Tagging with deep neural networks of top quarks decaying to hadrons

The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, t...

Full description

Autores:
Silvera Vega, Diego Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/40308
Acceso en línea:
http://hdl.handle.net/1992/40308
Palabra clave:
Aprendizaje automático (Inteligencia artificial)
Teoría del campo cuántico
Partículas (Física nuclear)
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_fc3468fe1ede4d4ea7b8c56e1e4e1b14
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/40308
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Tagging with deep neural networks of top quarks decaying to hadrons
title Tagging with deep neural networks of top quarks decaying to hadrons
spellingShingle Tagging with deep neural networks of top quarks decaying to hadrons
Aprendizaje automático (Inteligencia artificial)
Teoría del campo cuántico
Partículas (Física nuclear)
Física
title_short Tagging with deep neural networks of top quarks decaying to hadrons
title_full Tagging with deep neural networks of top quarks decaying to hadrons
title_fullStr Tagging with deep neural networks of top quarks decaying to hadrons
title_full_unstemmed Tagging with deep neural networks of top quarks decaying to hadrons
title_sort Tagging with deep neural networks of top quarks decaying to hadrons
dc.creator.fl_str_mv Silvera Vega, Diego Felipe
dc.contributor.advisor.none.fl_str_mv Avila Bernal, Carlos Arturo
dc.contributor.author.none.fl_str_mv Silvera Vega, Diego Felipe
dc.contributor.jury.none.fl_str_mv Flórez Bustos, Carlos Andrés
dc.subject.keyword.es_CO.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Teoría del campo cuántico
Partículas (Física nuclear)
topic Aprendizaje automático (Inteligencia artificial)
Teoría del campo cuántico
Partículas (Física nuclear)
Física
dc.subject.themes.none.fl_str_mv Física
description The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, the mechanism of electroweak symmetry breaking. Besides that, SM does not contain an explanation for the energy-matter constitution of Universe, since dark matter and dark energy is not included in this model. In this context, the top quark plays a crucial role, as it is the most massive particle within the Standard Model, and it has a large coupling to Higgs Boson, the entity that explains the property of mass for elementary particles. Theories beyond SM, such as Supersymmetry, which attempts to solve the mentioned diculties, predict processes involving top pair decays as nal state products. Thus, identifying events including top quarks is important to the study and searches of new physics. Given the previous motivation, top quark tagging has recently acquired relevance. Thus, the current work proposes a machine learning approach for handling this task, and compares it with state-of-art top taggers. The project was depeloved based on simulations of top quark signal events and backgrounds with Pythia, Madgraph and Delphes
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T17:04:26Z
dc.date.available.none.fl_str_mv 2020-06-10T17:04:26Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/40308
dc.identifier.pdf.none.fl_str_mv u808160.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/40308
identifier_str_mv u808160.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 90 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/2fe4e0b3-d9e4-459a-946b-3b6f664531eb/download
https://repositorio.uniandes.edu.co/bitstreams/dbca8f30-15ff-4237-81e4-60db8ba2ef24/download
https://repositorio.uniandes.edu.co/bitstreams/84688135-87cc-4629-a2ad-fd48bdff2b15/download
bitstream.checksum.fl_str_mv bc4438a0e9d710f3077281e24174abdf
da6ef249b5d3cc0708b3528317a37eb3
d7f134d06ecc65ead5572b47e617b67b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133942750347264
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avila Bernal, Carlos Arturo36d44ba7-e39b-4af0-b22a-acbbe4219794500Silvera Vega, Diego Felipeff3f5850-0375-4820-b5c6-486fcccdce4e500Flórez Bustos, Carlos Andrés2020-06-10T17:04:26Z2020-06-10T17:04:26Z2018http://hdl.handle.net/1992/40308u808160.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, the mechanism of electroweak symmetry breaking. Besides that, SM does not contain an explanation for the energy-matter constitution of Universe, since dark matter and dark energy is not included in this model. In this context, the top quark plays a crucial role, as it is the most massive particle within the Standard Model, and it has a large coupling to Higgs Boson, the entity that explains the property of mass for elementary particles. Theories beyond SM, such as Supersymmetry, which attempts to solve the mentioned diculties, predict processes involving top pair decays as nal state products. Thus, identifying events including top quarks is important to the study and searches of new physics. Given the previous motivation, top quark tagging has recently acquired relevance. Thus, the current work proposes a machine learning approach for handling this task, and compares it with state-of-art top taggers. The project was depeloved based on simulations of top quark signal events and backgrounds with Pythia, Madgraph and DelphesEl Modelo Estándar es una teoría que describe de manera satisfactoria la física de las partículas elementales, y las interacciones fundamentales. Sin embargo, ésta no tiene en cuenta la gravitación, y posee algunos problemas adicionales, dado que no resuelve el problema de jerarquía y el mecanismo de rompimiento de simetría electrodébil. Además de ello, éste modelo no explica la distribución de enegía-materia en el Universo. En este contexto, el quark top posee un rol primordial, dado que es la partícula de mayor masa en el Modelo Estándar, y un acoplamiento considerable con el boson de Higgs, la entidad que explica la propiedad de la masa en las partículas elementales. Algunas teorías más allá del Modelo Estándar, como la Supersimetría, que intenta resolver las difultades mencionadas, predicen procesos que incluyen decaimientos de pares de quarks top como productos en el estado final. Por lo tanto, identificar eventos que incluyen el quark top es importante para el estudio y la búsqueda de nueva física. Dada la motivación anterior, el etiquetamiento de quarks top ha adquirido especial relevancia. En este sentido, el presente trabajo propone el uso de técnicas con "machine learning" para hacer esta tarea, y se compara con métodos usados en el estado del arte. El proyecto se desarrolló a través de simulaciones de eventos de señal y de background con Pythia, Madgraph y DelphesFísicoPregrado90 hojasapplication/pdfengUniandesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaTagging with deep neural networks of top quarks decaying to hadronsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAprendizaje automático (Inteligencia artificial)Teoría del campo cuánticoPartículas (Física nuclear)FísicaPublicationTEXTu808160.pdf.txtu808160.pdf.txtExtracted texttext/plain164614https://repositorio.uniandes.edu.co/bitstreams/2fe4e0b3-d9e4-459a-946b-3b6f664531eb/downloadbc4438a0e9d710f3077281e24174abdfMD54THUMBNAILu808160.pdf.jpgu808160.pdf.jpgIM Thumbnailimage/jpeg5570https://repositorio.uniandes.edu.co/bitstreams/dbca8f30-15ff-4237-81e4-60db8ba2ef24/downloadda6ef249b5d3cc0708b3528317a37eb3MD55ORIGINALu808160.pdfapplication/pdf4148617https://repositorio.uniandes.edu.co/bitstreams/84688135-87cc-4629-a2ad-fd48bdff2b15/downloadd7f134d06ecc65ead5572b47e617b67bMD511992/40308oai:repositorio.uniandes.edu.co:1992/403082023-10-10 17:32:45.92http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co