Development of a physics-informed machine learning method for aerodynamic and fluids simulation
An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as compa...
- Autores:
-
Borda Kuhlmann, Juan Pablo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/53423
- Acceso en línea:
- http://hdl.handle.net/1992/53423
- Palabra clave:
- Dinámica de fluidos computacional
Redes neuronales (Computadores)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_f9d3a9e4bf2ab74554456dfc67c6b8f1 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/53423 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
title |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
spellingShingle |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation Dinámica de fluidos computacional Redes neuronales (Computadores) Ingeniería |
title_short |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
title_full |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
title_fullStr |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
title_full_unstemmed |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
title_sort |
Development of a physics-informed machine learning method for aerodynamic and fluids simulation |
dc.creator.fl_str_mv |
Borda Kuhlmann, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
González Mancera, Andrés Leónardo |
dc.contributor.author.none.fl_str_mv |
Borda Kuhlmann, Juan Pablo |
dc.subject.armarc.none.fl_str_mv |
Dinámica de fluidos computacional Redes neuronales (Computadores) |
topic |
Dinámica de fluidos computacional Redes neuronales (Computadores) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as comparison or reference data. The presented approach consists of a PINN implemented with the Deepxde package and trained to solve the Navier-Stokes equation in steady state around a submerged geometry. The algorithm used a dual optimization approach using Adam and L-BFGS and the performance for algorithms trained for different number of epochs was evaluated. The best performing algorithm resulted at 300 epochs of training and compared to the simulation the root mean square error for the x velocity component was (61.14 x 10-5 m/s), for the y velocity (9.44 x 10-5 m/s) and for the pressure (0.016 x 10-5 Pa). Compared to similar approaches these results display an acceptable prediction for the proposed problem. The results of the PINN presented in this paper, showcase the potential that such approaches have for all fields that rely on solving partial differential equations, if implemented correctly such tools could become companions to simulation tools such as CFD soon with gains in speed and lower computational power required. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-03T16:22:00Z |
dc.date.available.none.fl_str_mv |
2021-11-03T16:22:00Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/53423 |
dc.identifier.pdf.none.fl_str_mv |
24382.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/53423 |
identifier_str_mv |
24382.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
13 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Mecánica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/3a953874-99bd-4fcd-9c3f-4c5040eb2935/download https://repositorio.uniandes.edu.co/bitstreams/ea763d45-4b0b-49bf-af68-31eaa0d0266e/download https://repositorio.uniandes.edu.co/bitstreams/31902107-0d14-405f-a1bb-4de500e666b6/download |
bitstream.checksum.fl_str_mv |
4316abda22486e60976b7546bc0526d0 8618a6f90f1bca5d2e5ed26a52c1d47a 902e27f27fe291c19e3ad698e9cf8c9e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133831656865792 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leónardovirtual::2427-1Borda Kuhlmann, Juan Pablo9c4e4d6a-df04-4c59-9d64-f0b12b156ade5002021-11-03T16:22:00Z2021-11-03T16:22:00Z2021http://hdl.handle.net/1992/5342324382.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/An implementation of a non-data driven Physics Informed Neural Network (PINN) for simulation of steady state fluid flow is presented. Through the use of deep convolutional neural networks, the velocity and pressure fields were obtained by using computational fluid dynamics (CFD) simulations as comparison or reference data. The presented approach consists of a PINN implemented with the Deepxde package and trained to solve the Navier-Stokes equation in steady state around a submerged geometry. The algorithm used a dual optimization approach using Adam and L-BFGS and the performance for algorithms trained for different number of epochs was evaluated. The best performing algorithm resulted at 300 epochs of training and compared to the simulation the root mean square error for the x velocity component was (61.14 x 10-5 m/s), for the y velocity (9.44 x 10-5 m/s) and for the pressure (0.016 x 10-5 Pa). Compared to similar approaches these results display an acceptable prediction for the proposed problem. The results of the PINN presented in this paper, showcase the potential that such approaches have for all fields that rely on solving partial differential equations, if implemented correctly such tools could become companions to simulation tools such as CFD soon with gains in speed and lower computational power required.Se presenta una implementación de una red neuronal informada por la física (PINN) no impulsada por datos para la simulación del flujo de fluido en estado estacionario. Mediante el uso de redes neuronales convolucionales profundas, los campos de velocidad y presión se obtuvieron mediante el uso de simulaciones de dinámica de fluidos computacional (CFD) como datos de comparación o referencia. El enfoque presentado consiste en un PINN implementado con el paquete Deepxde y entrenado para resolver la ecuación de Navier-Stokes en estado estable alrededor de una geometría sumergida. El algoritmo utilizó un enfoque de optimización dual utilizando Adam y L-BFGS y se evaluó el rendimiento de los algoritmos entrenados para diferentes épocas. El algoritmo de mejor rendimiento resultó en 300 épocas de entrenamiento y, en comparación con la simulación, el error cuadrático medio para el componente de velocidad x fue (61,14 x 10-5 m / s), para la velocidad y (9,44 x 10-5 m / s ) y para la presión (0.016 x 10-5 Pa). En comparación con enfoques similares, estos resultados muestran una predicción aceptable para el problema propuesto. Los resultados del PINN presentados en este artículo, muestran el potencial que tienen tales enfoques para todos los campos que se basan en la resolución de ecuaciones diferenciales parciales, si se implementan correctamente, estas herramientas podrían convertirse pronto en compañeras de herramientas de simulación como CFD con ganancias en velocidad y menor potencia computacional requerida.Ingeniero MecánicoPregrado13 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaDevelopment of a physics-informed machine learning method for aerodynamic and fluids simulationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPDinámica de fluidos computacionalRedes neuronales (Computadores)Ingeniería201630649Publicationhttps://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::2427-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::2427-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::2427-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::2427-1THUMBNAIL24382.pdf.jpg24382.pdf.jpgIM Thumbnailimage/jpeg5804https://repositorio.uniandes.edu.co/bitstreams/3a953874-99bd-4fcd-9c3f-4c5040eb2935/download4316abda22486e60976b7546bc0526d0MD55ORIGINAL24382.pdfapplication/pdf878924https://repositorio.uniandes.edu.co/bitstreams/ea763d45-4b0b-49bf-af68-31eaa0d0266e/download8618a6f90f1bca5d2e5ed26a52c1d47aMD51TEXT24382.pdf.txt24382.pdf.txtExtracted texttext/plain38439https://repositorio.uniandes.edu.co/bitstreams/31902107-0d14-405f-a1bb-4de500e666b6/download902e27f27fe291c19e3ad698e9cf8c9eMD541992/53423oai:repositorio.uniandes.edu.co:1992/534232024-03-13 12:12:02.101https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |