Tagging with deep neural networks of top quarks decaying to hadrons
The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, t...
- Autores:
-
Silvera Vega, Diego Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/40308
- Acceso en línea:
- http://hdl.handle.net/1992/40308
- Palabra clave:
- Aprendizaje automático (Inteligencia artificial)
Teoría del campo cuántico
Partículas (Física nuclear)
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_fc3468fe1ede4d4ea7b8c56e1e4e1b14 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/40308 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Tagging with deep neural networks of top quarks decaying to hadrons |
title |
Tagging with deep neural networks of top quarks decaying to hadrons |
spellingShingle |
Tagging with deep neural networks of top quarks decaying to hadrons Aprendizaje automático (Inteligencia artificial) Teoría del campo cuántico Partículas (Física nuclear) Física |
title_short |
Tagging with deep neural networks of top quarks decaying to hadrons |
title_full |
Tagging with deep neural networks of top quarks decaying to hadrons |
title_fullStr |
Tagging with deep neural networks of top quarks decaying to hadrons |
title_full_unstemmed |
Tagging with deep neural networks of top quarks decaying to hadrons |
title_sort |
Tagging with deep neural networks of top quarks decaying to hadrons |
dc.creator.fl_str_mv |
Silvera Vega, Diego Felipe |
dc.contributor.advisor.none.fl_str_mv |
Avila Bernal, Carlos Arturo |
dc.contributor.author.none.fl_str_mv |
Silvera Vega, Diego Felipe |
dc.contributor.jury.none.fl_str_mv |
Flórez Bustos, Carlos Andrés |
dc.subject.keyword.es_CO.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Teoría del campo cuántico Partículas (Física nuclear) |
topic |
Aprendizaje automático (Inteligencia artificial) Teoría del campo cuántico Partículas (Física nuclear) Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, the mechanism of electroweak symmetry breaking. Besides that, SM does not contain an explanation for the energy-matter constitution of Universe, since dark matter and dark energy is not included in this model. In this context, the top quark plays a crucial role, as it is the most massive particle within the Standard Model, and it has a large coupling to Higgs Boson, the entity that explains the property of mass for elementary particles. Theories beyond SM, such as Supersymmetry, which attempts to solve the mentioned diculties, predict processes involving top pair decays as nal state products. Thus, identifying events including top quarks is important to the study and searches of new physics. Given the previous motivation, top quark tagging has recently acquired relevance. Thus, the current work proposes a machine learning approach for handling this task, and compares it with state-of-art top taggers. The project was depeloved based on simulations of top quark signal events and backgrounds with Pythia, Madgraph and Delphes |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T17:04:26Z |
dc.date.available.none.fl_str_mv |
2020-06-10T17:04:26Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/40308 |
dc.identifier.pdf.none.fl_str_mv |
u808160.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/40308 |
identifier_str_mv |
u808160.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
90 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/2fe4e0b3-d9e4-459a-946b-3b6f664531eb/download https://repositorio.uniandes.edu.co/bitstreams/dbca8f30-15ff-4237-81e4-60db8ba2ef24/download https://repositorio.uniandes.edu.co/bitstreams/84688135-87cc-4629-a2ad-fd48bdff2b15/download |
bitstream.checksum.fl_str_mv |
bc4438a0e9d710f3077281e24174abdf da6ef249b5d3cc0708b3528317a37eb3 d7f134d06ecc65ead5572b47e617b67b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133942750347264 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avila Bernal, Carlos Arturo36d44ba7-e39b-4af0-b22a-acbbe4219794500Silvera Vega, Diego Felipeff3f5850-0375-4820-b5c6-486fcccdce4e500Flórez Bustos, Carlos Andrés2020-06-10T17:04:26Z2020-06-10T17:04:26Z2018http://hdl.handle.net/1992/40308u808160.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The Standard Model (SM) is a proposed well-established theory that describes successfully the physics of the elementary particles, and the fundamental interactions. However, it does not take into account gravitation, and it has some additional problems, as it does not solves the hierarchy problem, the mechanism of electroweak symmetry breaking. Besides that, SM does not contain an explanation for the energy-matter constitution of Universe, since dark matter and dark energy is not included in this model. In this context, the top quark plays a crucial role, as it is the most massive particle within the Standard Model, and it has a large coupling to Higgs Boson, the entity that explains the property of mass for elementary particles. Theories beyond SM, such as Supersymmetry, which attempts to solve the mentioned diculties, predict processes involving top pair decays as nal state products. Thus, identifying events including top quarks is important to the study and searches of new physics. Given the previous motivation, top quark tagging has recently acquired relevance. Thus, the current work proposes a machine learning approach for handling this task, and compares it with state-of-art top taggers. The project was depeloved based on simulations of top quark signal events and backgrounds with Pythia, Madgraph and DelphesEl Modelo Estándar es una teoría que describe de manera satisfactoria la física de las partículas elementales, y las interacciones fundamentales. Sin embargo, ésta no tiene en cuenta la gravitación, y posee algunos problemas adicionales, dado que no resuelve el problema de jerarquía y el mecanismo de rompimiento de simetría electrodébil. Además de ello, éste modelo no explica la distribución de enegía-materia en el Universo. En este contexto, el quark top posee un rol primordial, dado que es la partícula de mayor masa en el Modelo Estándar, y un acoplamiento considerable con el boson de Higgs, la entidad que explica la propiedad de la masa en las partículas elementales. Algunas teorías más allá del Modelo Estándar, como la Supersimetría, que intenta resolver las difultades mencionadas, predicen procesos que incluyen decaimientos de pares de quarks top como productos en el estado final. Por lo tanto, identificar eventos que incluyen el quark top es importante para el estudio y la búsqueda de nueva física. Dada la motivación anterior, el etiquetamiento de quarks top ha adquirido especial relevancia. En este sentido, el presente trabajo propone el uso de técnicas con "machine learning" para hacer esta tarea, y se compara con métodos usados en el estado del arte. El proyecto se desarrolló a través de simulaciones de eventos de señal y de background con Pythia, Madgraph y DelphesFísicoPregrado90 hojasapplication/pdfengUniandesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaTagging with deep neural networks of top quarks decaying to hadronsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAprendizaje automático (Inteligencia artificial)Teoría del campo cuánticoPartículas (Física nuclear)FísicaPublicationTEXTu808160.pdf.txtu808160.pdf.txtExtracted texttext/plain164614https://repositorio.uniandes.edu.co/bitstreams/2fe4e0b3-d9e4-459a-946b-3b6f664531eb/downloadbc4438a0e9d710f3077281e24174abdfMD54THUMBNAILu808160.pdf.jpgu808160.pdf.jpgIM Thumbnailimage/jpeg5570https://repositorio.uniandes.edu.co/bitstreams/dbca8f30-15ff-4237-81e4-60db8ba2ef24/downloadda6ef249b5d3cc0708b3528317a37eb3MD55ORIGINALu808160.pdfapplication/pdf4148617https://repositorio.uniandes.edu.co/bitstreams/84688135-87cc-4629-a2ad-fd48bdff2b15/downloadd7f134d06ecc65ead5572b47e617b67bMD511992/40308oai:repositorio.uniandes.edu.co:1992/403082023-10-10 17:32:45.92http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |