Development of a physics-informed machine learning method for aerodynamic and fluids simulation

An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as compa...

Full description

Autores:
Borda Kuhlmann, Juan Pablo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/53423
Acceso en línea:
http://hdl.handle.net/1992/53423
Palabra clave:
Dinámica de fluidos computacional
Redes neuronales (Computadores)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_f9d3a9e4bf2ab74554456dfc67c6b8f1
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/53423
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Development of a physics-informed machine learning method for aerodynamic and fluids simulation
title Development of a physics-informed machine learning method for aerodynamic and fluids simulation
spellingShingle Development of a physics-informed machine learning method for aerodynamic and fluids simulation
Dinámica de fluidos computacional
Redes neuronales (Computadores)
Ingeniería
title_short Development of a physics-informed machine learning method for aerodynamic and fluids simulation
title_full Development of a physics-informed machine learning method for aerodynamic and fluids simulation
title_fullStr Development of a physics-informed machine learning method for aerodynamic and fluids simulation
title_full_unstemmed Development of a physics-informed machine learning method for aerodynamic and fluids simulation
title_sort Development of a physics-informed machine learning method for aerodynamic and fluids simulation
dc.creator.fl_str_mv Borda Kuhlmann, Juan Pablo
dc.contributor.advisor.none.fl_str_mv González Mancera, Andrés Leónardo
dc.contributor.author.none.fl_str_mv Borda Kuhlmann, Juan Pablo
dc.subject.armarc.none.fl_str_mv Dinámica de fluidos computacional
Redes neuronales (Computadores)
topic Dinámica de fluidos computacional
Redes neuronales (Computadores)
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as comparison or reference data. The presented approach consists of a PINN implemented with the Deepxde package and trained to solve the Navier-Stokes equation in steady state around a submerged geometry. The algorithm used a dual optimization approach using Adam and L-BFGS and the performance for algorithms trained for different number of epochs was evaluated. The best performing algorithm resulted at 300 epochs of training and compared to the simulation the root mean square error for the x velocity component was (61.14 x 10-5 m/s), for the y velocity (9.44 x 10-5 m/s) and for the pressure (0.016 x 10-5 Pa). Compared to similar approaches these results display an acceptable prediction for the proposed problem. The results of the PINN presented in this paper, showcase the potential that such approaches have for all fields that rely on solving partial differential equations, if implemented correctly such tools could become companions to simulation tools such as CFD soon with gains in speed and lower computational power required.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-03T16:22:00Z
dc.date.available.none.fl_str_mv 2021-11-03T16:22:00Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/53423
dc.identifier.pdf.none.fl_str_mv 24382.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/53423
identifier_str_mv 24382.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 13 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3a953874-99bd-4fcd-9c3f-4c5040eb2935/download
https://repositorio.uniandes.edu.co/bitstreams/ea763d45-4b0b-49bf-af68-31eaa0d0266e/download
https://repositorio.uniandes.edu.co/bitstreams/31902107-0d14-405f-a1bb-4de500e666b6/download
bitstream.checksum.fl_str_mv 4316abda22486e60976b7546bc0526d0
8618a6f90f1bca5d2e5ed26a52c1d47a
902e27f27fe291c19e3ad698e9cf8c9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133831656865792
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leónardovirtual::2427-1Borda Kuhlmann, Juan Pablo9c4e4d6a-df04-4c59-9d64-f0b12b156ade5002021-11-03T16:22:00Z2021-11-03T16:22:00Z2021http://hdl.handle.net/1992/5342324382.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as comparison or reference data. The presented approach consists of a PINN implemented with the Deepxde package and trained to solve the Navier-Stokes equation in steady state around a submerged geometry. The algorithm used a dual optimization approach using Adam and L-BFGS and the performance for algorithms trained for different number of epochs was evaluated. The best performing algorithm resulted at 300 epochs of training and compared to the simulation the root mean square error for the x velocity component was (61.14 x 10-5 m/s), for the y velocity (9.44 x 10-5 m/s) and for the pressure (0.016 x 10-5 Pa). Compared to similar approaches these results display an acceptable prediction for the proposed problem. The results of the PINN presented in this paper, showcase the potential that such approaches have for all fields that rely on solving partial differential equations, if implemented correctly such tools could become companions to simulation tools such as CFD soon with gains in speed and lower computational power required.Se presenta una implementación de una red neuronal informada por la física (PINN) no impulsada por datos para la simulación del flujo de fluido en estado estacionario. Mediante el uso de redes neuronales convolucionales profundas, los campos de velocidad y presión se obtuvieron mediante el uso de simulaciones de dinámica de fluidos computacional (CFD) como datos de comparación o referencia. El enfoque presentado consiste en un PINN implementado con el paquete Deepxde y entrenado para resolver la ecuación de Navier-Stokes en estado estable alrededor de una geometría sumergida. El algoritmo utilizó un enfoque de optimización dual utilizando Adam y L-BFGS y se evaluó el rendimiento de los algoritmos entrenados para diferentes épocas. El algoritmo de mejor rendimiento resultó en 300 épocas de entrenamiento y, en comparación con la simulación, el error cuadrático medio para el componente de velocidad x fue (61,14 x 10-5 m / s), para la velocidad y (9,44 x 10-5 m / s ) y para la presión (0.016 x 10-5 Pa). En comparación con enfoques similares, estos resultados muestran una predicción aceptable para el problema propuesto. Los resultados del PINN presentados en este artículo, muestran el potencial que tienen tales enfoques para todos los campos que se basan en la resolución de ecuaciones diferenciales parciales, si se implementan correctamente, estas herramientas podrían convertirse pronto en compañeras de herramientas de simulación como CFD con ganancias en velocidad y menor potencia computacional requerida.Ingeniero MecánicoPregrado13 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaDevelopment of a physics-informed machine learning method for aerodynamic and fluids simulationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPDinámica de fluidos computacionalRedes neuronales (Computadores)Ingeniería201630649Publicationhttps://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::2427-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::2427-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::2427-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::2427-1THUMBNAIL24382.pdf.jpg24382.pdf.jpgIM Thumbnailimage/jpeg5804https://repositorio.uniandes.edu.co/bitstreams/3a953874-99bd-4fcd-9c3f-4c5040eb2935/download4316abda22486e60976b7546bc0526d0MD55ORIGINAL24382.pdfapplication/pdf878924https://repositorio.uniandes.edu.co/bitstreams/ea763d45-4b0b-49bf-af68-31eaa0d0266e/download8618a6f90f1bca5d2e5ed26a52c1d47aMD51TEXT24382.pdf.txt24382.pdf.txtExtracted texttext/plain38439https://repositorio.uniandes.edu.co/bitstreams/31902107-0d14-405f-a1bb-4de500e666b6/download902e27f27fe291c19e3ad698e9cf8c9eMD541992/53423oai:repositorio.uniandes.edu.co:1992/534232024-03-13 12:12:02.101https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co