “Gaia data release 2-summary of the contents and survey properties,” Astronomy & astrophysics, vol. 616, p. A1, 2018.
A. G. Riess, S. Casertano et al., “Milky way cepheid standards for measuring cos mic distances and application to gaia dr2: implications for the hubble constant,” The Astrophysical Journal, vol. 861, no. 2, p. 126, 2018.
A. G. Riess, S. Casertano et al., “Large magellanic cloud cepheid standards provide a 1 % foundation for the determination of the hubble constant and stronger evidence for physics beyond cdm,” The Astrophysical Journal, vol. 876, no. 1, p. 85, may 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab1422
M. Rigault, G. Aldering et al., “Confirmation of a star formation bias in type ia supernova distances and its effect on the measurement of the hubble constant,” The Astrophysical Journal, vol. 802, no. 1, p. 20, mar 2015. Online]. Available: https://dx.doi.org/10.1088/0004-637X/802/1/20
W. Yuan, A. G. Riess et al., “Consistent calibration of the tip of the red giant branch in the large magellanic cloud on the hubble space telescope photometric system and a redetermination of the hubble constant,” The Astrophysical Journal, vol. 886, no. , p. 61, nov 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab4bc9
M. Salaris and S. Cassisi, “The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models,” Monthly Notices of the Royal Astronomical Society, vol. 289, no. 2, pp. 406–414, 08 1997. [Online]. Available: https://doi.org/10.1093/mnras/289.2.406
C. Feinstein, G. Baume et al., “Extragalactic stellar photometry and the blending problem,” 2019.
B. J. Mochejska, L. M. Macri et al., “The direct project: Influence of blending on the cepheid distance scale. i. cepheids in m31,” The Astronomical Journal, vol. 120, no. 2, p. 810, aug 2000. [Online]. Available: https://dx.doi.org/10.1086/301493
I. S. Jang, D. Hatt et al., “The carnegie–chicago hubble program. iii. the distance to ngc 1365 via the tip of the red giant branch,” The Astrophysical Journal, vol. 852, no. 1, p. 60, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa9d92
G. Da Costa and T. Armandroff, “Standard globular cluster giant branches in the (mi,/vi/sub o) plane,” Astronomical Journal (ISSN 0004-6256), vol. 100, July 1990, p. 162-181., vol. 100, pp. 162–181, 1990.
E. Carretta and A. Bragaglia, “On the calibration of red giant branch metallicity indicators in globular clusters: new relations based on an improved abundance scale,” arXiv preprint astro-ph/9708249, 1997.
T. J. Davidge, “The metallicity of the red giant branch in the disk of ngc 6822,” Publications of the Astronomical Society of the Pacific, vol. 115, no. 808, p. 635, apr 2003. [Online]. Available: https://dx.doi.org/10.1086/375389
B. F. Madore and W. L. Freedman, “Mathematical underpinnings of the multiwave length structure of the tip of the red giant branch,” The Astronomical Journal, vol. 160, no. 4, p. 170, 2020.
D. Lincoln, “Is Modern Cosmology in Crisis?” The Physics Teacher, vol. 58, no. 4, pp. 234–237, 04 2020. [Online]. Available: https://doi.org/10.1119/1.5145465 128] S. Vagnozzi, “New physics in light of the H0 tension: An alternative view,” Phys. Rev. D, vol. 102, p. 023518, Jul 2020. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevD.102.023518
E. D. Valentino, O. Mena et al., “In the realm of the hubble tension—a review of solutions*,” Classical and Quantum Gravity, vol. 38, no. 15, p. 153001, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/1361-6382/ac086d130]
L. Verde, T. Treu, and A. G. Riess, “Tensions between the early and late universe,” Nature Astronomy, vol. 3, no. 10, pp. 891–895, 2019.
W. Beenakker and D. Venhoek, “A structured analysis of hubble tension,” 2021.
K. C. Wong, S. H. Suyu et al., “H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3 tension between early- and late-Universe probes,” Monthly Notices of the Royal Astronomical Society, vol. 498, no. 1, pp. 1420–1439, 09 2019. [Online]. Available: https://doi.org/10.1093/mnras/stz3094
C. D. Huang, A. G. Riess et al., “Hubble space telescope observations of mira variables in the sn ia host ngc 1559: An alternative candle to measure the hubble constant,” The Astrophysical Journal, vol. 889, no. 1, p. 5, 2020.
A. J. Shajib, S. Birrer et al., “Strides: a 3.9 per cent measurement of the hubble constant from the strong lens system des j0408- 5354,” Monthly Notices of the Royal Astronomical Society, vol. 494, no. 4, pp. 6072–6102, 2020.
V. Poulin, K. K. Boddy et al., “Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions,” Physical Review D, vol. 97, no. 12, p. 123504, 2018.
R. R. Caldwell, “A phantom menace? cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters B, vol. 545, no. 1-2, pp. 23–29, 2002.
R. E. Keeley and A. Shafieloo, “Ruling out new physics at low redshift as a solution to the H0 tension,” Phys. Rev. Lett., vol. 131, p. 111002, Sep 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.131.11100
G. Efstathiou, “To H0 or not to H0?” Monthly Notices of the Royal Astronomical Society, vol. 505, no. 3, pp. 3866–3872, 06 2021. [Online]. Available: https://doi.org/10.1093/mnras/stab1588
D. Brout, D. Scolnic et al., “The pantheon+ analysis: Cosmological constraints,” The Astrophysical Journal, vol. 938, no. 2, p. 110, oct 2022. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ac8e04
T. Shanks, L. M. Hogarth, and N. Metcalfe, “Gaia Cepheid parallaxes and ‘Local Hole’ relieve H0 tension,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 484, no. 1, pp. L64–L68, 12 2018. [Online]. Available: https://doi.org/10.1093/mnrasl/sly239
R. C. Keenan, A. J. Barger, and L. L. Cowie, “Evidence for a 300 megaparsec scale under-density in the local galaxy distribution,” The Astrophysical Journal, vol. 775, no. 1, p. 62, sep 2013. [Online]. Available: https://dx.doi.org/10.1088/0004-637X/775/1/62
W. D. Kenworthy, D. Scolnic, and A. Riess, “The local perspective on the hubble tension: Local structure does not impact measurement of the hubble constant,” The Astrophysical Journal, vol. 875, no. 2, p. 145, apr 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab0ebf
H. J. Macpherson, D. J. Price, and P. D. Lasky, “Einstein’s universe: Cosmological structure formation in numerical relativity,” Phys. Rev. D, vol. 99, p. 063522, Mar 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.063522
I. Odderskov, S. Hannestad, and J. Brandbyge, “The variance of the locally measured hubble parameter explained with different estimators,” Journal of Cosmology and Astroparticle Physics, vol. 2017, no. 03, p. 022, mar 2017. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2017/03/022
A. Das and S. Ghosh, “Flavor-specific interaction favors strong neutrino self-coupling in the early universe,” Journal of Cosmology and Astroparticle Physics, vol. 2021, no. 07, p. 038, jul 2021. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2021/07/038
M.-X. Lin, M. Raveri, and W. Hu, “Phenomenology of modified gravity at recombination,” Phys. Rev. D, vol. 99, p. 043514, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.043514
M. Braglia, M. Ballardini et al., “Early modified gravity in light of the H0 tension and lss data,” Phys. Rev. D, vol. 103, p. 043528, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.103.043528
M. Braglia, M. Ballardini et al., “Larger value for H0 by an evolving gravitational constant,” Phys. Rev. D, vol. 102, p. 023529, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.102.023529
G. Ballesteros, A. Notari, and F. Rompineve, “The h0 tension: δ gn vs. δ neff,” Journal of Cosmology and Astroparticle Physics, vol. 2020, pp. 024 – 024, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:228865516
M. Ballardini, M. Braglia et al., “Scalar-tensor theories of gravity, neutrino physics, and the h0 tension,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 10, p. 044, oct 2020. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2020/10/044
M. Zumalacárregui, “Gravity in the era of equality: Towards solutions to the hubble problem without fine-tuned initial conditions,” Phys. Rev. D, vol. 102, p. 023523, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.102.023523
T. Adi and E. D. Kovetz, “Can conformally coupled modified gravity solve the hubble tension?” Phys. Rev. D, vol. 103, p. 023530, Jan 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.103.023530
G. Benevento, J. A. Kable et al., “An exploration of an early gravity transition in light of cosmological tensions,” The Astrophysical Journal, vol. 935, no. 2, p. 156, 2022.
M. Kamionkowski, J. Pradler, and D. G. E. Walker, “Dark energy from the string axiverse,” Phys. Rev. Lett., vol. 113, p. 251302, Dec 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.251302
E. McDonough and M. Scalisi, “Towards early dark energy in string theory,” 2022.
M. S. Turner, “Coherent scalar-field oscillations in an expanding universe,” Phys. Rev. D, vol. 28, pp. 1243–1247, Sep 1983. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevD.28.1243
M. C. Johnson and M. Kamionkowski, “Dynamical and gravitational instability of an oscillating-field dark energy and dark matter,” Phys. Rev. D, vol. 78, p. 063010, Sep 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.78.063010
P. Agrawal, F.-Y. Cyr-Racine et al., “Rock ‘n’ roll solutions to the hubble tension,” Physics of the Dark Universe, vol. 42, p. 101347, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212686423001814
M.-X. Lin, G. Benevento et al., “Acoustic dark energy: Potential conversion of the hubble tension,” Phys. Rev. D, vol. 100, p. 063542, Sep 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.100.063542
S. Castello, S. Ilíc, and M. Kunz, “A cautionary tale: Dark energy in single-field, slow roll inflationary models,” 2022.
W. Hu, “Structure formation with generalized dark matter,” The Astrophysical Journal, vol. 506, no. 2, p. 485, oct 1998. [Online]. Available: https://dx.doi.org/10.1086/306274
E. Bertschinger, “Cosmics: Cosmological initial conditions and microwave anisotropy codes,” 1995.
U. Seljak and M. Zaldarriaga, “A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies,” , vol. 469, p. 437, Oct. 1996.
A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of cosmic microwave background anisotropies in closed friedmann-robertson-walker models,” The Astrophysical Journal, vol. 538, no. 2, p. 473, aug 2000. [Online]. Available: https://dx.doi.org/10.1086/309179
J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” 2011.
V. I. Sabla and R. R. Caldwell, “Microphysics of early dark energy,” Phys. Rev. D, vol. 106, p. 063526, Sep 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.106.063526
T. Karwal, M. Raveri et al., “Chameleon early dark energy and the hubble tension,” Physical Review D, vol. 105, no. 6, p. 063535, 2022.
J. Sakstein and M. Trodden, “Early dark energy from massive neutrinos as a natural resolution of the hubble tension,” Physical Review Letters, vol. 124, no. 16, p. 161301, 2020.
K. V. Berghaus and T. Karwal, “Thermal friction as a solution to the hubble tension,” Physical Review D, vol. 101, no. 8, p. 083537, 2020.
K. V. Berghaus and T. Karwal, “Thermal friction as a solution to the hubble and large-scale structure tensions,” Physical Review D, vol. 107, no. 10, p. 103515, 2023.
D. Aloni, A. Berlin et al., “A step in understanding the hubble tension,” Physical Review D, vol. 105, no. 12, p. 123516, 2022.
C. D. Kreisch, F.-Y. Cyr-Racine, and O. Doré, “Neutrino puzzle: Anomalies, interactions, and cosmological tensions,” Phys. Rev. D, vol. 101, p. 123505, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.101.123505
N. Blinov, K. J. Kelly et al., “Constraining the self-interacting neutrino interpretation of the hubble tension,” Phys. Rev. Lett., vol. 123, p. 191102, Nov 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.123.191102
K. Jedamzik and L. Pogosian, “Relieving the hubble tension with primordial magnetic fields,” Phys. Rev. Lett., vol. 125, p. 181302, Oct 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.181302
A. G. Riess, G. S. Anand et al., “Crowded no more: The accuracy of the hubble constant tested with high resolution observations of cepheids by jwst,” 2023.
J. Giné, “On the origin of the anomalous precession of mercury’s perihelion,” Chaos, Solitons Fractals, vol. 38, no. 4, pp. 1004–1010, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960077907001294
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 103 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/648e210d-449c-49da-948d-30a7835a145a/download
https://repositorio.uniandes.edu.co/bitstreams/1d3b0daa-3633-4db7-996b-405b3bd31ac3/download
https://repositorio.uniandes.edu.co/bitstreams/644cbe11-1e51-451e-b2e3-7d0e903005a9/download
https://repositorio.uniandes.edu.co/bitstreams/f601adec-d0e4-4f67-92b5-389c295ba6a2/download
https://repositorio.uniandes.edu.co/bitstreams/0bd816c1-7d09-4fb8-96bb-f78e5c0367cf/download
https://repositorio.uniandes.edu.co/bitstreams/dc9d89a5-1b36-4664-8f29-59160c3e2ffb/download
https://repositorio.uniandes.edu.co/bitstreams/196b0c40-34ba-497d-bfa1-a05c6af94095/download
https://repositorio.uniandes.edu.co/bitstreams/72e29233-c5b7-4530-ad1e-9464022e88c5/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
3a88b1774a03bca1a459461159860a48
7c9067f0f17585b79c78bfece8aebd26
984a450c66b9756c0abb17f885c09fc0
b7283d01a5769bbdc8ace00701e9c032
c3c57baa94db34c17b72eb5e14f71223
1aae47387dc8e150c42a4ff2d32d4cf5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134048495042560
spelling Reyes Lega, Andrés FernandoZambrano Henríquez, Luisa FernandaGarcía Varela, José Alejandro2024-02-01T20:09:37Z2024-02-01T20:09:37Z2024-01-23https://hdl.handle.net/1992/73775instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En la última década, la discrepancia entre la medición directa de la constante de Hubble y su predicción por el modelo cosmológico estándar (ΛCDM) se ha convertido en un punto crucial en la cosmología contemporánea. A pesar de la propuesta de posibles errores sistemáticos, los cuales carecen de respaldo sólido a partir de los datos disponibles, y de la dificultad que representan los errores elusivos e indefinidos, las explicaciones teóricas directas para esta discrepancia continúan siendo desafiantes de encontrar. Recientemente, la atención se ha volcado hacia modelos que modifican la física en las etapas tempranas o previas a la recombinación dentro de ΛCDM, ofreciendo una ruta prometedora para su resolución, aunque aún carecen de una base observacional consolidada. Esta tesis se propone esclarecer la naturaleza de esta tensión, resaltando los avances recientes en observaciones. Su objetivo es compilar la información más relevante para este problema, abordando tanto las distintas metodologías para medir la constante como las posibles soluciones propuestas. Dirigida a un público amplio, esta discusión, aunque abarcativa, busca encapsular la esencia del problema en medio de una compilación de revisiones especializadas recientes. A través de esta exploración, la tesis aspira a contribuir a la comprensión y búsqueda de una solución para el enigma desconcertante que implica la tensión de Hubble.In the last decade, the discrepancy between the direct measurement of the Hubble constant and its prediction by the standard cosmological model (ΛCDM) has become a crucial issue in contemporary cosmology. Despite the proposal of possible systematic errors, which lack solid support from the available data, and the difficulty posed by elusive and undefined errors, direct theoretical explanations for this discrepancy remain challenging to find. Recently, attention has turned to models that modify physics in the early or pre-recombination stages within the ΛCDM, offering a promising route to resolution, although they still lack a consolidated observational basis. This thesis sets out to elucidate the nature of this tension, highlighting recent observational advances. It aims to compile the most relevant information for this problem, addressing both the different methodologies to measure the constant and the possible solutions proposed. Aimed at a broad audience, this discussion, while comprehensive, seeks to encapsulate the essence of the problem amidst a compilation of recent expert reviews. Through this exploration, the thesis aspires to contribute to the understanding and search for a solution to the perplexing enigma of the Hubble tension.FísicoPregrado103 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis de la tensión del parámetro de HubbleTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPCosmologíaParámetro de HubbleFondo cósmico de microondasUniverso primigenioCosmologyHubble's parameterPrimordial universeCosmic Microwave backgroundFísicaA. G. Riess, W. Yuan et al., “A comprehensive measurement of the local value of the hubble constant with 1 km s1 mpc1 uncertainty from the hubble space telescope and the SH0ES team,” Astrophys. J. Lett., vol. 934, no. 1, p. L7, Jul. 2022.M. Kamionkowski and A. G. Riess, “The hubble tension and early dark energy,” Annual Review of Nuclear and Particle Science, vol. 73, no. 1, pp. 153–180, 2023.A. G. Riess, W. Yuan et al., “The accuracy of the hubble constant measurement verified through cepheid amplitudes,” The Astrophysical Journal Letters, vol. 896, no. 2, p.L43, jun 2020. [Online]. Available: https://dx.doi.org/10.3847/2041-8213/ab9900Planck Collaboration, Aghanim, N. et al., “Planck 2018 results - vi. cosmological parameters,” A&A, vol. 641, p. A6, 2020. [Online]. Available: https://doi.org/10.1051/0004-6361/201833910D. Baumann, “Cosmology,” 2023, unpublished.W. L. Freedman, “Measurements of the hubble constant: Tensions in perspective*,” The Astrophysical Journal, vol. 919, no. 1, p. 16, sep 2021. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ac0e95K. Wang and Q.-G. Huang, “Implications for cosmology from ground-based cosmic microwave background observations,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 06, p. 045, jun 2020. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2020/06/045Z. Yuan, “A critical review on hubble tension,” 2021.A. G. Riess, L. Macri et al., “A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder*,” The Astrophysical Journal, vol. 699, no. 1, pp. 539–563, Jun. 2009. [Online]. Available: https://doi.org/10.1088/0004-637x/699/1/539P. Shah, P. Lemos, and O. Lahav, “A buyer’s guide to the hubble constant,” The Astronomy and Astrophysics Review, vol. 29, pp. 1–69, 2021.Birrer, Simon and Treu, Tommaso, “Tdcosmo - v. strategies for precise and accurate measurements of the hubble constant with strong lensing,” A&A, vol. 649, p. A61, 2021. [Online]. Available: https://doi.org/10.1051/0004-6361/202039179T. M. C. Abbott, M. Aguena et al., “Dark energy survey year 3 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D, vol. 105, p. 023520, Jan 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.105.023520K. Hotokezaka, E. Nakar et al., “A hubble constant measurement from superluminal motion of the jet in gw170817,” Nature Astronomy, vol. 3, no. 10, pp. 940–944, 2019.C. D. Huang, A. G. Riess et al., “A near-infrared period–luminosity relation for miras in ngc 4258, an anchor for a new distance ladder,” The Astrophysical Journal, vol. 857, no. 1, p. 67, 2018.N. Khetan, L. Izzo et al., “A new measurement of the hubble constant using type ia su pernovae calibrated with surface brightness fluctuations,” Astronomy & Astrophysics, vol. 647, p. A72, 2021.M. Reid, D. W. Pesce, and A. Riess, “An improved distance to ngc 4258 and its implications for the hubble constant,” The Astrophysical Journal Letters, vol. 886, no. 2, p. L27, 2019.M. S. Longair, The Thermal History of the Universe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023, pp. 307–324. [Online]. Available: https://doi.org/10.1007/ 978-3-662-65891-8 9E. Aubourg, S. Bailey et al., “Cosmological implications of baryon acoustic oscillation measurements,” Phys. Rev. D, vol. 92, p. 123516, Dec 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.92.123516L. Breuval, P. Kervella et al., “The milky way cepheid leavitt law based on gaia dr2 parallaxes of companion stars and host open cluster populations,” Astronomy & Astrophysics, vol. 643, p. A115, 2020.W. L. Freedman, B. F. Madore et al., “The carnegie-chicago hubble program. viii. an independent determination of the hubble constant based on the tip of the red giant branch*,” The Astrophysical Journal, vol. 882, no. 1, p. 34, aug 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab2f73J.-C. Hamilton, “What have we learned from observational cosmology?” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, vol. 46, pp. 70–85, 2014, philosophy of cosmology.C. Pigozzo, M. Dantas et al., “Observational tests for (t)cdm cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 08, p. 022, aug 2011. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2011/08/022R. Maartens, “Is the universe homogeneous?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1957, pp. 5115–5137, Dec. 2011. [Online]. Available: https://doi.org/10.1098/rsta.2011.0289Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 06, p. 059, jun 2020. [Online]. Available: https://dx.doi.org/10.1088/1475 7516/2020/06/059J. C. Sanabria, “Cosmología moderna - notas de clase,” 2023, unpublished.F. Avila, C. P. Novaes et al., “The angular scale of homogeneity in the local Universe with the SDSS blue galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 488, no. 1, pp. 1481–1487, 07 2019. [Online]. Available: https://doi.org/10.1093/mnras/stz1765C. A. Bengaly, R. Maartens, and M. G. Santos, “Probing the cosmological principle in the counts of radio galaxies at different frequencies,” Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 04, p. 031, apr 2018. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2018/04/031C. A. Bengaly, R. Maartens et al., “Testing the cosmological principle in the radio sky,” Journal of Cosmology and Astroparticle Physics, vol. 2019, no. 09, p. 025, sep 2019. [Online]. Available: https://dx.doi.org/10.1088/1475 7516/2019/09/025Z. Chang, H.-N. Lin et al., “A tomographic test of cosmological principle using the JLA compilation of type Ia supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 478, no. 3, pp. 3633–3639, 05 2018. [Online]. Available: https://doi.org/10.1093/mnras/sty1120P. Laurent, J.-M. L. Goff et al., “A 14 h3 gpc3 study of cosmic homogeneity using boss dr12 quasar sample,” Journal of Cosmology and Astroparticle Physics, vol. 2016, no. 11, p. 060, nov 2016. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2016/11/060M. I. Scrimgeour, T. Davis et al., “The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity,” Monthly Notices of the Royal Astronomical Society, vol. 425, no. 1, pp. 116–134, 09 2012. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2012.21402.xS. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Pearson, 2003.P. A. Laviolette, “Is the Universe Really Expanding?” , vol. 301, p. 544, Feb. 1986.P. Astier and R. Pain, “Observational evidence of the accelerated expansion of the universe,” Comptes Rendus Physique, vol. 13, no. 6, pp. 521–538, 2012, understanding the Dark Universe. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S1631070512000503S. R. Green and R. M. Wald, “How well is our universe described by an flrw model?” Classical and Quantum Gravity, vol. 31, no. 23, p. 234003, nov 2014. [Online]. Available: https://dx.doi.org/10.1088/0264-9381/31/23/234003D. W. Hogg, “Distance measures in cosmology,” arXiv preprint astro-ph/9905116, 1999.W. L. Freedman and B. F. Madore, “The hubble constant,” Annual Review of Astro nomy and Astrophysics, vol. 48, no. 1, pp. 673–710, 2010.G. A. Tammann, A. Sandage, and B. Reindl, “The expansion field: the value of h0,” The Astronomy and Astrophysics Review, vol. 15, no. 4, pp. 289–331, Jul 2008. [Online]. Available: https://doi.org/10.1007/s00159-008-0012-yTaubenberger, S., Suyu, S. H. et al., “The hubble constant determined through an inverse distance ladder including quasar time delays and type ia supernovae,” A&A, vol. 628, p. L7, 2019. [Online]. Available: https://doi.org/10.1051/0004-6361/201935980G. Bargiacchi, M. Benetti et al., “Quasar cosmology: dark energy evolution and spatial curvature,” 2022.Planck Collaboration, Adam, R. et al., “Planck 2015 results - i. overview of products and scientific results,” A&A, vol. 594, p. A1, 2016. [Online]. Available: https://doi.org/10.1051/0004-6361/201527101D. Baumann, Cosmology. Cambridge University Press, 2022.W. Hu and M. White, “The cosmic symphony,” Scientific American, vol. 290, no. 2, pp. 44–53, 2004. [Online]. Available: http://www.jstor.org/stable/26047596D. H. Weinberg, M. J. Mortonson et al., “Observational probes of cosmic acceleration,” Physics Reports, vol. 530, no. 2, pp. 87–255, 2013, observational Probes of Cosmic Acceleration. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157313001592G. Smoot, C. Bennett et al., “First results of the cobe satellite measurement of the anisotropy of the cosmic microwave background radiation,” Advances in Space Research, vol. 11, no. 2, pp. 193–205, 1991. [Online]. Available: https://www.sciencedirect.com/science/article/pii/027311779190490BJ. M. Kovac, E. M. Leitch et al., “Detection of polarization in the cosmic microwave background using DASI,” Nature, vol. 420, no. 6917, pp. 772–787, Dec. 2002. [Online]. Available: https://doi.org/10.1038/nature01269D. Hanson, A. Challinor, and A. Lewis, “Weak lensing of the CMB,” General Relativity and Gravitation, vol. 42, no. 9, pp. 2197–2218, Jun. 2010. [Online]. Available: https://doi.org/10.1007/s10714-010-1036-yA. Lewis and A. Challinor, “Weak gravitational lensing of the cmb,” Physics reports, vol. 429, no. 1, pp. 1–65, 2006.F. Bianchini, W. L. K. Wu et al., “Constraints on cosmological parameters from the 500 degsup2/sup SPTPOL lensing power spectrum,” The Astrophysical Journal, vol. 888, no. 2, p. 119, Jan. 2020. [Online]. Available: https://doi.org/10.3847/1538-4357/ab6082C. L. Bennett, M. Bay et al., “Theimicrowave anisotropy probe/imission,” The Astrophysical Journal, vol. 583, no. 1, pp. 1–23, Jan. 2003. [Online]. Available: https://doi.org/10.1086/345346E. Komatsu, J. Dunkley et al., “Five-year wilkinson microwave anisotropy probe* observations: Cosmological interpretation,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, pp. 330–376, Feb. 2009. [Online]. Available: https://doi.org/10.1088/0067-0049/180/2/330W. J. Percival, S. Cole et al., “Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey,” Monthly Notices of the Royal Astronomical Society, vol. 381, no. 3, pp. 1053–1066, 10 2007. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2007.12268.xN. Jarosik, C. L. Bennett et al., “Seven-year wilkinson microwave anisotropy probe (wmap*) observations: Sky maps, systematic errors, and basic results,” The Astrophysical Journal Supplement Series, vol. 192, no. 2, p. 14, Jan. 2011. [Online]. Available: https://doi.org/10.1088/0067-0049/192/2/14W. J. Percival, B. A. Reid et al., “Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample,” Monthly Notices of the RoyalAstronomical Society, vol. 401, no. 4, pp. 2148–2168, 01 2010. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2009.15812.xC. L. Bennett, D. Larson et al., “Nine-year wilkinson microwave anisotropy probe (wmap) observations: Final maps and results,” The Astrophysical Journal Supplement Series, vol. 208, no. 2, p. 20, Sep. 2013. [Online]. Available: https://doi.org/10.1088/0067-0049/208/2/20Planck Collaboration, Ade, P. A. R. et al., “Planck 2013 results. i. overview of products and scientific results,” A&A, vol. 571, p. A1, 2014. [Online]. Available: https://doi.org/10.1051/0004-6361/201321529A. G. Riess, “The expansion of the universe is faster than expected,” Nature Reviews Physics, vol. 2, no. 1, pp. 10–12, Dec. 2019. [Online]. Available: https://doi.org/10.1038/s42254-019-0137-0R. J. Thornton, P. A. R. Ade et al., “The atacama cosmology telescope: The polarization-sensitive actpol instrument,” The Astrophysical Journal Supplement Series, vol. 227, no. 2, p. 21, dec 2016. [Online]. Available: https://dx.doi.org/10.3847/1538-4365/227/2/21“South pole telescope (spt) overview.” [Online]. Available: https://lambda.gsfc.nasa.gov/product/spt/K. T. Story, C. L. Reichardt et al., “A measurement of the cosmic microwave background damping tail from the 2500-square-degree spt-sz survey,” The Astrophysical Journal, vol. 779, no. 1, p. 86, nov 2013. [Online]. Available: https://dx.doi.org/10.1088/0004-637X/779/1/86J. W. Henning, J. T. Sayre et al., “Measurements of the temperature and e-mode polarization of the cmb from 500 square degrees of sptpol data,” The Astrophysical Journal, vol. 852, no. 2, p. 97, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa9ff4C. Blake and K. Glazebrook, “Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler,” The Astrophysical Journal, vol. 594, no. 2, pp. 665–673, Sep. 2003. [Online]. Available: https://doi.org/10.1086/376983E. A. Kazin, J. Koda et al., “The WiggleZ Dark Energy Survey: improved distance measurements to z=1 with reconstruction of the baryonic acoustic feature,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 4, pp. 3524 3542, 05 2014. [Online]. Available: https://doi.org/10.1093/mnras/stu778D. J. Eisenstein, H.-J. Seo et al., “Improving cosmological distance measurements by reconstruction of the baryon acoustic peak,” The Astrophysical Journal, vol. 664, no. 2, p. 675, aug 2007. [Online]. Available: https://dx.doi.org/10.1086/518712D. Parkinson, S. Riemer-Sørensen et al., “The wigglez dark energy survey: Final data release and cosmological results,” Phys. Rev. D, vol. 86, p. 103518, Nov 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.86.103518K. S. Dawson, D. J. Schlegel et al., “The baryon oscillation spectroscopic survey of sdss-iii,” The Astronomical Journal, vol. 145, no. 1, p. 10, dec 2012. [Online]. Available: https://dx.doi.org/10.1088/0004-6256/145/1/10G. E. Addison, D. J. Watts et al., “Elucidating cdm: Impact of baryon acoustic oscillation measurements on the hubble constant discrepancy,” The Astrophysical Journal, vol. 853, no. 2, p. 119, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aaa1edK. L. Greene and F.-Y. Cyr-Racine, “Hubble distancing: focusing on distance measurements in cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2022, no. 06, p. 002, jun 2022. [Online]. Available: https://dx.doi.org/10.1088/ 1475-7516/2022/06/002A. Z. Bonanos, K. Z. Stanek et al., “The first direct distance determination to a detached eclipsing binary in m33*,” The Astrophysical Journal, vol. 652, no. 1, p. 313, nov 2006. [Online]. Available: https://dx.doi.org/10.1086/508140B. Paczynski, “Detached eclipsing binaries as primary distance and age indicators,” 1996.I. B. Thompson, J. Kaluzny et al., “Cluster ages experiment: The age and distance of the globular cluster centauri determined from observations of the eclipsing binary oglegc 17,” The Astronomical Journal, vol. 121, no. 6, p. 3089, jun 2001. [Online]. Available: https://dx.doi.org/10.1086/321084G. Pietrzýski, D. Graczyk et al., “A distance to the large magellanic cloud that is precise to one per cent,” Nature, vol. 567, no. 7747, pp. 200–203, 2019.B. A. Remple, G. C. Angelou, and A. Weiss, “Determining fundamental parameters of detached double-lined eclipsing binary systems via a statistically robust machine learning method,” Monthly Notices of the Royal Astronomical Society, vol. 507, no. 2, pp. 1795–1813, 07 2021. [Online]. Available: https://doi.org/10.1093/mnras/stab2030J. Southworth, B. Smalley et al., “Absolute dimensions of detached eclipsing binaries— I. The metallic-lined system WW Aurigae,” Monthly Notices of the Royal Astronomical Society, vol. 363, no. 2, pp. 529–542, 10 2005. [Online]. Available: https://doi.org/10.1111/j.1365-2966.2005.09462.xA. Salsi, N. Nardetto et al., “Progress on the calibration of surface brightness–color relations for early-and late-type stars,” Astronomy & Astrophysics, vol. 652, p. A26, 2021.J. Braatz, M. Reid et al., “Measuring the hubble constant with observations of water vapor megamasers,” Proceedings of the International Astronomical Union, vol. 8, no. S289, p. 255–261, 2012.C. Henkel, J. A. Braatz et al., “Cosmology and the hubble constant: On the megamaser cosmology project (mcp),” Proceedings of the International Astronomical Union, vol. 8, no. S287, p. 301–310, 2012.K. Lo, “Mega-masers and galaxies,” Annual Review of Astronomy and Astrophysics, vol. 43, no. 1, pp. 625–676, 2005. [Online]. Available: https://doi.org/10.1146/annurev.astro.41.011802.094927K. Hachisuka, A. Brunthaler et al., “Water maser motions in w3(oh) and a determination of its distance,” The Astrophysical Journal, vol. 645, no. 1, p. 337, jul 2006. [Online]. Available: https://dx.doi.org/10.1086/502962N. Jackson, “The hubble constant,” Living Reviews in Relativity, vol. 18, no. 1, Sep. 2015. [Online]. Available: https://doi.org/10.1007/lrr-2015-281] J. Braatz, J. Condon et al., “A measurement of the hubble constant by the megamaser cosmology project,” Proceedings of the International Astronomical Union, vol. 13, no. S336, p. 86–91, 2017.D. W. Pesce, J. A. Braatz et al., “The megamaser cosmology project. xiii. combined hubble constant constraints,” The Astrophysical Journal Letters, vol. 891, no. 1, p. L1, feb 2020. [Online]. Available: https://dx.doi.org/10.3847/20418213/ab75f0G. Wallerstein, “The cepheids of population ii and related stars,” Publications of the Astronomical Society of the Pacific, vol. 114, no. 797, p. 689, jul 2002. [Online]. Available: https://dx.doi.org/10.1086/341698H. S. Leavitt and E. C. Pickering, “Periods of 25 variable stars in the small magellanic cloud.” Harvard College Observatory Circular, vol. 173, pp. 1-3, vol. 173, pp. 1–3, 1912. 85] G. F. Benedict, B. E. McArthur et al., “Hubble space telescope fine guidance sensor parallaxes of galactic cepheid variable stars: period-luminosity relations,” The Astro nomical Journal, vol. 133, no. 4, p. 1810, 2007.86] W. L. Freedman, B. F. Madore et al., “Final results from the hubble space telescope key project to measure the hubble constant*,” The Astrophysical Journal, vol. 553, no. 1, p. 47, may 2001. [Online]. Available: https://dx.doi.org/10.1086/320638A. Bhardwaj, S. M. Kanbur et al., “Large Magellanic Cloud Near-Infrared Synoptic Survey – III. A statistical study of non-linearity in the Leavitt Laws,” Monthly Notices of the Royal Astronomical Society, vol. 457, no. 2, pp. 1644–1665, 02 2016. [Online]. Available: https://doi.org/10.1093/mnras/stw040A. Bhardwaj, A. G. Riess et al., “High-resolution spectroscopic metallicities of milky way cepheid standards and their impact on the leavitt law and the hubble constant,” The Astrophysical Journal Letters, vol. 955, no. 1, p. L13, 2023. 89] A. Udalski, L. Wyrzykowski et al., “The Optical Gravitational Lensing Experiment. Cepheids in the galaxy IC1613: No dependence of the Period-Luminosity relation on metallicity,” , vol. 51, pp. 221–245, 2001W. Gieren, J. Storm et al., “The effect of metallicity on cepheid period-luminosity relations from a baade-wesselink analysis of cepheids in the milky way and magellanic clouds,” Astronomy & Astrophysics, vol. 620, p. A99, 2018.Z. Zhang, B. Jiang et al., “Dependence of pulsation mode of Cepheids on Metallicity,” , vol. 928, no. 2, p. 139, 2022.G. Bono, F. Caputo et al., “Cepheids in external galaxies. I. the maser-host galaxy NGC 4258 and the metallicity dependence of Period-Luminosity and Period-Wesenheit relations,” , vol. 684, no. 1, pp. 102–117, 2008C. Ngeow and S. M. Kanbur, “The Hubble constant from type Ia supernovae calibrated with the linear and nonlinear Cepheid Period-Luminosity Relations,” , vol. 642, no. 1, pp. L29–L32, 2006.W. L. Freedman, B. F. Madore et al., “Calibration of the tip of the red giant branch,” The Astrophysical Journal, vol. 891, no. 1, p. 57, 2020.K. B. W. McQuinn, M. Boyer et al., “Using the tip of the red giant branch as a distance indicator in the near infrared,” The Astrophysical Journal, vol. 880, no. 1, p. 63, jul 2019. [Online]. Available: https://dx.doi.org/10.3847/1538 4357/ab2627M. G. Lee, W. L. Freedman, and B. F. Madore, “The tip of the red giant branch as a distance indicator for resolved galaxies,” Astrophysical Journal v. 417, p. 553, vol. 417, p. 553, 1993.G. S. Anand, R. B. Tully et al., “Comparing tip of the red giant branch distance scales: an independent reduction of the carnegie-chicago hubble program and the value of the hubble constant,” The Astrophysical Journal, vol. 932, no. 1, p. 15, 2022.R. L. Beaton, W. L. Freedman et al., “The carnegie-chicago hubble program. i. an independent approach to the extragalactic distance scale using only population ii distance indicators*,” The Astrophysical Journal, vol. 832, no. 2, p. 210, dec 2016. [Online]. Available: https://dx.doi.org/10.3847/0004-637X/832/2/210D. Hatt, R. L. Beaton et al., “The carnegie-chicago hubble program. ii. the distance to ic 1613: The tip of the red giant branch and rr lyrae period–luminosity relations*,” The Astrophysical Journal, vol. 845, no. 2, p. 146, aug 2017. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa7f73D. Hatt, W. L. Freedman et al., “The carnegie-chicago hubble program. iv. the distance to ngc 4424, ngc 4526, and ngc 4356 via the tip of the red giant branch,” The Astrophysical Journal, vol. 861, no. 2, p. 104, jul 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aac9ccT. J. Hoyt, W. L. Freedman et al., “The carnegie chicago hubble program. vi. tip of the red giant branch distances to m66 and m96 of the leo i group,” The Astrophysical Journal, vol. 882, no. 2, p. 150, sep 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab1f81R. L. Beaton, M. Seibert et al., “The carnegie-chicago hubble program. vii. the distance to m101 via the optical tip of the red giant branch method*,” The Astrophysical Journal, vol. 885, no. 2, p. 141, nov 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab4263I. S. Jang, T. J. Hoyt et al., “The carnegie–chicago hubble program. ix. calibration of the tip of the red giant branch method in the megamaser host galaxy, ngc 4258 (m106)*,” The Astrophysical Journal, vol. 906, no. 2, p. 125, jan 2021. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/abc8e9A. J. Ruiter, “Type ia supernova sub-classes and progenitor origin,” Proceedings of the International Astronomical Union, vol. 15, no. S357, p. 1–15, 2019. 105] C. Ashall, P. Mazzali et al., “Luminosity distributions of Type Ia supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 460, no. 4, pp. 3529–3544, 05, 2016. [Online]. Available: https://doi.org/10.1093/mnras/stw1214D. Lennarz, D. Altmann, and C. Wiebusch, “A unified supernova catalogue,” Astro nomy & Astrophysics, vol. 538, p. A120, 2012.S. Papadogiannakis, A. Goobar et al., “R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory,” Monthly Notices of the Royal Astronomical Society, vol. 483, no. 4, pp. 5045–5076, 12 2018. [Online]. Available: https://doi.org/10.1093/mnras/sty3301A. Sandage, “H0= 43+/-11 km/s/mpc based on angular diameters of high-luminosity field spiral galaxies,” Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 402, no. 1, p. 3-14., vol. 402, pp. 3–14, 1993.G. De Vaucouleurs and W. Peters, “Hubble ratio and solar motion from 200 spiral galaxies having distances derived from the luminosity index,” Astrophysical Journal, Part 1, vol. 248, Sept. 1, 1981, p. 395-407., vol. 248, pp. 395–407, 1981.A. G. Riess, L. Macri et al., “A 3 % solution: determination of the hubble constant with the hubble space telescope and wide field camera 3,” The Astrophysical Journal, vol. 730, no. 2, p. 119, 2011.I. Ribas, E. L. Fitzpatrick et al., “Fundamental properties and distances of large ma gellanic cloud eclipsing binaries. iii. eros 1044,” The Astrophysical Journal, vol. 574, no. 2, p. 771, 2002.G. Efstathiou, “H0 revisited,” Monthly Notices of the Royal Astronomical Society, vol. 440, no. 2, pp. 1138–1152, 03 2014. [Online]. Available: https: //doi.org/10.1093/mnras/stu278A. G. Riess, L. M. Macri et al., “A 2.4 % determination of the local value of the hubble constant,” The Astrophysical Journal, vol. 826, no. 1, p. 56, 2016. 114] A. Brown, A. Vallenari et al., “Gaia data release 2-summary of the contents and survey properties,” Astronomy & astrophysics, vol. 616, p. A1, 2018.A. G. Riess, S. Casertano et al., “Milky way cepheid standards for measuring cos mic distances and application to gaia dr2: implications for the hubble constant,” The Astrophysical Journal, vol. 861, no. 2, p. 126, 2018.A. G. Riess, S. Casertano et al., “Large magellanic cloud cepheid standards provide a 1 % foundation for the determination of the hubble constant and stronger evidence for physics beyond cdm,” The Astrophysical Journal, vol. 876, no. 1, p. 85, may 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab1422M. Rigault, G. Aldering et al., “Confirmation of a star formation bias in type ia supernova distances and its effect on the measurement of the hubble constant,” The Astrophysical Journal, vol. 802, no. 1, p. 20, mar 2015. Online]. Available: https://dx.doi.org/10.1088/0004-637X/802/1/20W. Yuan, A. G. Riess et al., “Consistent calibration of the tip of the red giant branch in the large magellanic cloud on the hubble space telescope photometric system and a redetermination of the hubble constant,” The Astrophysical Journal, vol. 886, no. , p. 61, nov 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab4bc9M. Salaris and S. Cassisi, “The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models,” Monthly Notices of the Royal Astronomical Society, vol. 289, no. 2, pp. 406–414, 08 1997. [Online]. Available: https://doi.org/10.1093/mnras/289.2.406C. Feinstein, G. Baume et al., “Extragalactic stellar photometry and the blending problem,” 2019.B. J. Mochejska, L. M. Macri et al., “The direct project: Influence of blending on the cepheid distance scale. i. cepheids in m31,” The Astronomical Journal, vol. 120, no. 2, p. 810, aug 2000. [Online]. Available: https://dx.doi.org/10.1086/301493I. S. Jang, D. Hatt et al., “The carnegie–chicago hubble program. iii. the distance to ngc 1365 via the tip of the red giant branch,” The Astrophysical Journal, vol. 852, no. 1, p. 60, jan 2018. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/aa9d92G. Da Costa and T. Armandroff, “Standard globular cluster giant branches in the (mi,/vi/sub o) plane,” Astronomical Journal (ISSN 0004-6256), vol. 100, July 1990, p. 162-181., vol. 100, pp. 162–181, 1990.E. Carretta and A. Bragaglia, “On the calibration of red giant branch metallicity indicators in globular clusters: new relations based on an improved abundance scale,” arXiv preprint astro-ph/9708249, 1997.T. J. Davidge, “The metallicity of the red giant branch in the disk of ngc 6822,” Publications of the Astronomical Society of the Pacific, vol. 115, no. 808, p. 635, apr 2003. [Online]. Available: https://dx.doi.org/10.1086/375389B. F. Madore and W. L. Freedman, “Mathematical underpinnings of the multiwave length structure of the tip of the red giant branch,” The Astronomical Journal, vol. 160, no. 4, p. 170, 2020.D. Lincoln, “Is Modern Cosmology in Crisis?” The Physics Teacher, vol. 58, no. 4, pp. 234–237, 04 2020. [Online]. Available: https://doi.org/10.1119/1.5145465 128] S. Vagnozzi, “New physics in light of the H0 tension: An alternative view,” Phys. Rev. D, vol. 102, p. 023518, Jul 2020. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevD.102.023518E. D. Valentino, O. Mena et al., “In the realm of the hubble tension—a review of solutions*,” Classical and Quantum Gravity, vol. 38, no. 15, p. 153001, jul 2021. [Online]. Available: https://dx.doi.org/10.1088/1361-6382/ac086d130]L. Verde, T. Treu, and A. G. Riess, “Tensions between the early and late universe,” Nature Astronomy, vol. 3, no. 10, pp. 891–895, 2019.W. Beenakker and D. Venhoek, “A structured analysis of hubble tension,” 2021.K. C. Wong, S. H. Suyu et al., “H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3 tension between early- and late-Universe probes,” Monthly Notices of the Royal Astronomical Society, vol. 498, no. 1, pp. 1420–1439, 09 2019. [Online]. Available: https://doi.org/10.1093/mnras/stz3094C. D. Huang, A. G. Riess et al., “Hubble space telescope observations of mira variables in the sn ia host ngc 1559: An alternative candle to measure the hubble constant,” The Astrophysical Journal, vol. 889, no. 1, p. 5, 2020.A. J. Shajib, S. Birrer et al., “Strides: a 3.9 per cent measurement of the hubble constant from the strong lens system des j0408- 5354,” Monthly Notices of the Royal Astronomical Society, vol. 494, no. 4, pp. 6072–6102, 2020.V. Poulin, K. K. Boddy et al., “Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions,” Physical Review D, vol. 97, no. 12, p. 123504, 2018.R. R. Caldwell, “A phantom menace? cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters B, vol. 545, no. 1-2, pp. 23–29, 2002.R. E. Keeley and A. Shafieloo, “Ruling out new physics at low redshift as a solution to the H0 tension,” Phys. Rev. Lett., vol. 131, p. 111002, Sep 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.131.11100G. Efstathiou, “To H0 or not to H0?” Monthly Notices of the Royal Astronomical Society, vol. 505, no. 3, pp. 3866–3872, 06 2021. [Online]. Available: https://doi.org/10.1093/mnras/stab1588D. Brout, D. Scolnic et al., “The pantheon+ analysis: Cosmological constraints,” The Astrophysical Journal, vol. 938, no. 2, p. 110, oct 2022. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ac8e04T. Shanks, L. M. Hogarth, and N. Metcalfe, “Gaia Cepheid parallaxes and ‘Local Hole’ relieve H0 tension,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 484, no. 1, pp. L64–L68, 12 2018. [Online]. Available: https://doi.org/10.1093/mnrasl/sly239R. C. Keenan, A. J. Barger, and L. L. Cowie, “Evidence for a 300 megaparsec scale under-density in the local galaxy distribution,” The Astrophysical Journal, vol. 775, no. 1, p. 62, sep 2013. [Online]. Available: https://dx.doi.org/10.1088/0004-637X/775/1/62W. D. Kenworthy, D. Scolnic, and A. Riess, “The local perspective on the hubble tension: Local structure does not impact measurement of the hubble constant,” The Astrophysical Journal, vol. 875, no. 2, p. 145, apr 2019. [Online]. Available: https://dx.doi.org/10.3847/1538-4357/ab0ebfH. J. Macpherson, D. J. Price, and P. D. Lasky, “Einstein’s universe: Cosmological structure formation in numerical relativity,” Phys. Rev. D, vol. 99, p. 063522, Mar 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.063522I. Odderskov, S. Hannestad, and J. Brandbyge, “The variance of the locally measured hubble parameter explained with different estimators,” Journal of Cosmology and Astroparticle Physics, vol. 2017, no. 03, p. 022, mar 2017. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2017/03/022A. Das and S. Ghosh, “Flavor-specific interaction favors strong neutrino self-coupling in the early universe,” Journal of Cosmology and Astroparticle Physics, vol. 2021, no. 07, p. 038, jul 2021. [Online]. Available: https: //dx.doi.org/10.1088/1475-7516/2021/07/038M.-X. Lin, M. Raveri, and W. Hu, “Phenomenology of modified gravity at recombination,” Phys. Rev. D, vol. 99, p. 043514, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.043514M. Braglia, M. Ballardini et al., “Early modified gravity in light of the H0 tension and lss data,” Phys. Rev. D, vol. 103, p. 043528, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.103.043528M. Braglia, M. Ballardini et al., “Larger value for H0 by an evolving gravitational constant,” Phys. Rev. D, vol. 102, p. 023529, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.102.023529G. Ballesteros, A. Notari, and F. Rompineve, “The h0 tension: δ gn vs. δ neff,” Journal of Cosmology and Astroparticle Physics, vol. 2020, pp. 024 – 024, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:228865516M. Ballardini, M. Braglia et al., “Scalar-tensor theories of gravity, neutrino physics, and the h0 tension,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 10, p. 044, oct 2020. [Online]. Available: https://dx.doi.org/10.1088/1475-7516/2020/10/044M. Zumalacárregui, “Gravity in the era of equality: Towards solutions to the hubble problem without fine-tuned initial conditions,” Phys. Rev. D, vol. 102, p. 023523, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.102.023523T. Adi and E. D. Kovetz, “Can conformally coupled modified gravity solve the hubble tension?” Phys. Rev. D, vol. 103, p. 023530, Jan 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.103.023530G. Benevento, J. A. Kable et al., “An exploration of an early gravity transition in light of cosmological tensions,” The Astrophysical Journal, vol. 935, no. 2, p. 156, 2022.M. Kamionkowski, J. Pradler, and D. G. E. Walker, “Dark energy from the string axiverse,” Phys. Rev. Lett., vol. 113, p. 251302, Dec 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.251302E. McDonough and M. Scalisi, “Towards early dark energy in string theory,” 2022.M. S. Turner, “Coherent scalar-field oscillations in an expanding universe,” Phys. Rev. D, vol. 28, pp. 1243–1247, Sep 1983. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevD.28.1243M. C. Johnson and M. Kamionkowski, “Dynamical and gravitational instability of an oscillating-field dark energy and dark matter,” Phys. Rev. D, vol. 78, p. 063010, Sep 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.78.063010P. Agrawal, F.-Y. Cyr-Racine et al., “Rock ‘n’ roll solutions to the hubble tension,” Physics of the Dark Universe, vol. 42, p. 101347, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212686423001814M.-X. Lin, G. Benevento et al., “Acoustic dark energy: Potential conversion of the hubble tension,” Phys. Rev. D, vol. 100, p. 063542, Sep 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.100.063542S. Castello, S. Ilíc, and M. Kunz, “A cautionary tale: Dark energy in single-field, slow roll inflationary models,” 2022.W. Hu, “Structure formation with generalized dark matter,” The Astrophysical Journal, vol. 506, no. 2, p. 485, oct 1998. [Online]. Available: https://dx.doi.org/10.1086/306274E. Bertschinger, “Cosmics: Cosmological initial conditions and microwave anisotropy codes,” 1995.U. Seljak and M. Zaldarriaga, “A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies,” , vol. 469, p. 437, Oct. 1996.A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of cosmic microwave background anisotropies in closed friedmann-robertson-walker models,” The Astrophysical Journal, vol. 538, no. 2, p. 473, aug 2000. [Online]. Available: https://dx.doi.org/10.1086/309179J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” 2011.V. I. Sabla and R. R. Caldwell, “Microphysics of early dark energy,” Phys. Rev. D, vol. 106, p. 063526, Sep 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.106.063526T. Karwal, M. Raveri et al., “Chameleon early dark energy and the hubble tension,” Physical Review D, vol. 105, no. 6, p. 063535, 2022.J. Sakstein and M. Trodden, “Early dark energy from massive neutrinos as a natural resolution of the hubble tension,” Physical Review Letters, vol. 124, no. 16, p. 161301, 2020.K. V. Berghaus and T. Karwal, “Thermal friction as a solution to the hubble tension,” Physical Review D, vol. 101, no. 8, p. 083537, 2020.K. V. Berghaus and T. Karwal, “Thermal friction as a solution to the hubble and large-scale structure tensions,” Physical Review D, vol. 107, no. 10, p. 103515, 2023.D. Aloni, A. Berlin et al., “A step in understanding the hubble tension,” Physical Review D, vol. 105, no. 12, p. 123516, 2022.C. D. Kreisch, F.-Y. Cyr-Racine, and O. Doré, “Neutrino puzzle: Anomalies, interactions, and cosmological tensions,” Phys. Rev. D, vol. 101, p. 123505, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.101.123505N. Blinov, K. J. Kelly et al., “Constraining the self-interacting neutrino interpretation of the hubble tension,” Phys. Rev. Lett., vol. 123, p. 191102, Nov 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.123.191102K. Jedamzik and L. Pogosian, “Relieving the hubble tension with primordial magnetic fields,” Phys. Rev. Lett., vol. 125, p. 181302, Oct 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.125.181302A. G. Riess, G. S. Anand et al., “Crowded no more: The accuracy of the hubble constant tested with high resolution observations of cepheids by jwst,” 2023.J. Giné, “On the origin of the anomalous precession of mercury’s perihelion,” Chaos, Solitons Fractals, vol. 38, no. 4, pp. 1004–1010, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960077907001294201914911PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/648e210d-449c-49da-948d-30a7835a145a/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/1d3b0daa-3633-4db7-996b-405b3bd31ac3/download4460e5956bc1d1639be9ae6146a50347MD57ORIGINALAnálisis de la tensión del parámetro de Hubble.pdfAnálisis de la tensión del parámetro de Hubble.pdfapplication/pdf2099105https://repositorio.uniandes.edu.co/bitstreams/644cbe11-1e51-451e-b2e3-7d0e903005a9/download3a88b1774a03bca1a459461159860a48MD58autorizacion-tesis-Luisa-Zambrano.pdfautorizacion-tesis-Luisa-Zambrano.pdfHIDEapplication/pdf376106https://repositorio.uniandes.edu.co/bitstreams/f601adec-d0e4-4f67-92b5-389c295ba6a2/download7c9067f0f17585b79c78bfece8aebd26MD59TEXTAnálisis de la tensión del parámetro de Hubble.pdf.txtAnálisis de la tensión del parámetro de Hubble.pdf.txtExtracted texttext/plain102843https://repositorio.uniandes.edu.co/bitstreams/0bd816c1-7d09-4fb8-96bb-f78e5c0367cf/download984a450c66b9756c0abb17f885c09fc0MD510autorizacion-tesis-Luisa-Zambrano.pdf.txtautorizacion-tesis-Luisa-Zambrano.pdf.txtExtracted texttext/plain2012https://repositorio.uniandes.edu.co/bitstreams/dc9d89a5-1b36-4664-8f29-59160c3e2ffb/downloadb7283d01a5769bbdc8ace00701e9c032MD512THUMBNAILAnálisis de la tensión del parámetro de Hubble.pdf.jpgAnálisis de la tensión del parámetro de Hubble.pdf.jpgGenerated Thumbnailimage/jpeg8074https://repositorio.uniandes.edu.co/bitstreams/196b0c40-34ba-497d-bfa1-a05c6af94095/downloadc3c57baa94db34c17b72eb5e14f71223MD511autorizacion-tesis-Luisa-Zambrano.pdf.jpgautorizacion-tesis-Luisa-Zambrano.pdf.jpgGenerated Thumbnailimage/jpeg11063https://repositorio.uniandes.edu.co/bitstreams/72e29233-c5b7-4530-ad1e-9464022e88c5/download1aae47387dc8e150c42a4ff2d32d4cf5MD5131992/73775oai:repositorio.uniandes.edu.co:1992/737752024-02-16 15:31:44.0http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K