System to measure the position and speed of fish in enclosed environments using image analysis
This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an inte...
- Autores:
-
Hernández Vanegas, Rodrigo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74787
- Acceso en línea:
- https://hdl.handle.net/1992/74787
- Palabra clave:
- Convolutional neural network
Image segmentation
Poecilia reticulata
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_f93f26a90e8b0c1ba618ec583a09fe3b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74787 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
System to measure the position and speed of fish in enclosed environments using image analysis |
title |
System to measure the position and speed of fish in enclosed environments using image analysis |
spellingShingle |
System to measure the position and speed of fish in enclosed environments using image analysis Convolutional neural network Image segmentation Poecilia reticulata Ingeniería |
title_short |
System to measure the position and speed of fish in enclosed environments using image analysis |
title_full |
System to measure the position and speed of fish in enclosed environments using image analysis |
title_fullStr |
System to measure the position and speed of fish in enclosed environments using image analysis |
title_full_unstemmed |
System to measure the position and speed of fish in enclosed environments using image analysis |
title_sort |
System to measure the position and speed of fish in enclosed environments using image analysis |
dc.creator.fl_str_mv |
Hernández Vanegas, Rodrigo |
dc.contributor.advisor.none.fl_str_mv |
Osma Cruz, Johann Faccelo |
dc.contributor.author.none.fl_str_mv |
Hernández Vanegas, Rodrigo |
dc.contributor.jury.none.fl_str_mv |
Sotelo Briceño, Diana Camila |
dc.subject.keyword.eng.fl_str_mv |
Convolutional neural network Image segmentation Poecilia reticulata |
topic |
Convolutional neural network Image segmentation Poecilia reticulata Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an interactive user interface for data visualization. Fish, particularly small species like guppy (Poecilia reticulata), serve as excellent models for neurobiological research due to their complex nervous systems and diverse behavioral responses to stimuli. Initial methods, such as optical flow and background subtraction, faced significant challenges due to environmental variations and fish movement. To address these issues, the YOLOv8 (You Only Look Once) convolutional neural network was utilized for its superior accuracy and robustness. The system achieved real-time tracking capabilities with inference speeds around 15 milliseconds per frame on a GPU. The user interface, developed using Flask, HTML, CSS, and JavaScript, effectively visualized the fish’s position and velocity data, allowing for comprehensive behavioral analysis. This system not only enhances tracking accuracy but also provides a reliable tool for neurobiological research, facilitating deeper insights into fish behavior and their responses to stimuli. Future work will focus on optimizing CPU performance and expanding the training dataset to improve the model’s accuracy and generalizability. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-30T15:42:46Z |
dc.date.available.none.fl_str_mv |
2024-07-30T15:42:46Z |
dc.date.issued.none.fl_str_mv |
2024-07-29 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74787 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74787 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/65976b5a-3287-4749-8b55-ecb06214a81c/download https://repositorio.uniandes.edu.co/bitstreams/5f68c9ed-44e9-4b78-86a9-7e170d8032fe/download https://repositorio.uniandes.edu.co/bitstreams/f9790e95-ae35-4c90-a2b3-d91ab46e2c69/download https://repositorio.uniandes.edu.co/bitstreams/cbf85f1f-4c6c-4845-ab84-2d84701a677b/download https://repositorio.uniandes.edu.co/bitstreams/b860e68e-3c3d-4e84-a798-cfcd3faad345/download https://repositorio.uniandes.edu.co/bitstreams/50a2a893-28d8-4c1a-9342-d8e2b3fdec47/download https://repositorio.uniandes.edu.co/bitstreams/6360afff-2acd-440b-aa94-3c47cb2b2a41/download https://repositorio.uniandes.edu.co/bitstreams/5589c5b3-fb15-42e4-84e0-0332441eb4f4/download |
bitstream.checksum.fl_str_mv |
7c15747c7e14c74fcddf4e1c818ed97e 52a90abb794950b36149f32011386212 ae9e573a68e7f92501b6913cc846c39f 0175ea4a2d4caec4bbcc37e300941108 4ed08d7b9080883df9dee14b4941a26a a08561ef1e8773cf6e4d7f34021d8535 3da5812d5146db2e6bef726ce27b3031 36c6df2a0188a51e8936b9e491a752da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133960179777536 |
spelling |
Osma Cruz, Johann Faccelovirtual::19351-1Hernández Vanegas, RodrigoSotelo Briceño, Diana Camila2024-07-30T15:42:46Z2024-07-30T15:42:46Z2024-07-29https://hdl.handle.net/1992/74787instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This study presents the development of a robust system for real-time tracking of guppy fish in closed environments using advanced image segmentation techniques. The primary objectives were to implement precise image segmentation, employ continuous and accurate tracking algorithms, and design an interactive user interface for data visualization. Fish, particularly small species like guppy (Poecilia reticulata), serve as excellent models for neurobiological research due to their complex nervous systems and diverse behavioral responses to stimuli. Initial methods, such as optical flow and background subtraction, faced significant challenges due to environmental variations and fish movement. To address these issues, the YOLOv8 (You Only Look Once) convolutional neural network was utilized for its superior accuracy and robustness. The system achieved real-time tracking capabilities with inference speeds around 15 milliseconds per frame on a GPU. The user interface, developed using Flask, HTML, CSS, and JavaScript, effectively visualized the fish’s position and velocity data, allowing for comprehensive behavioral analysis. This system not only enhances tracking accuracy but also provides a reliable tool for neurobiological research, facilitating deeper insights into fish behavior and their responses to stimuli. Future work will focus on optimizing CPU performance and expanding the training dataset to improve the model’s accuracy and generalizability.PregradoMachine Learning12 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2System to measure the position and speed of fish in enclosed environments using image analysisTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPConvolutional neural networkImage segmentationPoecilia reticulataIngeniería201729698Publicationhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJvirtual::19351-1https://scholar.google.es/citations?user=6QQ-dqMAAAAJhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJ0000-0003-2928-3406virtual::19351-10000-0003-2928-34060000-0003-2928-3406https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112virtual::19351-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::19351-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::19351-1a9f6ef37-65d7-4484-be71-8f3b4067a8faa9f6ef37-65d7-4484-be71-8f3b4067a8faORIGINALSystem to measure the position and speed of fish in enclosed environments using image analysis.pdfSystem to measure the position and speed of fish in enclosed environments using image analysis.pdfapplication/pdf2388237https://repositorio.uniandes.edu.co/bitstreams/65976b5a-3287-4749-8b55-ecb06214a81c/download7c15747c7e14c74fcddf4e1c818ed97eMD51autorizacion_tesis_IELE.pdfautorizacion_tesis_IELE.pdfHIDEapplication/pdf353548https://repositorio.uniandes.edu.co/bitstreams/5f68c9ed-44e9-4b78-86a9-7e170d8032fe/download52a90abb794950b36149f32011386212MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f9790e95-ae35-4c90-a2b3-d91ab46e2c69/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/cbf85f1f-4c6c-4845-ab84-2d84701a677b/download0175ea4a2d4caec4bbcc37e300941108MD55TEXTSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.txtSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.txtExtracted texttext/plain37577https://repositorio.uniandes.edu.co/bitstreams/b860e68e-3c3d-4e84-a798-cfcd3faad345/download4ed08d7b9080883df9dee14b4941a26aMD56autorizacion_tesis_IELE.pdf.txtautorizacion_tesis_IELE.pdf.txtExtracted texttext/plain2008https://repositorio.uniandes.edu.co/bitstreams/50a2a893-28d8-4c1a-9342-d8e2b3fdec47/downloada08561ef1e8773cf6e4d7f34021d8535MD58THUMBNAILSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.jpgSystem to measure the position and speed of fish in enclosed environments using image analysis.pdf.jpgGenerated Thumbnailimage/jpeg13900https://repositorio.uniandes.edu.co/bitstreams/6360afff-2acd-440b-aa94-3c47cb2b2a41/download3da5812d5146db2e6bef726ce27b3031MD57autorizacion_tesis_IELE.pdf.jpgautorizacion_tesis_IELE.pdf.jpgGenerated Thumbnailimage/jpeg10851https://repositorio.uniandes.edu.co/bitstreams/5589c5b3-fb15-42e4-84e0-0332441eb4f4/download36c6df2a0188a51e8936b9e491a752daMD591992/74787oai:repositorio.uniandes.edu.co:1992/747872024-09-12 16:21:06.537http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |