Semidefinite relaxations for copositive optimization
Linear optimization over the copositive cone C*, (i.e. the cone of quadratic forms which are nonnegative on the positive orthant) has applications in polynomial optimization, graph theory and data analysis. Although convex, this problem is unfortunately not tractable. In this work we study two neste...
- Autores:
-
Camelo Gómez, Sergio Armando
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/13572
- Acceso en línea:
- http://hdl.handle.net/1992/13572
- Palabra clave:
- Optimización matemática - Investigaciones
Teoría de grafos - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_f67834beeca33c198eedf1a5fdeed10a |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/13572 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velasco Gregory, Mauricio Fernando7444a9c4-bd1b-4d73-9cce-a9276e474d20500Peña Briceño, Javier Francisco1567861b-d366-421f-8d04-2c24565c9916500Camelo Gómez, Sergio Armandoca3655e6-c679-44e5-a9b4-b255a1f774ce500Junca Peláez, Mauricio José2018-09-28T10:43:45Z2018-09-28T10:43:45Z2016http://hdl.handle.net/1992/13572u728559.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Linear optimization over the copositive cone C*, (i.e. the cone of quadratic forms which are nonnegative on the positive orthant) has applications in polynomial optimization, graph theory and data analysis. Although convex, this problem is unfortunately not tractable. In this work we study two nested sequences of spectrahedral cones that approximate C*. One formulated by Barvinok, Veomett and Laserre {BVLn}n?N and the other proposed by Parrilo {SOSn}n?N. Since these approximations are one from above and one from below, they can be used to cal- culate upper and lower bounds on the solution of copositive programs efficiently. This proves particularly useful in bounding the independence number of a graph ?(G). In this case, the fact that ?(G) is an integer means the lower and upper bounds need not meet to find the optimal value of the problem. This work is divided in four parts, first, we give a comprehensive description of the geometry of the copositive cone, second, we describe its semidefinite approximations, third, we survey the applications of copositive programming, fourth, we give new results on the BVL hierarchy when applied to calculating lower bounds of ?(G), propose an algorithm for obtaining large independence sets on G, and evaluate its empirical performance on Hamming and DeBruijn graphs.Magíster en MatemáticasMaestría64 hojasapplication/pdfspaUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:SénecaSemidefinite relaxations for copositive optimizationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMOptimización matemática - InvestigacionesTeoría de grafos - InvestigacionesMatemáticasPublicationTEXTu728559.pdf.txtu728559.pdf.txtExtracted texttext/plain129857https://repositorio.uniandes.edu.co/bitstreams/b48ba455-f568-4a6e-ad49-9f9ed1246cde/downloadddf360f12e84a9b8319526f648350988MD54ORIGINALu728559.pdfapplication/pdf489642https://repositorio.uniandes.edu.co/bitstreams/f9ba20dc-1264-4a3a-af0c-8e387b70daca/downloadfe945fcb233cfc13e311a4a67c89f65cMD51THUMBNAILu728559.pdf.jpgu728559.pdf.jpgIM Thumbnailimage/jpeg9832https://repositorio.uniandes.edu.co/bitstreams/0c2c9a6e-8b7b-4fe0-aff4-e66ef9c2a1f7/download75d1aa926016a641a21322959f363723MD551992/13572oai:repositorio.uniandes.edu.co:1992/135722023-10-10 15:55:54.107http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Semidefinite relaxations for copositive optimization |
title |
Semidefinite relaxations for copositive optimization |
spellingShingle |
Semidefinite relaxations for copositive optimization Optimización matemática - Investigaciones Teoría de grafos - Investigaciones Matemáticas |
title_short |
Semidefinite relaxations for copositive optimization |
title_full |
Semidefinite relaxations for copositive optimization |
title_fullStr |
Semidefinite relaxations for copositive optimization |
title_full_unstemmed |
Semidefinite relaxations for copositive optimization |
title_sort |
Semidefinite relaxations for copositive optimization |
dc.creator.fl_str_mv |
Camelo Gómez, Sergio Armando |
dc.contributor.advisor.none.fl_str_mv |
Velasco Gregory, Mauricio Fernando Peña Briceño, Javier Francisco |
dc.contributor.author.none.fl_str_mv |
Camelo Gómez, Sergio Armando |
dc.contributor.jury.none.fl_str_mv |
Junca Peláez, Mauricio José |
dc.subject.keyword.es_CO.fl_str_mv |
Optimización matemática - Investigaciones Teoría de grafos - Investigaciones |
topic |
Optimización matemática - Investigaciones Teoría de grafos - Investigaciones Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Linear optimization over the copositive cone C*, (i.e. the cone of quadratic forms which are nonnegative on the positive orthant) has applications in polynomial optimization, graph theory and data analysis. Although convex, this problem is unfortunately not tractable. In this work we study two nested sequences of spectrahedral cones that approximate C*. One formulated by Barvinok, Veomett and Laserre {BVLn}n?N and the other proposed by Parrilo {SOSn}n?N. Since these approximations are one from above and one from below, they can be used to cal- culate upper and lower bounds on the solution of copositive programs efficiently. This proves particularly useful in bounding the independence number of a graph ?(G). In this case, the fact that ?(G) is an integer means the lower and upper bounds need not meet to find the optimal value of the problem. This work is divided in four parts, first, we give a comprehensive description of the geometry of the copositive cone, second, we describe its semidefinite approximations, third, we survey the applications of copositive programming, fourth, we give new results on the BVL hierarchy when applied to calculating lower bounds of ?(G), propose an algorithm for obtaining large independence sets on G, and evaluate its empirical performance on Hamming and DeBruijn graphs. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-09-28T10:43:45Z |
dc.date.available.none.fl_str_mv |
2018-09-28T10:43:45Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/13572 |
dc.identifier.pdf.none.fl_str_mv |
u728559.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/13572 |
identifier_str_mv |
u728559.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
64 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Uniandes |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Séneca |
collection |
Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/b48ba455-f568-4a6e-ad49-9f9ed1246cde/download https://repositorio.uniandes.edu.co/bitstreams/f9ba20dc-1264-4a3a-af0c-8e387b70daca/download https://repositorio.uniandes.edu.co/bitstreams/0c2c9a6e-8b7b-4fe0-aff4-e66ef9c2a1f7/download |
bitstream.checksum.fl_str_mv |
ddf360f12e84a9b8319526f648350988 fe945fcb233cfc13e311a4a67c89f65c 75d1aa926016a641a21322959f363723 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111728835100672 |