System to measure the position and speed of fish in enclosed environments using image analysis

This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an inte...

Full description

Autores:
Hernández Vanegas, Rodrigo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74787
Acceso en línea:
https://hdl.handle.net/1992/74787
Palabra clave:
Convolutional neural network
Image segmentation
Poecilia reticulata
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_f93f26a90e8b0c1ba618ec583a09fe3b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74787
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv System to measure the position and speed of fish in enclosed environments using image analysis
title System to measure the position and speed of fish in enclosed environments using image analysis
spellingShingle System to measure the position and speed of fish in enclosed environments using image analysis
Convolutional neural network
Image segmentation
Poecilia reticulata
Ingeniería
title_short System to measure the position and speed of fish in enclosed environments using image analysis
title_full System to measure the position and speed of fish in enclosed environments using image analysis
title_fullStr System to measure the position and speed of fish in enclosed environments using image analysis
title_full_unstemmed System to measure the position and speed of fish in enclosed environments using image analysis
title_sort System to measure the position and speed of fish in enclosed environments using image analysis
dc.creator.fl_str_mv Hernández Vanegas, Rodrigo
dc.contributor.advisor.none.fl_str_mv Osma Cruz, Johann Faccelo
dc.contributor.author.none.fl_str_mv Hernández Vanegas, Rodrigo
dc.contributor.jury.none.fl_str_mv Sotelo Briceño, Diana Camila
dc.subject.keyword.eng.fl_str_mv Convolutional neural network
Image segmentation
Poecilia reticulata
topic Convolutional neural network
Image segmentation
Poecilia reticulata
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an interactive user interface for data visualization. Fish, particularly small species like guppy (Poecilia reticulata), serve as excellent models for neurobiological research due to their complex nervous systems and diverse behavioral responses to stimuli. Initial methods, such as optical flow and background subtraction, faced significant challenges due to environmental variations and fish movement. To address these issues, the YOLOv8 (You Only Look Once) convolutional neural network was utilized for its superior accuracy and robustness. The system achieved real-time tracking capabilities with inference speeds around 15 milliseconds per frame on a GPU. The user interface, developed using Flask, HTML, CSS, and JavaScript, effectively visualized the fish’s position and velocity data, allowing for comprehensive behavioral analysis. This system not only enhances tracking accuracy but also provides a reliable tool for neurobiological research, facilitating deeper insights into fish behavior and their responses to stimuli. Future work will focus on optimizing CPU performance and expanding the training dataset to improve the model’s accuracy and generalizability.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-30T15:42:46Z
dc.date.available.none.fl_str_mv 2024-07-30T15:42:46Z
dc.date.issued.none.fl_str_mv 2024-07-29
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74787
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74787
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/65976b5a-3287-4749-8b55-ecb06214a81c/download
https://repositorio.uniandes.edu.co/bitstreams/5f68c9ed-44e9-4b78-86a9-7e170d8032fe/download
https://repositorio.uniandes.edu.co/bitstreams/f9790e95-ae35-4c90-a2b3-d91ab46e2c69/download
https://repositorio.uniandes.edu.co/bitstreams/cbf85f1f-4c6c-4845-ab84-2d84701a677b/download
https://repositorio.uniandes.edu.co/bitstreams/b860e68e-3c3d-4e84-a798-cfcd3faad345/download
https://repositorio.uniandes.edu.co/bitstreams/50a2a893-28d8-4c1a-9342-d8e2b3fdec47/download
https://repositorio.uniandes.edu.co/bitstreams/6360afff-2acd-440b-aa94-3c47cb2b2a41/download
https://repositorio.uniandes.edu.co/bitstreams/5589c5b3-fb15-42e4-84e0-0332441eb4f4/download
bitstream.checksum.fl_str_mv 7c15747c7e14c74fcddf4e1c818ed97e
52a90abb794950b36149f32011386212
ae9e573a68e7f92501b6913cc846c39f
0175ea4a2d4caec4bbcc37e300941108
4ed08d7b9080883df9dee14b4941a26a
a08561ef1e8773cf6e4d7f34021d8535
3da5812d5146db2e6bef726ce27b3031
36c6df2a0188a51e8936b9e491a752da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133960179777536
spelling Osma Cruz, Johann Faccelovirtual::19351-1Hernández Vanegas, RodrigoSotelo Briceño, Diana Camila2024-07-30T15:42:46Z2024-07-30T15:42:46Z2024-07-29https://hdl.handle.net/1992/74787instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an interactive user interface for data visualization. Fish, particularly small species like guppy (Poecilia reticulata), serve as excellent models for neurobiological research due to their complex nervous systems and diverse behavioral responses to stimuli. Initial methods, such as optical flow and background subtraction, faced significant challenges due to environmental variations and fish movement. To address these issues, the YOLOv8 (You Only Look Once) convolutional neural network was utilized for its superior accuracy and robustness. The system achieved real-time tracking capabilities with inference speeds around 15 milliseconds per frame on a GPU. The user interface, developed using Flask, HTML, CSS, and JavaScript, effectively visualized the fish’s position and velocity data, allowing for comprehensive behavioral analysis. This system not only enhances tracking accuracy but also provides a reliable tool for neurobiological research, facilitating deeper insights into fish behavior and their responses to stimuli. Future work will focus on optimizing CPU performance and expanding the training dataset to improve the model’s accuracy and generalizability.PregradoMachine Learning12 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2System to measure the position and speed of fish in enclosed environments using image analysisTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPConvolutional neural networkImage segmentationPoecilia reticulataIngeniería201729698Publicationhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJvirtual::19351-1https://scholar.google.es/citations?user=6QQ-dqMAAAAJhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJ0000-0003-2928-3406virtual::19351-10000-0003-2928-34060000-0003-2928-3406https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112virtual::19351-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::19351-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::19351-1a9f6ef37-65d7-4484-be71-8f3b4067a8faa9f6ef37-65d7-4484-be71-8f3b4067a8faORIGINALSystem to measure the position and speed of fish in enclosed environments using image analysis.pdfSystem to measure the position and speed of fish in enclosed environments using image analysis.pdfapplication/pdf2388237https://repositorio.uniandes.edu.co/bitstreams/65976b5a-3287-4749-8b55-ecb06214a81c/download7c15747c7e14c74fcddf4e1c818ed97eMD51autorizacion_tesis_IELE.pdfautorizacion_tesis_IELE.pdfHIDEapplication/pdf353548https://repositorio.uniandes.edu.co/bitstreams/5f68c9ed-44e9-4b78-86a9-7e170d8032fe/download52a90abb794950b36149f32011386212MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f9790e95-ae35-4c90-a2b3-d91ab46e2c69/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/cbf85f1f-4c6c-4845-ab84-2d84701a677b/download0175ea4a2d4caec4bbcc37e300941108MD55TEXTSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.txtSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.txtExtracted texttext/plain37577https://repositorio.uniandes.edu.co/bitstreams/b860e68e-3c3d-4e84-a798-cfcd3faad345/download4ed08d7b9080883df9dee14b4941a26aMD56autorizacion_tesis_IELE.pdf.txtautorizacion_tesis_IELE.pdf.txtExtracted texttext/plain2008https://repositorio.uniandes.edu.co/bitstreams/50a2a893-28d8-4c1a-9342-d8e2b3fdec47/downloada08561ef1e8773cf6e4d7f34021d8535MD58THUMBNAILSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.jpgSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.jpgGenerated Thumbnailimage/jpeg13900https://repositorio.uniandes.edu.co/bitstreams/6360afff-2acd-440b-aa94-3c47cb2b2a41/download3da5812d5146db2e6bef726ce27b3031MD57autorizacion_tesis_IELE.pdf.jpgautorizacion_tesis_IELE.pdf.jpgGenerated Thumbnailimage/jpeg10851https://repositorio.uniandes.edu.co/bitstreams/5589c5b3-fb15-42e4-84e0-0332441eb4f4/download36c6df2a0188a51e8936b9e491a752daMD591992/74787oai:repositorio.uniandes.edu.co:1992/747872024-09-12 16:21:06.537http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K