Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión...
- Autores:
-
Rios Andrade, Cristian Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73620
- Acceso en línea:
- https://hdl.handle.net/1992/73620
- Palabra clave:
- Reciclaje de energía
Radio frecuencia
Antena
Rectificador
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_fb4f1a1c9c29aa8c6ccdd4a39a418f2d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73620 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
title |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
spellingShingle |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT Reciclaje de energía Radio frecuencia Antena Rectificador Ingeniería |
title_short |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
title_full |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
title_fullStr |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
title_full_unstemmed |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
title_sort |
Reciclaje de energía electromagnética: una apuesta de alimentación para IoT |
dc.creator.fl_str_mv |
Rios Andrade, Cristian Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Avila Bernal, Alba Graciela Rodríguez Pinto, Darwin Dubay |
dc.contributor.author.none.fl_str_mv |
Rios Andrade, Cristian Alejandro |
dc.contributor.jury.none.fl_str_mv |
Forero Rodríguez, Felipe |
dc.subject.keyword.spa.fl_str_mv |
Reciclaje de energía Radio frecuencia Antena Rectificador |
topic |
Reciclaje de energía Radio frecuencia Antena Rectificador Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión bibliográfica exhaustiva sobre la recolección de energía electromagnética, centrándose en los parámetros de diseño. Posteriormente, se diseñó y simuló la antena, llevándose a cabo la implementación y caracterización experimental en la cámara anecoica. Simultáneamente, se revisaron tipologías de rectificadores para el aprovechamiento de energía electromagnética, y se diseñó uno basado en parámetros establecidos. Tras las simulaciones y su implementación, se realizaron pruebas experimentales con los diodos disponibles localmente. Se compararon los resultados de simulaciones y caracterizaciones experimentales de la antena y el rectificador, seguido por un análisis, la implementación y el ensamblaje de las etapas. Finalmente, se llevaron a cabo pruebas experimentales y se analizaron los resultados obtenidos. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T18:21:12Z |
dc.date.available.none.fl_str_mv |
2024-01-30T18:21:12Z |
dc.date.issued.none.fl_str_mv |
2024-01-25 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73620 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73620 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
S. S. Ojha, P. K. Singhal, and V. V. Thakare, “Highly efficient dual diode rectenna with an array for rf energy harvesting,” Wireless Personal Communications, pp. 1–22, 2023. D. Technologies, “Rf energy harvesting for the low energy internet of things,” p. 2, 2015. T. Soyata, L. Copeland, and W. Heinzelman, “Rf energy harvesting for embedded systems: A survey of tradeoffs and methodology,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22–57, 2016. J. Feenstra, J. Granstrom, and H. Sodano, “Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 721–734, 2008. L.-G. Tran, H.-K. Cha, and W.-T. Park, “Rf power harvesting: a review on designing methodologies and applications,” Micro and Nano Systems Letters, vol. 5, no. 1, pp. 1–16, 2017. A. N. F. Asli and Y. C. Wong, “3.3 v dc output at-16dbm sensitivity and 77 % pce rectifier for rf energy harvesting,” International Journal of Power Electronics and Drive Systems, vol. 10, no. 3, p. 1398, 2019. A. S. Thangarajan, T. D. Nguyen, M. Liu, S. Michiels, F. Yang, K. L. Man, J. Ma, W. Joosen, and D. Hughes, “Static: Low frequency energy harvesting and power transfer for the internet of things,” Frontiers in Signal Processing, vol. 1, pp. 1–13, 2022. G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global market outlook for photovoltaics 2013-2017,” European Photovoltaic Industry Association, pp. 12–32, 2013. L. Mateu and F. Moll, “Review of energy harvesting techniques and applications for microelectronics,” in VLSI Circuits and Systems II, vol. 5837, pp. 359–373, SPIE, 2005. P. W¨urfel and U. W¨urfel, Physics of solar cells: from basic principles to advanced concepts. John Wiley & Sons, 2016. J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, L. Casey, D. Maksimovic, J. Traube, and F. Lu, “Analysis of solar irradiance intermittency 42 mitigation using constant dc voltage pv and ev battery storage,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6, IEEE, 2012. H. J. Goldsmid et al., Introduction to thermoelectricity, vol. 121. Springer, 2010. Z. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Applied energy, vol. 164, pp. 57–63, 2016. A. Erturk and D. J. Inman, Piezoelectric energy harvesting. John Wiley & Sons, 2011. K. N. Gonzalez Cruz et al., “Estudio del reuso de energía por tráfico de vehículos aprovechando transducción electromecánica con efecto piezoeléctrico,” 2022. J. Kim and J.-W. Lee, “Energy adaptive mac for wireless sensor networks with rf energy transfer: Algorithm, analysis, and implementation,” Telecommunication Systems, vol. 64, pp. 293–307, 2017. J. Ugwuogo, “On-demand energy harvesting techniques-a system level perspective,” Master’s thesis, University of Waterloo, 2012. U. Baroudi, “Robot-assisted maintenance of wireless sensor networks using wireless energy transfer,” IEEE Sensors Journal, vol. 17, no. 14, pp. 4661–4671, 2017. S. Mekid, A. Qureshi, and U. Baroudi, “Energy harvesting from ambient radio frequency: Is it worth it?,” Arabian Journal for Science and Engineering, vol. 42, pp. 2673–2683, 2017. P. Nintanavongsa, “A survey on rf energy harvesting: circuits and protocols,” Energy Procedia, vol. 56, pp. 414–422, 2014. G. Srinivasu, V. Sharma y N. Anveshkumar, “A survey on conceptualization of rf energy harvesting,” Journal of Applied Science and Computations (JASC), vol. 6, no. 2, pp. 791–800, 2019. H. Sun, Y.-x. Guo, M. He y Z. Zhong, “Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929–932, 2012. U. Olgun, C.-C. Chen y J. L. Volakis, “Wireless power harvesting with planar rectennas for 2.45 ghz rfids,” in 2010 URSI International symposium on electromagnetic theory, pp. 329–331, IEEE, 2010. T. Matsunaga, E. Nishiyama e I. Toyoda, “5.8-ghz stacked differential rectenna suitable for large-scale rectenna arrays with dc connection,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5944–5949, 2015. C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan y P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3486–3495, 2015. M. Wagih, N. Hillier, S. Yong, A. S. Weddell y S. Beeby, “Rf-powered wearable energy harvesting and storage module based on e-textile coplanar waveguide rectenna and supercapacitor,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 302–314, 2021. P. Momenroodaki, R. D. Fernandes y Z. Popovi´c, “Air-substrate compact high gain rectennas for low rf power harvesting,” in 2016 10th European conference on antennas and propagation (EuCAP), pp. 1–4, IEEE, 2016. H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 32– 35, 2015. H. Sun y W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 814–817, 2015. Y.-J. Ren, M. F. Farooqui y K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 2110–2113, 2007. P. Lu, X.-S. Yang, J.-L. Li y B.-Z. Wang, “Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1136– 1141, 2016. G. Chen, H. Ghaed, R.-u. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, et al., “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” in 2011 IEEE International Solid-State Circuits Conference, pp. 310–312, IEEE, 2011. H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof y R. F. Yazicioglu, “A configurable and low-power mixed signal soc for portable ecg monitoring applications,” IEEE transactions on biomedical circuits and systems, vol. 8, no. 2, pp. 257–267, 2013. G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Sylvester y D. Blaauw, “Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 288–289, IEEE, 2010. S. Rai, J. Holleman, J. N. Pandey, F. Zhang y B. Otis, “A 500µw neural tag with 2µv rms afe and frequency-multiplying mics/ism fsk transmitter,” in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 212–213, IEEE, 2009. Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, et al., “A batteryless 19µ w mics/ism-band energy harvesting body sensor node soc for exg applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2012. M. B. Nagaraju, A. R. Lingley, S. Sridharan, J. Gu, R. Ruby y B. P. Otis, “27.4 a 0.8 mm 3±0.68 psi single-chip wireless pressure sensor for tpms applications,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, pp. 1–3, IEEE, 2015. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh y W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nature communications, vol. 5, no. 1, pp. 1–8, 2014. A. L. Aita, M. A. Pertijs, K. A. Makinwa, J. H. Huijsing y G. C. Meijer, “Low-power cmos smart temperature sensor with a batch-calibrated inaccuracy of ±0,25c(±3σ) from −70 °c to 130 °c,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1840–1848, 2013. S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw y D. Sylvester, “A fullyintegrated 71 nw cmos temperature sensor for low power wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682–1693, 2014. S. Moon, H.-K. Lee, N. Choi, H. Kang, J. Lee, S. Ahn, and S. Kang, “Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique,” Sensors and Actuators B: Chemical, vol. 217, pp. 146–150, 2015. S. E. Pernett Robinson et al., “Implementación de un sistema de recolección de energía proveniente de ondas de radiofrecuencia para alimentar dispositivos de potencia inferior a 10 mW,” 2016. P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24–33, 2012. B. P. Baddipadiga and M. Ferdowsi, “A high-voltage-gain dc-dc converter based on modified Dickson charge pump voltage multiplier,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7707–7715, 2017. H. Yan, J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, “An integration scheme for RF power harvesting,” in Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, vol. 2005, pp. 64–66, 2005. B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage,” Journal of the Electrochemical Society, vol. 138, no. 6, p. 1539, 1991. G. Tomaszewski, P. Jankowski-Mihułowicz, J. Potencki, A. Pietrikova, and P. Lukacs, “Inkjet-printed HF antenna made on PET substrate,” Microelectronics Reliability, vol. 129, p. 114473, 2022. M. Bissannagari, T.-H. Kim, J.-G. Yook, and J. Kim, “All inkjet-printed flexible wireless power transfer module: Pi/Ag hybrid spiral coil built into 3D NiZn-ferrite trench structure with a resonance capacitor,” Nano Energy, vol. 62, pp. 645–652, 2019. R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, “Conformable dual-band wireless energy harvester dedicated to the urban environment,” Microwave and Optical Technology Letters, vol. 62, no. 11, pp. 3391–3400, 2020. A. Bakytbekov, T. Q. Nguyen, C. Huynh, K. N. Salama, and A. Shamim, “Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting,” Nano Energy, vol. 53, pp. 587–595, 2018. P. K. Sonwalkar and V. Kalmani, “Rectenna design for enhanced node lifetime in energy harvesting WSNs,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, 2022. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
47 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/f329844b-d46c-44fc-b4f3-49d4771ba4c2/download https://repositorio.uniandes.edu.co/bitstreams/1026845b-bb9b-46ff-854b-ed6b2ac7da93/download https://repositorio.uniandes.edu.co/bitstreams/bc1d435b-8bab-4da5-ae17-b116f4a9102b/download https://repositorio.uniandes.edu.co/bitstreams/37071bfc-2a34-4c4a-b78f-3eaf3fe2f4af/download https://repositorio.uniandes.edu.co/bitstreams/20f58b82-e60b-4226-bbcf-d03896c2e70e/download https://repositorio.uniandes.edu.co/bitstreams/b9a8163f-8cc2-43a5-a62e-f62f67360700/download https://repositorio.uniandes.edu.co/bitstreams/f572fa45-ea17-4ee1-b0c1-0672529030ec/download https://repositorio.uniandes.edu.co/bitstreams/1b7cd123-ff61-41b4-be33-1ebd9ab27b93/download |
bitstream.checksum.fl_str_mv |
0175ea4a2d4caec4bbcc37e300941108 ae9e573a68e7f92501b6913cc846c39f 372f784ad7048ec9b754bd2a15c046a3 cdd09380786688cf9c0dc2b4859b7ed0 8d61809eeb0c0a0d395f3bbb2319413b 1d7b25bb9fc4ca6c67552339c7c3c535 4552a5ce018c0a8587cfa2fe45ebedf6 7afc560b93343b0ec3fb61c0eec21251 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818112091073019904 |
spelling |
Avila Bernal, Alba GracielaRodríguez Pinto, Darwin DubayRios Andrade, Cristian AlejandroForero Rodríguez, Felipe2024-01-30T18:21:12Z2024-01-30T18:21:12Z2024-01-25https://hdl.handle.net/1992/73620instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión bibliográfica exhaustiva sobre la recolección de energía electromagnética, centrándose en los parámetros de diseño. Posteriormente, se diseñó y simuló la antena, llevándose a cabo la implementación y caracterización experimental en la cámara anecoica. Simultáneamente, se revisaron tipologías de rectificadores para el aprovechamiento de energía electromagnética, y se diseñó uno basado en parámetros establecidos. Tras las simulaciones y su implementación, se realizaron pruebas experimentales con los diodos disponibles localmente. Se compararon los resultados de simulaciones y caracterizaciones experimentales de la antena y el rectificador, seguido por un análisis, la implementación y el ensamblaje de las etapas. Finalmente, se llevaron a cabo pruebas experimentales y se analizaron los resultados obtenidos.Ingeniero ElectrónicoPregrado47 páginasapplication/pdfspaUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reciclaje de energía electromagnética: una apuesta de alimentación para IoTTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPReciclaje de energíaRadio frecuenciaAntenaRectificadorIngenieríaS. S. Ojha, P. K. Singhal, and V. V. Thakare, “Highly efficient dual diode rectenna with an array for rf energy harvesting,” Wireless Personal Communications, pp. 1–22, 2023.D. Technologies, “Rf energy harvesting for the low energy internet of things,” p. 2, 2015.T. Soyata, L. Copeland, and W. Heinzelman, “Rf energy harvesting for embedded systems: A survey of tradeoffs and methodology,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22–57, 2016.J. Feenstra, J. Granstrom, and H. Sodano, “Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 721–734, 2008.L.-G. Tran, H.-K. Cha, and W.-T. Park, “Rf power harvesting: a review on designing methodologies and applications,” Micro and Nano Systems Letters, vol. 5, no. 1, pp. 1–16, 2017.A. N. F. Asli and Y. C. Wong, “3.3 v dc output at-16dbm sensitivity and 77 % pce rectifier for rf energy harvesting,” International Journal of Power Electronics and Drive Systems, vol. 10, no. 3, p. 1398, 2019.A. S. Thangarajan, T. D. Nguyen, M. Liu, S. Michiels, F. Yang, K. L. Man, J. Ma, W. Joosen, and D. Hughes, “Static: Low frequency energy harvesting and power transfer for the internet of things,” Frontiers in Signal Processing, vol. 1, pp. 1–13, 2022.G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global market outlook for photovoltaics 2013-2017,” European Photovoltaic Industry Association, pp. 12–32, 2013.L. Mateu and F. Moll, “Review of energy harvesting techniques and applications for microelectronics,” in VLSI Circuits and Systems II, vol. 5837, pp. 359–373, SPIE, 2005.P. W¨urfel and U. W¨urfel, Physics of solar cells: from basic principles to advanced concepts. John Wiley & Sons, 2016.J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, L. Casey, D. Maksimovic, J. Traube, and F. Lu, “Analysis of solar irradiance intermittency 42 mitigation using constant dc voltage pv and ev battery storage,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6, IEEE, 2012.H. J. Goldsmid et al., Introduction to thermoelectricity, vol. 121. Springer, 2010.Z. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Applied energy, vol. 164, pp. 57–63, 2016.A. Erturk and D. J. Inman, Piezoelectric energy harvesting. John Wiley & Sons, 2011.K. N. Gonzalez Cruz et al., “Estudio del reuso de energía por tráfico de vehículos aprovechando transducción electromecánica con efecto piezoeléctrico,” 2022.J. Kim and J.-W. Lee, “Energy adaptive mac for wireless sensor networks with rf energy transfer: Algorithm, analysis, and implementation,” Telecommunication Systems, vol. 64, pp. 293–307, 2017.J. Ugwuogo, “On-demand energy harvesting techniques-a system level perspective,” Master’s thesis, University of Waterloo, 2012.U. Baroudi, “Robot-assisted maintenance of wireless sensor networks using wireless energy transfer,” IEEE Sensors Journal, vol. 17, no. 14, pp. 4661–4671, 2017.S. Mekid, A. Qureshi, and U. Baroudi, “Energy harvesting from ambient radio frequency: Is it worth it?,” Arabian Journal for Science and Engineering, vol. 42, pp. 2673–2683, 2017.P. Nintanavongsa, “A survey on rf energy harvesting: circuits and protocols,” Energy Procedia, vol. 56, pp. 414–422, 2014.G. Srinivasu, V. Sharma y N. Anveshkumar, “A survey on conceptualization of rf energy harvesting,” Journal of Applied Science and Computations (JASC), vol. 6, no. 2, pp. 791–800, 2019.H. Sun, Y.-x. Guo, M. He y Z. Zhong, “Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929–932, 2012.U. Olgun, C.-C. Chen y J. L. Volakis, “Wireless power harvesting with planar rectennas for 2.45 ghz rfids,” in 2010 URSI International symposium on electromagnetic theory, pp. 329–331, IEEE, 2010.T. Matsunaga, E. Nishiyama e I. Toyoda, “5.8-ghz stacked differential rectenna suitable for large-scale rectenna arrays with dc connection,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5944–5949, 2015.C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan y P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3486–3495, 2015.M. Wagih, N. Hillier, S. Yong, A. S. Weddell y S. Beeby, “Rf-powered wearable energy harvesting and storage module based on e-textile coplanar waveguide rectenna and supercapacitor,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 302–314, 2021.P. Momenroodaki, R. D. Fernandes y Z. Popovi´c, “Air-substrate compact high gain rectennas for low rf power harvesting,” in 2016 10th European conference on antennas and propagation (EuCAP), pp. 1–4, IEEE, 2016.H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 32– 35, 2015.H. Sun y W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 814–817, 2015.Y.-J. Ren, M. F. Farooqui y K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 2110–2113, 2007.P. Lu, X.-S. Yang, J.-L. Li y B.-Z. Wang, “Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1136– 1141, 2016.G. Chen, H. Ghaed, R.-u. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, et al., “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” in 2011 IEEE International Solid-State Circuits Conference, pp. 310–312, IEEE, 2011.H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof y R. F. Yazicioglu, “A configurable and low-power mixed signal soc for portable ecg monitoring applications,” IEEE transactions on biomedical circuits and systems, vol. 8, no. 2, pp. 257–267, 2013.G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Sylvester y D. Blaauw, “Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 288–289, IEEE, 2010.S. Rai, J. Holleman, J. N. Pandey, F. Zhang y B. Otis, “A 500µw neural tag with 2µv rms afe and frequency-multiplying mics/ism fsk transmitter,” in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 212–213, IEEE, 2009.Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, et al., “A batteryless 19µ w mics/ism-band energy harvesting body sensor node soc for exg applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2012.M. B. Nagaraju, A. R. Lingley, S. Sridharan, J. Gu, R. Ruby y B. P. Otis, “27.4 a 0.8 mm 3±0.68 psi single-chip wireless pressure sensor for tpms applications,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, pp. 1–3, IEEE, 2015.S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh y W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nature communications, vol. 5, no. 1, pp. 1–8, 2014.A. L. Aita, M. A. Pertijs, K. A. Makinwa, J. H. Huijsing y G. C. Meijer, “Low-power cmos smart temperature sensor with a batch-calibrated inaccuracy of ±0,25c(±3σ) from −70 °c to 130 °c,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1840–1848, 2013.S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw y D. Sylvester, “A fullyintegrated 71 nw cmos temperature sensor for low power wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682–1693, 2014.S. Moon, H.-K. Lee, N. Choi, H. Kang, J. Lee, S. Ahn, and S. Kang, “Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique,” Sensors and Actuators B: Chemical, vol. 217, pp. 146–150, 2015.S. E. Pernett Robinson et al., “Implementación de un sistema de recolección de energía proveniente de ondas de radiofrecuencia para alimentar dispositivos de potencia inferior a 10 mW,” 2016.P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24–33, 2012.B. P. Baddipadiga and M. Ferdowsi, “A high-voltage-gain dc-dc converter based on modified Dickson charge pump voltage multiplier,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7707–7715, 2017.H. Yan, J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, “An integration scheme for RF power harvesting,” in Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, vol. 2005, pp. 64–66, 2005.B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage,” Journal of the Electrochemical Society, vol. 138, no. 6, p. 1539, 1991.G. Tomaszewski, P. Jankowski-Mihułowicz, J. Potencki, A. Pietrikova, and P. Lukacs, “Inkjet-printed HF antenna made on PET substrate,” Microelectronics Reliability, vol. 129, p. 114473, 2022.M. Bissannagari, T.-H. Kim, J.-G. Yook, and J. Kim, “All inkjet-printed flexible wireless power transfer module: Pi/Ag hybrid spiral coil built into 3D NiZn-ferrite trench structure with a resonance capacitor,” Nano Energy, vol. 62, pp. 645–652, 2019.R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, “Conformable dual-band wireless energy harvester dedicated to the urban environment,” Microwave and Optical Technology Letters, vol. 62, no. 11, pp. 3391–3400, 2020.A. Bakytbekov, T. Q. Nguyen, C. Huynh, K. N. Salama, and A. Shamim, “Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting,” Nano Energy, vol. 53, pp. 587–595, 2018.P. K. Sonwalkar and V. Kalmani, “Rectenna design for enhanced node lifetime in energy harvesting WSNs,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, 2022.201915798PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/f329844b-d46c-44fc-b4f3-49d4771ba4c2/download0175ea4a2d4caec4bbcc37e300941108MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1026845b-bb9b-46ff-854b-ed6b2ac7da93/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdfReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdfapplication/pdf8323519https://repositorio.uniandes.edu.co/bitstreams/bc1d435b-8bab-4da5-ae17-b116f4a9102b/download372f784ad7048ec9b754bd2a15c046a3MD56autorizacion_T_elect2024AA_DDRP.pdfautorizacion_T_elect2024AA_DDRP.pdfHIDEapplication/pdf366282https://repositorio.uniandes.edu.co/bitstreams/37071bfc-2a34-4c4a-b78f-3eaf3fe2f4af/downloadcdd09380786688cf9c0dc2b4859b7ed0MD57TEXTReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.txtReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.txtExtracted texttext/plain76775https://repositorio.uniandes.edu.co/bitstreams/20f58b82-e60b-4226-bbcf-d03896c2e70e/download8d61809eeb0c0a0d395f3bbb2319413bMD58autorizacion_T_elect2024AA_DDRP.pdf.txtautorizacion_T_elect2024AA_DDRP.pdf.txtExtracted texttext/plain2033https://repositorio.uniandes.edu.co/bitstreams/b9a8163f-8cc2-43a5-a62e-f62f67360700/download1d7b25bb9fc4ca6c67552339c7c3c535MD510THUMBNAILReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.jpgReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.jpgGenerated Thumbnailimage/jpeg9903https://repositorio.uniandes.edu.co/bitstreams/f572fa45-ea17-4ee1-b0c1-0672529030ec/download4552a5ce018c0a8587cfa2fe45ebedf6MD59autorizacion_T_elect2024AA_DDRP.pdf.jpgautorizacion_T_elect2024AA_DDRP.pdf.jpgGenerated Thumbnailimage/jpeg11238https://repositorio.uniandes.edu.co/bitstreams/1b7cd123-ff61-41b4-be33-1ebd9ab27b93/download7afc560b93343b0ec3fb61c0eec21251MD5111992/73620oai:repositorio.uniandes.edu.co:1992/736202024-02-16 15:39:57.899http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |