Reciclaje de energía electromagnética: una apuesta de alimentación para IoT

En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión...

Full description

Autores:
Rios Andrade, Cristian Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73620
Acceso en línea:
https://hdl.handle.net/1992/73620
Palabra clave:
Reciclaje de energía
Radio frecuencia
Antena
Rectificador
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_fb4f1a1c9c29aa8c6ccdd4a39a418f2d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73620
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
title Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
spellingShingle Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
Reciclaje de energía
Radio frecuencia
Antena
Rectificador
Ingeniería
title_short Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
title_full Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
title_fullStr Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
title_full_unstemmed Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
title_sort Reciclaje de energía electromagnética: una apuesta de alimentación para IoT
dc.creator.fl_str_mv Rios Andrade, Cristian Alejandro
dc.contributor.advisor.none.fl_str_mv Avila Bernal, Alba Graciela
Rodríguez Pinto, Darwin Dubay
dc.contributor.author.none.fl_str_mv Rios Andrade, Cristian Alejandro
dc.contributor.jury.none.fl_str_mv Forero Rodríguez, Felipe
dc.subject.keyword.spa.fl_str_mv Reciclaje de energía
Radio frecuencia
Antena
Rectificador
topic Reciclaje de energía
Radio frecuencia
Antena
Rectificador
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión bibliográfica exhaustiva sobre la recolección de energía electromagnética, centrándose en los parámetros de diseño. Posteriormente, se diseñó y simuló la antena, llevándose a cabo la implementación y caracterización experimental en la cámara anecoica. Simultáneamente, se revisaron tipologías de rectificadores para el aprovechamiento de energía electromagnética, y se diseñó uno basado en parámetros establecidos. Tras las simulaciones y su implementación, se realizaron pruebas experimentales con los diodos disponibles localmente. Se compararon los resultados de simulaciones y caracterizaciones experimentales de la antena y el rectificador, seguido por un análisis, la implementación y el ensamblaje de las etapas. Finalmente, se llevaron a cabo pruebas experimentales y se analizaron los resultados obtenidos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-30T18:21:12Z
dc.date.available.none.fl_str_mv 2024-01-30T18:21:12Z
dc.date.issued.none.fl_str_mv 2024-01-25
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73620
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73620
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv S. S. Ojha, P. K. Singhal, and V. V. Thakare, “Highly efficient dual diode rectenna with an array for rf energy harvesting,” Wireless Personal Communications, pp. 1–22, 2023.
D. Technologies, “Rf energy harvesting for the low energy internet of things,” p. 2, 2015.
T. Soyata, L. Copeland, and W. Heinzelman, “Rf energy harvesting for embedded systems: A survey of tradeoffs and methodology,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22–57, 2016.
J. Feenstra, J. Granstrom, and H. Sodano, “Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 721–734, 2008.
L.-G. Tran, H.-K. Cha, and W.-T. Park, “Rf power harvesting: a review on designing methodologies and applications,” Micro and Nano Systems Letters, vol. 5, no. 1, pp. 1–16, 2017.
A. N. F. Asli and Y. C. Wong, “3.3 v dc output at-16dbm sensitivity and 77 % pce rectifier for rf energy harvesting,” International Journal of Power Electronics and Drive Systems, vol. 10, no. 3, p. 1398, 2019.
A. S. Thangarajan, T. D. Nguyen, M. Liu, S. Michiels, F. Yang, K. L. Man, J. Ma, W. Joosen, and D. Hughes, “Static: Low frequency energy harvesting and power transfer for the internet of things,” Frontiers in Signal Processing, vol. 1, pp. 1–13, 2022.
G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global market outlook for photovoltaics 2013-2017,” European Photovoltaic Industry Association, pp. 12–32, 2013.
L. Mateu and F. Moll, “Review of energy harvesting techniques and applications for microelectronics,” in VLSI Circuits and Systems II, vol. 5837, pp. 359–373, SPIE, 2005.
P. W¨urfel and U. W¨urfel, Physics of solar cells: from basic principles to advanced concepts. John Wiley & Sons, 2016.
J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, L. Casey, D. Maksimovic, J. Traube, and F. Lu, “Analysis of solar irradiance intermittency 42 mitigation using constant dc voltage pv and ev battery storage,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6, IEEE, 2012.
H. J. Goldsmid et al., Introduction to thermoelectricity, vol. 121. Springer, 2010.
Z. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Applied energy, vol. 164, pp. 57–63, 2016.
A. Erturk and D. J. Inman, Piezoelectric energy harvesting. John Wiley & Sons, 2011.
K. N. Gonzalez Cruz et al., “Estudio del reuso de energía por tráfico de vehículos aprovechando transducción electromecánica con efecto piezoeléctrico,” 2022.
J. Kim and J.-W. Lee, “Energy adaptive mac for wireless sensor networks with rf energy transfer: Algorithm, analysis, and implementation,” Telecommunication Systems, vol. 64, pp. 293–307, 2017.
J. Ugwuogo, “On-demand energy harvesting techniques-a system level perspective,” Master’s thesis, University of Waterloo, 2012.
U. Baroudi, “Robot-assisted maintenance of wireless sensor networks using wireless energy transfer,” IEEE Sensors Journal, vol. 17, no. 14, pp. 4661–4671, 2017.
S. Mekid, A. Qureshi, and U. Baroudi, “Energy harvesting from ambient radio frequency: Is it worth it?,” Arabian Journal for Science and Engineering, vol. 42, pp. 2673–2683, 2017.
P. Nintanavongsa, “A survey on rf energy harvesting: circuits and protocols,” Energy Procedia, vol. 56, pp. 414–422, 2014.
G. Srinivasu, V. Sharma y N. Anveshkumar, “A survey on conceptualization of rf energy harvesting,” Journal of Applied Science and Computations (JASC), vol. 6, no. 2, pp. 791–800, 2019.
H. Sun, Y.-x. Guo, M. He y Z. Zhong, “Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929–932, 2012.
U. Olgun, C.-C. Chen y J. L. Volakis, “Wireless power harvesting with planar rectennas for 2.45 ghz rfids,” in 2010 URSI International symposium on electromagnetic theory, pp. 329–331, IEEE, 2010.
T. Matsunaga, E. Nishiyama e I. Toyoda, “5.8-ghz stacked differential rectenna suitable for large-scale rectenna arrays with dc connection,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5944–5949, 2015.
C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan y P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3486–3495, 2015.
M. Wagih, N. Hillier, S. Yong, A. S. Weddell y S. Beeby, “Rf-powered wearable energy harvesting and storage module based on e-textile coplanar waveguide rectenna and supercapacitor,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 302–314, 2021.
P. Momenroodaki, R. D. Fernandes y Z. Popovi´c, “Air-substrate compact high gain rectennas for low rf power harvesting,” in 2016 10th European conference on antennas and propagation (EuCAP), pp. 1–4, IEEE, 2016.
H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 32– 35, 2015.
H. Sun y W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 814–817, 2015.
Y.-J. Ren, M. F. Farooqui y K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 2110–2113, 2007.
P. Lu, X.-S. Yang, J.-L. Li y B.-Z. Wang, “Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1136– 1141, 2016.
G. Chen, H. Ghaed, R.-u. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, et al., “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” in 2011 IEEE International Solid-State Circuits Conference, pp. 310–312, IEEE, 2011.
H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof y R. F. Yazicioglu, “A configurable and low-power mixed signal soc for portable ecg monitoring applications,” IEEE transactions on biomedical circuits and systems, vol. 8, no. 2, pp. 257–267, 2013.
G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Sylvester y D. Blaauw, “Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 288–289, IEEE, 2010.
S. Rai, J. Holleman, J. N. Pandey, F. Zhang y B. Otis, “A 500µw neural tag with 2µv rms afe and frequency-multiplying mics/ism fsk transmitter,” in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 212–213, IEEE, 2009.
Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, et al., “A batteryless 19µ w mics/ism-band energy harvesting body sensor node soc for exg applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2012.
M. B. Nagaraju, A. R. Lingley, S. Sridharan, J. Gu, R. Ruby y B. P. Otis, “27.4 a 0.8 mm 3±0.68 psi single-chip wireless pressure sensor for tpms applications,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, pp. 1–3, IEEE, 2015.
S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh y W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nature communications, vol. 5, no. 1, pp. 1–8, 2014.
A. L. Aita, M. A. Pertijs, K. A. Makinwa, J. H. Huijsing y G. C. Meijer, “Low-power cmos smart temperature sensor with a batch-calibrated inaccuracy of ±0,25c(±3σ) from −70 °c to 130 °c,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1840–1848, 2013.
S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw y D. Sylvester, “A fullyintegrated 71 nw cmos temperature sensor for low power wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682–1693, 2014.
S. Moon, H.-K. Lee, N. Choi, H. Kang, J. Lee, S. Ahn, and S. Kang, “Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique,” Sensors and Actuators B: Chemical, vol. 217, pp. 146–150, 2015.
S. E. Pernett Robinson et al., “Implementación de un sistema de recolección de energía proveniente de ondas de radiofrecuencia para alimentar dispositivos de potencia inferior a 10 mW,” 2016.
P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24–33, 2012.
B. P. Baddipadiga and M. Ferdowsi, “A high-voltage-gain dc-dc converter based on modified Dickson charge pump voltage multiplier,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7707–7715, 2017.
H. Yan, J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, “An integration scheme for RF power harvesting,” in Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, vol. 2005, pp. 64–66, 2005.
B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage,” Journal of the Electrochemical Society, vol. 138, no. 6, p. 1539, 1991.
G. Tomaszewski, P. Jankowski-Mihułowicz, J. Potencki, A. Pietrikova, and P. Lukacs, “Inkjet-printed HF antenna made on PET substrate,” Microelectronics Reliability, vol. 129, p. 114473, 2022.
M. Bissannagari, T.-H. Kim, J.-G. Yook, and J. Kim, “All inkjet-printed flexible wireless power transfer module: Pi/Ag hybrid spiral coil built into 3D NiZn-ferrite trench structure with a resonance capacitor,” Nano Energy, vol. 62, pp. 645–652, 2019.
R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, “Conformable dual-band wireless energy harvester dedicated to the urban environment,” Microwave and Optical Technology Letters, vol. 62, no. 11, pp. 3391–3400, 2020.
A. Bakytbekov, T. Q. Nguyen, C. Huynh, K. N. Salama, and A. Shamim, “Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting,” Nano Energy, vol. 53, pp. 587–595, 2018.
P. K. Sonwalkar and V. Kalmani, “Rectenna design for enhanced node lifetime in energy harvesting WSNs,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, 2022.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 47 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/f329844b-d46c-44fc-b4f3-49d4771ba4c2/download
https://repositorio.uniandes.edu.co/bitstreams/1026845b-bb9b-46ff-854b-ed6b2ac7da93/download
https://repositorio.uniandes.edu.co/bitstreams/bc1d435b-8bab-4da5-ae17-b116f4a9102b/download
https://repositorio.uniandes.edu.co/bitstreams/37071bfc-2a34-4c4a-b78f-3eaf3fe2f4af/download
https://repositorio.uniandes.edu.co/bitstreams/20f58b82-e60b-4226-bbcf-d03896c2e70e/download
https://repositorio.uniandes.edu.co/bitstreams/b9a8163f-8cc2-43a5-a62e-f62f67360700/download
https://repositorio.uniandes.edu.co/bitstreams/f572fa45-ea17-4ee1-b0c1-0672529030ec/download
https://repositorio.uniandes.edu.co/bitstreams/1b7cd123-ff61-41b4-be33-1ebd9ab27b93/download
bitstream.checksum.fl_str_mv 0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
372f784ad7048ec9b754bd2a15c046a3
cdd09380786688cf9c0dc2b4859b7ed0
8d61809eeb0c0a0d395f3bbb2319413b
1d7b25bb9fc4ca6c67552339c7c3c535
4552a5ce018c0a8587cfa2fe45ebedf6
7afc560b93343b0ec3fb61c0eec21251
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390516475166720
spelling Avila Bernal, Alba GracielaRodríguez Pinto, Darwin DubayRios Andrade, Cristian AlejandroForero Rodríguez, Felipe2024-01-30T18:21:12Z2024-01-30T18:21:12Z2024-01-25https://hdl.handle.net/1992/73620instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este proyecto se lleva a cabo el diseño e implementación de un sistema de recolección de energía electromagnética para la frecuencia de 2.4 GHz, aplicado a la alimentación de dispositivos con potencias inferiores a 20 mW. En la metodología desarrollada en este proyecto, se inició con una revisión bibliográfica exhaustiva sobre la recolección de energía electromagnética, centrándose en los parámetros de diseño. Posteriormente, se diseñó y simuló la antena, llevándose a cabo la implementación y caracterización experimental en la cámara anecoica. Simultáneamente, se revisaron tipologías de rectificadores para el aprovechamiento de energía electromagnética, y se diseñó uno basado en parámetros establecidos. Tras las simulaciones y su implementación, se realizaron pruebas experimentales con los diodos disponibles localmente. Se compararon los resultados de simulaciones y caracterizaciones experimentales de la antena y el rectificador, seguido por un análisis, la implementación y el ensamblaje de las etapas. Finalmente, se llevaron a cabo pruebas experimentales y se analizaron los resultados obtenidos.Ingeniero ElectrónicoPregrado47 páginasapplication/pdfspaUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reciclaje de energía electromagnética: una apuesta de alimentación para IoTTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPReciclaje de energíaRadio frecuenciaAntenaRectificadorIngenieríaS. S. Ojha, P. K. Singhal, and V. V. Thakare, “Highly efficient dual diode rectenna with an array for rf energy harvesting,” Wireless Personal Communications, pp. 1–22, 2023.D. Technologies, “Rf energy harvesting for the low energy internet of things,” p. 2, 2015.T. Soyata, L. Copeland, and W. Heinzelman, “Rf energy harvesting for embedded systems: A survey of tradeoffs and methodology,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22–57, 2016.J. Feenstra, J. Granstrom, and H. Sodano, “Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack,” Mechanical Systems and Signal Processing, vol. 22, no. 3, pp. 721–734, 2008.L.-G. Tran, H.-K. Cha, and W.-T. Park, “Rf power harvesting: a review on designing methodologies and applications,” Micro and Nano Systems Letters, vol. 5, no. 1, pp. 1–16, 2017.A. N. F. Asli and Y. C. Wong, “3.3 v dc output at-16dbm sensitivity and 77 % pce rectifier for rf energy harvesting,” International Journal of Power Electronics and Drive Systems, vol. 10, no. 3, p. 1398, 2019.A. S. Thangarajan, T. D. Nguyen, M. Liu, S. Michiels, F. Yang, K. L. Man, J. Ma, W. Joosen, and D. Hughes, “Static: Low frequency energy harvesting and power transfer for the internet of things,” Frontiers in Signal Processing, vol. 1, pp. 1–13, 2022.G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global market outlook for photovoltaics 2013-2017,” European Photovoltaic Industry Association, pp. 12–32, 2013.L. Mateu and F. Moll, “Review of energy harvesting techniques and applications for microelectronics,” in VLSI Circuits and Systems II, vol. 5837, pp. 359–373, SPIE, 2005.P. W¨urfel and U. W¨urfel, Physics of solar cells: from basic principles to advanced concepts. John Wiley & Sons, 2016.J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, L. Casey, D. Maksimovic, J. Traube, and F. Lu, “Analysis of solar irradiance intermittency 42 mitigation using constant dc voltage pv and ev battery storage,” in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6, IEEE, 2012.H. J. Goldsmid et al., Introduction to thermoelectricity, vol. 121. Springer, 2010.Z. Lu, H. Zhang, C. Mao, and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Applied energy, vol. 164, pp. 57–63, 2016.A. Erturk and D. J. Inman, Piezoelectric energy harvesting. John Wiley & Sons, 2011.K. N. Gonzalez Cruz et al., “Estudio del reuso de energía por tráfico de vehículos aprovechando transducción electromecánica con efecto piezoeléctrico,” 2022.J. Kim and J.-W. Lee, “Energy adaptive mac for wireless sensor networks with rf energy transfer: Algorithm, analysis, and implementation,” Telecommunication Systems, vol. 64, pp. 293–307, 2017.J. Ugwuogo, “On-demand energy harvesting techniques-a system level perspective,” Master’s thesis, University of Waterloo, 2012.U. Baroudi, “Robot-assisted maintenance of wireless sensor networks using wireless energy transfer,” IEEE Sensors Journal, vol. 17, no. 14, pp. 4661–4671, 2017.S. Mekid, A. Qureshi, and U. Baroudi, “Energy harvesting from ambient radio frequency: Is it worth it?,” Arabian Journal for Science and Engineering, vol. 42, pp. 2673–2683, 2017.P. Nintanavongsa, “A survey on rf energy harvesting: circuits and protocols,” Energy Procedia, vol. 56, pp. 414–422, 2014.G. Srinivasu, V. Sharma y N. Anveshkumar, “A survey on conceptualization of rf energy harvesting,” Journal of Applied Science and Computations (JASC), vol. 6, no. 2, pp. 791–800, 2019.H. Sun, Y.-x. Guo, M. He y Z. Zhong, “Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929–932, 2012.U. Olgun, C.-C. Chen y J. L. Volakis, “Wireless power harvesting with planar rectennas for 2.45 ghz rfids,” in 2010 URSI International symposium on electromagnetic theory, pp. 329–331, IEEE, 2010.T. Matsunaga, E. Nishiyama e I. Toyoda, “5.8-ghz stacked differential rectenna suitable for large-scale rectenna arrays with dc connection,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5944–5949, 2015.C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan y P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3486–3495, 2015.M. Wagih, N. Hillier, S. Yong, A. S. Weddell y S. Beeby, “Rf-powered wearable energy harvesting and storage module based on e-textile coplanar waveguide rectenna and supercapacitor,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 302–314, 2021.P. Momenroodaki, R. D. Fernandes y Z. Popovi´c, “Air-substrate compact high gain rectennas for low rf power harvesting,” in 2016 10th European conference on antennas and propagation (EuCAP), pp. 1–4, IEEE, 2016.H. Sun, “An enhanced rectenna using differentially-fed rectifier for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 32– 35, 2015.H. Sun y W. Geyi, “A new rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 814–817, 2015.Y.-J. Ren, M. F. Farooqui y K. Chang, “A compact dual-frequency rectifying antenna with high-orders harmonic-rejection,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 2110–2113, 2007.P. Lu, X.-S. Yang, J.-L. Li y B.-Z. Wang, “Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1136– 1141, 2016.G. Chen, H. Ghaed, R.-u. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, et al., “A cubic-millimeter energy-autonomous wireless intraocular pressure monitor,” in 2011 IEEE International Solid-State Circuits Conference, pp. 310–312, IEEE, 2011.H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof y R. F. Yazicioglu, “A configurable and low-power mixed signal soc for portable ecg monitoring applications,” IEEE transactions on biomedical circuits and systems, vol. 8, no. 2, pp. 257–267, 2013.G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Sylvester y D. Blaauw, “Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 288–289, IEEE, 2010.S. Rai, J. Holleman, J. N. Pandey, F. Zhang y B. Otis, “A 500µw neural tag with 2µv rms afe and frequency-multiplying mics/ism fsk transmitter,” in 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, pp. 212–213, IEEE, 2009.Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, et al., “A batteryless 19µ w mics/ism-band energy harvesting body sensor node soc for exg applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2012.M. B. Nagaraju, A. R. Lingley, S. Sridharan, J. Gu, R. Ruby y B. P. Otis, “27.4 a 0.8 mm 3±0.68 psi single-chip wireless pressure sensor for tpms applications,” in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, pp. 1–3, IEEE, 2015.S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh y W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nature communications, vol. 5, no. 1, pp. 1–8, 2014.A. L. Aita, M. A. Pertijs, K. A. Makinwa, J. H. Huijsing y G. C. Meijer, “Low-power cmos smart temperature sensor with a batch-calibrated inaccuracy of ±0,25c(±3σ) from −70 °c to 130 °c,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1840–1848, 2013.S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw y D. Sylvester, “A fullyintegrated 71 nw cmos temperature sensor for low power wireless sensor nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682–1693, 2014.S. Moon, H.-K. Lee, N. Choi, H. Kang, J. Lee, S. Ahn, and S. Kang, “Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique,” Sensors and Actuators B: Chemical, vol. 217, pp. 146–150, 2015.S. E. Pernett Robinson et al., “Implementación de un sistema de recolección de energía proveniente de ondas de radiofrecuencia para alimentar dispositivos de potencia inferior a 10 mW,” 2016.P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 24–33, 2012.B. P. Baddipadiga and M. Ferdowsi, “A high-voltage-gain dc-dc converter based on modified Dickson charge pump voltage multiplier,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7707–7715, 2017.H. Yan, J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, “An integration scheme for RF power harvesting,” in Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, vol. 2005, pp. 64–66, 2005.B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage,” Journal of the Electrochemical Society, vol. 138, no. 6, p. 1539, 1991.G. Tomaszewski, P. Jankowski-Mihułowicz, J. Potencki, A. Pietrikova, and P. Lukacs, “Inkjet-printed HF antenna made on PET substrate,” Microelectronics Reliability, vol. 129, p. 114473, 2022.M. Bissannagari, T.-H. Kim, J.-G. Yook, and J. Kim, “All inkjet-printed flexible wireless power transfer module: Pi/Ag hybrid spiral coil built into 3D NiZn-ferrite trench structure with a resonance capacitor,” Nano Energy, vol. 62, pp. 645–652, 2019.R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, “Conformable dual-band wireless energy harvester dedicated to the urban environment,” Microwave and Optical Technology Letters, vol. 62, no. 11, pp. 3391–3400, 2020.A. Bakytbekov, T. Q. Nguyen, C. Huynh, K. N. Salama, and A. Shamim, “Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting,” Nano Energy, vol. 53, pp. 587–595, 2018.P. K. Sonwalkar and V. Kalmani, “Rectenna design for enhanced node lifetime in energy harvesting WSNs,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, 2022.201915798PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/f329844b-d46c-44fc-b4f3-49d4771ba4c2/download0175ea4a2d4caec4bbcc37e300941108MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1026845b-bb9b-46ff-854b-ed6b2ac7da93/downloadae9e573a68e7f92501b6913cc846c39fMD52ORIGINALReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdfReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdfapplication/pdf8323519https://repositorio.uniandes.edu.co/bitstreams/bc1d435b-8bab-4da5-ae17-b116f4a9102b/download372f784ad7048ec9b754bd2a15c046a3MD56autorizacion_T_elect2024AA_DDRP.pdfautorizacion_T_elect2024AA_DDRP.pdfHIDEapplication/pdf366282https://repositorio.uniandes.edu.co/bitstreams/37071bfc-2a34-4c4a-b78f-3eaf3fe2f4af/downloadcdd09380786688cf9c0dc2b4859b7ed0MD57TEXTReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.txtReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.txtExtracted texttext/plain76775https://repositorio.uniandes.edu.co/bitstreams/20f58b82-e60b-4226-bbcf-d03896c2e70e/download8d61809eeb0c0a0d395f3bbb2319413bMD58autorizacion_T_elect2024AA_DDRP.pdf.txtautorizacion_T_elect2024AA_DDRP.pdf.txtExtracted texttext/plain2033https://repositorio.uniandes.edu.co/bitstreams/b9a8163f-8cc2-43a5-a62e-f62f67360700/download1d7b25bb9fc4ca6c67552339c7c3c535MD510THUMBNAILReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.jpgReciclaje de energía electromagnética: una apuesta de alimentación para IoT.pdf.jpgGenerated Thumbnailimage/jpeg9903https://repositorio.uniandes.edu.co/bitstreams/f572fa45-ea17-4ee1-b0c1-0672529030ec/download4552a5ce018c0a8587cfa2fe45ebedf6MD59autorizacion_T_elect2024AA_DDRP.pdf.jpgautorizacion_T_elect2024AA_DDRP.pdf.jpgGenerated Thumbnailimage/jpeg11238https://repositorio.uniandes.edu.co/bitstreams/1b7cd123-ff61-41b4-be33-1ebd9ab27b93/download7afc560b93343b0ec3fb61c0eec21251MD5111992/73620oai:repositorio.uniandes.edu.co:1992/736202024-02-16 15:39:57.899http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K