Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico

Este documento presenta los resultados experimentales más relevantes de la investigación realizada en el Laboratorio de Síntesis Orgánica, Bio y Organocatálisis del Departamento de Química de la Universidad de los Andes bajo la dirección del Dr. Diego Alexander Gamba Sánchez como tesis doctoral, cuy...

Full description

Autores:
Mahecha Mahecha, Camilo Andres
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/59375
Acceso en línea:
http://hdl.handle.net/1992/59375
Palabra clave:
2-alquilbenzofuranos
Antraceno
Moduladores de canales de potasio
Fenantreno
Reducción de sulfóxidos
Química
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_f4247ba3f0caeeff1322c981502abbba
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/59375
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
title Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
spellingShingle Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
2-alquilbenzofuranos
Antraceno
Moduladores de canales de potasio
Fenantreno
Reducción de sulfóxidos
Química
title_short Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
title_full Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
title_fullStr Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
title_full_unstemmed Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
title_sort Síntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológico
dc.creator.fl_str_mv Mahecha Mahecha, Camilo Andres
dc.contributor.advisor.none.fl_str_mv Gamba Sánchez, Diego Alexander
dc.contributor.author.none.fl_str_mv Mahecha Mahecha, Camilo Andres
dc.contributor.jury.none.fl_str_mv Portilla Salinas, Jaime Antonio
Abonía González, Rodrigo
Quiroga Daza, Diego Enrique
Ramírez Sánchez, David Mauricio
Pérez, Edwin G.
dc.contributor.researchgroup.es_CO.fl_str_mv Laboratorio de síntesis orgánica bio y organocatálisis
dc.subject.keyword.none.fl_str_mv 2-alquilbenzofuranos
Antraceno
Moduladores de canales de potasio
Fenantreno
Reducción de sulfóxidos
topic 2-alquilbenzofuranos
Antraceno
Moduladores de canales de potasio
Fenantreno
Reducción de sulfóxidos
Química
dc.subject.themes.es_CO.fl_str_mv Química
description Este documento presenta los resultados experimentales más relevantes de la investigación realizada en el Laboratorio de Síntesis Orgánica, Bio y Organocatálisis del Departamento de Química de la Universidad de los Andes bajo la dirección del Dr. Diego Alexander Gamba Sánchez como tesis doctoral, cuyo objetivo general fue la síntesis de derivados de tipo 2-bencilbenzofurano, y algunos derivados de naftaleno y fenantreno que se caracterizan por tener actividad frente a canales de potasio TASK-3, considerados como oncogenes presentes en diferentes tipos de células cancerígenas . El documento se ha dividido en 5 capítulos; el primero de ellos describe la importancia de los canales de potasio TASK-3, las consideraciones tenidas en cuenta para el diseño de las moléculas objetivo, y el planteamiento general de la estrategia sintética propuesta. En el segundo capítulo se presentan inicialmente las principales metodologías existentes para la síntesis de 2-alquilbenzofuranos, continuando con los resultados obtenidos tras la aplicación de la ruta de síntesis planteada para esta investigación, así como propuestas alternativas encaminadas hacia la obtención enantioselectiva de los productos en cuestión y sus respectivos resultados. El tercer capítulo aborda los resultados obtenidos en conjunto con el grupo del profesor Sebastien Thiabudeau de la Universidad de Poitiers. En este se planteó el desarrollo de una ruta sintética para la obtención de unos precursores sobre los cuales se evaluó una reacción de ciclación que dio lugar a la generación de derivados de naftaleno y fenantreno. En el cuarto capítulo se retoman los resultados parciales de la aplicación de la reacción de Pummerer como estrategia de ciclación para la obtención del núcleo benzofuránico; a partir de dichas observaciones se diseñó y desarrolló una metodología enfocada hacia la reducción de sulfóxidos con un amplio campo de acción. Finalmente, la última sección corresponde a la parte experimental del trabajo, incluyendo una descripción de los procedimientos empleados y la información correspondiente a la caracterización de los productos sintetizados.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-29T19:48:25Z
dc.date.available.none.fl_str_mv 2022-07-29T19:48:25Z
dc.date.issued.none.fl_str_mv 2022-07-22
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/59375
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/59375
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv 1. Doyle Declan, A.; Cabral João, M.; Pfuetzner Richard, A.; Kuo, A.; Gulbis Jacqueline, M.; Cohen Steven, L.; Chait Brian, T.; MacKinnon, R., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science. 1998, 280 (5360), 69-77.
2. Meadows, H. J.; Randall, A. D., Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology. 2001, 40 (4), 551-559.
3. Bardou, O.; Thu, N.; Trinh, N.; Brochiero, E., Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296 (2), 145-155.
4. Mathie, A.; Veale, In Encyclopedia of Neuroscience, 2009; pp 2792-2797.
5. Coetzee, W. A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; McCormack, T. O. M.; Morena, H.; Nadal, M. S.; Ozaita, A.; Pountney, D.; Saganich, M.; De Miera, E. V.-S.; Rudy, B., Molecular Diversity of K+ Channels. Ann. N. Y. Acad. Sci. 1999, 868 (1), 233-255.
6. Talley, E. M.; Bayliss, D. A., Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 2002, 277 (20), 17733-17742.
7. Mu, D.; Chen, L.; Zhang, X.; See, L.-H.; Koch, C. M.; Yen, C.; Tong, J. J.; Spiegel, L.; Nguyen, K. C. Q.; Servoss, A.; Peng, Y.; Pei, L.; Marks, J. R.; Lowe, S.; Hoey, T.; Jan, L. Y.; McCombie, W. R.; Wigler, M. H.; Powers, S., Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003, 3 (3), 297-302.
8. Innamaa, A.; Jackson, L.; Asher, V.; Van Schalkwyk, G.; Warren, A.; Keightley, A.; Hay, D.; Bali, A.; Sowter, H.; Khan, R., Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Am. J. Clin. 2013, 15 (11), 910-918.
9. Zúñiga, R.; Concha, G.; Cayo, A.; Cikutovic-Molina, R.; Arevalo, B.; González, W.; Catalán, M. A.; Zúñiga, L., Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed. Pharmacother. 2020, 129, 110383.
10. Pocsai, K.; Kosztka, L.; Bakondi, G.; Gönczi, M.; Fodor, J.; Dienes, B.; Szentesi, P.; Kovács, I.; Feniger-Barish, R.; Kopf, E.; Zharhary, D.; Szucs, G.; Csernoch, L.; Rusznák, Z., Melanoma cells exhibit strong intracellular TASK-3-specific immunopositivity in both tissue sections and cell culture. Cell Mol Life Sci. 2006, 63 (19-20), 2364-2376.
11. Philip, B.; Ito, K.; Moreno-Sánchez, R.; Ralph, S. J., HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis. 2013, 34 (8), 1699-1707.
12. Bertout, J. A.; Patel, S. A.; Simon, M. C., The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008, 8 (12), 967-75.
13. Cikutovíc-Molina, R.; Herrada, A. A.; González, W.; Brown, N.; Zúñiga, L., TASK-3 gene knockdown dampens invasion and migration and promotes apoptosis in KATO III and MKN-45 human gastric adenocarcinoma cell lines. Int. J. Mol. Sci. 2019, 20 (23), 6077.
14. Toczylowska-Maminska, R.; Olszewska, A.; Laskowski, M.; Bednarczyk, P.; Skowronek, K.; Szewczyk, A., Potassium channel in the mitochondria of human keratinocytes. JID. 2014, 134 (3), 764-772.
15. Rusznák, Z.; Bakondi, G.; Kosztka, L.; Pocsai, K.; Dienes, B.; Fodor, J.; Telek, A.; Gönczi, M.; Szucs, G.; Csernoch, L., Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Archiv. 2008, 452 (4), 415-426.
16. Pei, L.; Wiser, O.; Slavin, A.; Mu, D.; Powers, S.; Jan, L. Y.; Hoey, T., Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A. 2003, 100 (13), 7803-7807.
17. Cunningham, K. P.; MacIntyre, D. E.; Mathie, A.; Veale, E. L., Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) Acta Physiol. Scand. 2020, 228 (2).
18. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur J Pharmacol. 2014, 740, 603-603.
19. Cotten, J. F., TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth Analg 2013, 116 (4), 810-816.
20. Czirják, G.; Enyedi, P., Ruthenium Red Inhibits TASK-3 Potassium Channel by Interconnecting Glutamate 70 of the Two Subunits. Mol. Pharmacol. 2003, 63 (3), 646.
21. Piechotta, P. L.; Rapedius, M.; Stansfeld, P. J.; Bollepalli, M. K.; Erhlich, G.; Andres-Enguix, I.; Fritzenschaft, H.; Decher, N.; Sansom, M. S. P.; Tucker, S. J.; Baukrowitz, T., The pore structure and gating mechanism of K2P channels. EMBO J. 2011, 30 (17), 3607-3619.
22. Concha, G.; Bustos, D.; Zúñiga, R.; Catalán, M. A.; Zúñiga, L., The Insensitivity of TASK-3 K2P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. Int. J. Mol. Sci. 2018, 19 (8), 2437.
23. Huang, X.; Jan, L. Y., Targeting potassium channels in cancer. J Cell Biol. 2014, 206 (2), 151-162.
24. Ramírez, D.; Concha, G.; Arévalo, B.; Prent-Peñaloza, L.; Zúñiga, L.; Kiper, A. K.; Rinné, S.; Reyes-Parada, M.; Decher, N.; González, W.; Caballero, J., Discovery of novel TASK-3 channel blockers using a pharmacophore-based virtual screening. Int. J. Mol. Sci. 2019, 20 (16), 4014.
25. Fiser, A.; Sali, A., Modeller: Generation and Refinement of Homology-Based Protein Structure Models. In Methods in Enzymology, AP. 2003; Vol. 374, pp 461-491.
26. Brohawn, S. G.; del Mármol, J.; MacKinnon, R., Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science (New York, N.Y.) 2012, 335 (6067), 436-441.
27. Coburn, C. A.; Luo, Y.; Cui, M.; Wang, J.; Soll, R.; Dong, J.; Hu, B.; Lyon, M. A.; Santarelli, V. P.; Kraus, R. L.; Gregan, Y.; Wang, Y.; Fox, S. V.; Binns, J.; Doran, S. M.; Reiss, D. R.; Tannenbaum, P. L.; Gotter, A. L.; Meinke, P. T.; Renger, J. J., Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K 2P9.1 (TASK-3). ChemMedChem. 2012, 7 (1), 123-133.
28. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur. J. Pharmacol. 2014, 740, 603-610.
29. Sandhu, M. S.; Lee, K. Z.; Gonzalez-Rothi, E. J.; Fuller, D. D., Repeated intravenous doxapram induces phrenic motor facilitation. Exp. Neurol. 2013, 250, 108-115.
30. Dixon, S. L.; Smondyrev, A. M.; Rao, S. N., PHASE: A novel approach to pharmacophore modeling and 3D database searching. In Chem Biol Drug Des, 2006; 67, 370-372.
31. Hughes, J. P.; Rees, S. S.; Kalindjian, S. B.; Philpott, K. L., Principles of early drug discovery. Br. J. Pharmacol. 2011, 162 (6), 1239-1249.
32. Horton, D. A.; Bourne, G. T.; Smythe, M. L., The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev. 2003, 103 (3), 893-930.
33. Rangaswamy, J.; Vijay Kumar, H.; Harini, S. T.; Naik, N., Synthesis of benzofuran based 1,3,5-substituted pyrazole derivatives: As a new class of potent antioxidants and antimicrobials-A novel accost to amend biocompatibility. Bioorg. Med. Chem. Lett. 2012,22 (14), 4773-4777.
34. More, K. R., Review on Synthetic Routes for Synthesis of Benzofuran-Based Compounds. J. chem. pharm. 2007, 9 (5), 210-220.
35. Kim, K. O.; Tae, J., Synthesis of 2,3-Disubstituted benzofurans from ortho-acylphenols. Synthesis. 2005, 2005, 387-390.
36. Enholm, E. J.; Prasad, G., Tributyltin hydride-induced O-stannyl ketyls in the cyclization of aldehydes and ketones with alkenes. Tetrahedron Lett. 1989, 30 (37), 4939-4942.
37. Fang, Y.; Li, C., O-Arylation versus C-Arylation: Copper-Catalyzed Intramolecular Coupling of Aryl Bromides with 1,3-Dicarbonyls. J. Org. Chem. 2006, 71 (17), 6427-6431.
38. Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M., Cascade Reactions: Sequential Homobimetallic Catalysis Leading to Benzofurans and Unsaturated Esters. ASC. 2006, 348, 1101-1109.
39. Hofbeck, T.; Yersin, H., The Triplet State of fac-Ir(ppy)3. Inorg. 2010, 49 (20), 9290-9299.
40. Ramella, V.; He, Z.; Daniliuc, C. G.; Studer, A., Palladium-Catalyzed Dearomatizing Difunctionalization of Indoles and Benzofurans. Eur. J. Org. Chem. 2016, 2016 (13), 2268-2273.
41. Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. C., Nickel-catalyzed direct alkylation of heterocycles with ±-bromo carbonyl compounds: C3-selective functionalization of 2-pyridones. Chemistry - Chem. Eur. J. 2013, 19 (24), 7691-7695.
42. Yamane, Y.; Yoshinaga, K.; Sumimoto, M.; Nishikata, T., Iron-Enhanced Reactivity of Radicals Enables C-H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catal. 2019, 9 (3), 1757-1762.
43. Tian, W.; Li, B.; Tian, D.; Tang, W., Regioselective 2-alkylation of indoles with a-bromo esters catalyzed by Pd/P,P=O system. Chin. Chem. Lett. 2022, 33 (1), 197-200.
44. Chakravarty, M.; Kumara Swamy, K. C., Palladium-Catalyzed Coupling of Allenylphosphonates, Phenylallenes, and Allenyl Esters: Remarkable Salt Effect and Routes to Novel Benzofurans and Isocoumarins. J. Org. Chem. 2006, 71 (24), 9128-9138.
45. Katritzky, A. R.; Fali, C. N.; Li, J., General Synthesis of Polysubstituted Benzo[b]furans. J. Org. Chem. 1997, 62 (23), 8205-8209.
46. Mandali, P. K.; Chand, D. K., Palladium Nanoparticles Catalyzed Synthesis of Benzofurans by a Domino Approach. Synthesis. 2015, 47 (11), 1661-1668.
47. Yang, O.-K.; Kim, J.-E.; Park, H. J., Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions. BKCS. 2013, 34 (9), 2645-2649.
48. Cano, R.; Yus, M.; Ramón, D. J., Impregnated copper or palladium-copper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: a straightforward synthesis of benzo[b]furans and indoles. Tetrahedron Lett. 2012, 68 (5), 1393-1400.
49. Banerjee, T. S.; Paul, S.; Sinha, S.; Das, S., Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties. Bioorg. Med. Chem. 2014, 22 (21), 6062-6070.
50. Gu, Z.-S.; Zhou, A.-n.; Xiao, Y.; Zhang, Q.-W.; Li, J.-Q., Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Eur. J. Med. Chem. 2018, 144, 701-715.
51. Wagner, R. B.; Tome, J. M., Derivatives of Benzofuran. J. Am. Chem. Soc. 1950, 72 (8), 3477-3478.
52. Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B., Photocarboxylation of Benzylic C-H Bonds. J. Am. Chem. Soc. 2019, 141 (29), 11393-11397.
53. Ghosh, S.; Das, J.; Saikh, F., A new synthesis of 2-aryl/alkylbenzofurans by visible light stimulated intermolecular Sonogashira coupling and cyclization reaction in water. Tetrahedron Lett. 2012, 53 (44), 5883-5886.
54. Liu, J.; Zhou, X.; Wang, C.; Fu, W.; Chu, W.; Sun, Z., Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. ChemComms. 2016, 52 (29), 5152-5155.
55. Vondervoort, L. S.-v. d.; Bouttemy, S.; Padrón, J. M.; Bras, J. L.; Muzart, J.; Alsters, P. L., Chromium Catalyzed Oxidation of (Homo-)Allylic and (Homo-)Propargylic Alcohols with Sodium Periodate to Ketones or Carboxylic Acids. ChemInform. 2002, 33, 243-246.
56. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient Synthesis of B2-Amino Acid by Homologation of a-Amino Acids Involving the Reformatsky Reaction and Mannich-Type Imminium Electrophile. J. Org. Chem. 2006, 71 (8), 3332-3334.
57. Fischer, E.; Speier, A., Darstellung der Ester. Ber. Dtsch. Chem. Ges 1895, 28 (3), 3252-3258.
58. Sheehan, J. C.; Hess, G. P., A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 1955, 77 (4), 1067-1068.
59. Pagoti, S.; Dutta, D.; Dash, J., A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1,3-Dipolar Cycloadditions. ASC. 2013,355 (18), 3532-3538.
60. Martínez, C.; Aurrecoechea, J. M.; Madich, Y.; Denis, J. G.; de Lera, A. R.; Álvarez, R., Synthesis of Tetrahydrodibenzofuran and Tetrahydrophenanthridinone Skeletons by Intramolecular Nucleopalladation/ Oxidative Heck Cascades. Eur. J. Org. Chem. 2012, 2012 (1), 99-106.
61. Chinchilla, R.; Nájera, C., The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107 (3), 874-922.
62. Jutand, A.; Négri, S.; Principaud, A., Formation of ArPdXL(amine) Complexes by Substitution of One Phosphane Ligand by an Amine in trans-ArPdX(PPh3)2 Complexes. Eur. J. Inorg. Chem. 2005, 2005 (4), 631-635.
63. Snider, B. B.; Spindell, D. K., Lewis acid catalyzed [2 + 2] cycloaddition of methyl 2,3-butadienoate to alkenes. J. Org. Chem. 1980, 45 (25), 5017-5020.
64. Crombie, L.; Jenkins, P. A.; Mitchard, D. A., Heterogeneous catalytic hydrogenation of allenes over supported palladium: selectivity, stereoselectivity, and regioselectivity. J. Chem. Soc., Perkin Trans. 1 1975, (12), 1081-1090.
65. Matsushita, K.; Suzuki, K.; Ohmori, K., Total Syntheses of Atrovenetin and Atrovenetinone: A Naphthalene-Annulation Approach to a Discoid Tricycle Using Allenic Acid. Synlett. 2017, 28 (8), 944-950.
66. An, G.-i.; Ahn, H.; Castro, K. A. D.; Rhee, H., Pd/C and NaBH4 inBasic Aqueous Alcohol: An Efficient System for an EnvironmentallyBenign Oxidation of Alcohols. Synthesis. 2010, 2010 (3), 477-485.
67. Leivers, M.; Miller, J. F.; Chan, S. A.; Lauchli, R.; Liehr, S.; Mo, W.; Ton, T.; Turner, E. M.; Youngman, M.; Falls, J. G.; Long, S.; Mathis, A.; Walker, J., Imidazopyridazine Hepatitis C Virus Polymerase Inhibitors. Structure Activity Relationship Studies and the Discovery of a Novel, Traceless Prodrug Mechanism. J. Med. Chem. 2014, 57 (5), 1964-1975.
68. Smith, A. B.; Toder, B. H.; Branca, S. J.; Dieter, R. K., Lewis acid promoted decomposition of unsaturated .alpha.-diazo ketones. 1. An efficient approach to simple and annulated cyclopentenones. J. Am. Chem. Soc. 1981, 103 (8), 1996-2008.
69. Snajdr, I.; Froese, J.; Dudding, T.; Horáková, P.; Hudlický, T., Investigation of a new chiral auxiliary derived chemoenzymatically from toluene: experimental and computational study. Can. J. Chem. 2016, 94 (10), 848-856.
70. Tanaka, F.; Node, M.; Tanaka, K.; Mizuchi, M.; Hosoi, S.; Nakayama, M.; Taga, T.; Fuji, K., 1,1'-Binaphthalene-2,2'-diol as a Chiral Auxiliary. Diastereoselective Alkylation of Binaphthyl Esters, Complex-Induced Proximity Effects in Enolate Formation, and One-Step Synthesis of an Optically Active beta-Substituted Ketone. J. Am. Chem. Soc. 1995, 117 (49), 12159-12171.
71. Fuji, K.; Node, M.; Tanaka, F., Complex-induced proximity effects in enolate formation. Highly diastereoselective a-methylation of binaphthyl esters of arylacetic acids. Tetrahedron Lett. 1990, 31 (45), 6553-6556.
72. Fuji, K.; Node, M.; Tanaka, F.; Hosoi, S., Binaphthol as a chiral auxiliary. Asymmetrical alkylation of arylacetic acid. Tetrahedron Lett. 1989, 30 (21), 2825-2828.
73. Yamazaki, J.; Watanabe, T.; Tanaka, K., Enantioselective synthesis of allenecarboxylates from phenyl acetates through C=C bond forming reactions. Tetrahedron: Asymmetry. 2001, 12 (4), 669-675.
74. Ahmadi, A.; Naderi, N.; Daniali, M.; Kazemi, S.; Aazami, S.; Alizadeh, N.; Nahri-Niknafs, B., Synthesis and Pharmacological Evaluation of New Chemical Entities from Ibuprofen as Novel Analgesic Candidates. Drug Res. (Stuttg) 2015, 65 (9), 457-62.
75. Rajagopal, R.; Srinivasan, K. V., Regio-selective Mono Nitration of Phenols with Ferric Nitrate in Room Temperature Ionic Liquid. Synth. Commun. 2003, 33 (6), 961-966.
76. Haghnazari, N.; Karami, C.; Ghodrati, K.; Maleki, F., Nitration of phenols with Fe(NO3)3*9H2O in the presence of Nano-SiO2 as an efficient catalyst. Int. Nano Lett. 2011, 1 (1), 30-33.
77. Liu, Y.; Zu, M.; Zou, X.; Zheng, Q.; Li, Y., Coordination-mediated radical nitration of methyl salicylate by ferric nitrate. Asian J. Chem. 2014, 26 (1), 241-246.
78. Chan, W. N.; Hadley, M. S.; Harling, J. D.; Herdon, H. J.; Orlek, B. S.; Riley, G. J.; Stead, R. E. A.; Stean, T. O.; Thompson, M.; Upton, N.; Ward, R. W., Evaluation of a Series of Anticonvulsant 1,2,3,4-Tetrahydroisoquinolinyl-benzamides. Bioorg. Med. Chem. 2000, 8 (8), 2085-2094.
79. Duan, H.; Zheng, J.; Lai, Q.; Liu, Z.; Tian, G.; Wang, Z.; Li, J.; Shen, J., 2-Phenylquinazolin-4(3H)-one, a class of potent PDE5 inhibitors with high selectivity versus PDE6. Bioorg. Med. Chem. Lett. 2009, 19 (10), 2777-2779.
80. Golliher, A. E.; Tenorio, A. J.; Dimauro, N. O.; Mairata, N. R.; Holguin, F. O.; Maio, W., Using (+)-carvone to access novel derivatives of (+)-ent-cannabidiol: The first asymmetric syntheses of (+)-ent-CBDP and (+)-ent-CBDV. Tetrahedron Lett. 2021, 67, 152891.
81. Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W., Boron Trichloride/Tetra-n-Butylammonium Iodide: A Mild, Selective Combination Reagent for the Cleavage of Primary Alkyl Aryl Ethers. J. Org. Chem. 1999, 64 (26), 9719-9721.
82. Mondal, M.; Puranik, V. G.; Argade, N. P., A Facile Phenol-Driven Intramolecular Diastereoselective Thermal/Base-Catalyzed Dipolar [2 + 2] Annulation Reactions: An Easy Access to Complex Bioactive Natural and Unnatural Benzopyran Congeners. J. Org. Chem. 2007, 72 (6), 2068-2076.
83. Koura, M.; Yamaguchi, Y.; Kurobuchi, S.; Sumida, H.; Watanabe, Y.; Enomoto, T.; Matsuda, T.; Okuda, A.; Koshizawa, T.; Matsumoto, Y.; Shibuya, K., Discovery of a 2-hydroxyacetophenone derivative as an outstanding linker to enhance potency and B-selectivity of liver X receptor agonist. Bioorg. Med. Chem. 2016, 24 (16), 3436-3446.
84. Oshimoto, K.; Tsuji, H.; Kawatsura, M., Synthesis of benzoxazoles via the copper-catalyzed hydroamination of alkynones with 2-aminophenols. OBC. 2019, 17 (17), 4225-4229.
85. Popat, V. R.; Padhiyar, N., Kinetic Study of Bechamp Process for p-Nitrotoluene Reduction to p-Toluidine. Int. J. Chem. Eng. 2013, 4, 401-405.
86. Fushimi, N.; Fujikura, H.; Shiohara, H.; Teranishi, H.; Shimizu, K.; Yonekubo, S.; Ohno, K.; Miyagi, T.; Itoh, F.; Shibazaki, T.; Tomae, M.; Ishikawa-Takemura, Y.; Nakabayashi, T.; Kamada, N.; Ozawa, T.; Kobayashi, S.; Isaji, M., Structure-activity relationship studies of 4-benzyl-1H-pyrazol-3-yl B-d-glucopyranoside derivatives as potent and selective sodium glucose co-transporter 1 (SGLT1) inhibitors with therapeutic activity on postprandial hyperglycemia. Bioorg. Med. Chem. 2012, 20 (22), 6598-6612.
87. Kim, A. N.; Stoltz, B. M., Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes. ACS Catalysis. 2020, 10 (23), 13834-13851.
88. Karakhanov, É. A.; Viktorova, E. A., Hydrogenation and dehydrogenation reactions of benzofuran and its derivatives (review). Chem. Heterocycl. Compd. 1976, 12 (4), 367-375.
89. Karakhanov, É. A.; Dedov, A. G.; Loktev, A. S., Hydrogenation of oxygen-containing heterocyclic compounds on group VIII metals. Chem. Heterocycl. Compd. 1981, 17 (10), 993-995.
90. Grayson, D. H.; McCarthy, Ú.; Roycroft, E. D., Intramolecular acylative ring-switching reactions of 3-(tetrahydro-2-furyl)propanoic acid derivatives to give butanolides: mechanism and scope. OBC. 2003,1 (11), 1930-1937.
91. Hodgson, H. H., The iodination of o-nitrophenol. J. Chem. Soc. 1927, 1141-1144.
92. Darabi, H. R.; Aghapoor, K.; Tabar-Heidar, K., A Fast and Solvent-Free Conversion of Thioamides into Thioesters. Monatsh. für Chem / Monatsh. Chem. 2004, 135 (1), 79-81.
93. Willgerodt, C., Ueber die Einwirkung von gelbem Schwefelammonium auf Ketone und Chinone. Ber. Dtsch. Chem. Ges. 1887, 20 (2), 2467-2470.
94. Kindler, K., Studien über den Mechanismus chemischer Reaktionen. Erste Abhandlung. Reduktion von Amiden und Oxydation von Aminen. Liebigs Ann. 1923, 431 (1), 187-230.
95. Dauben, W. G.; Ciula, R. P.; Rogan, J. B., Mechanism of the Willgerodt Reaction. Studies with 1-Tetralones1. J. Org. Chem. 1957, 22 (4), 362-365.
96. Asinger, F.; Schäfer, W.; Halcour, K.; Saus, A.; Triem, H., Zum Verlauf der Willgerodt-Kindler-Reaktion bei Aryl-alkylketonen. Angew. Chem. Int. Ed. 1963, 75 (22), 1050-1059.
97. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A., Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH1R, but low affinity to hH4R. Bioorg. Med. Chem. Lett. 2011, 21 (21), 6274-6280.
98. Xuan, Q.; Kong, W.; Song, Q., Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-yl Ketones to Alcohols with B2pin2 via a Domino-Borylation-Protodeboronation Strategy. J. Org. Chem. 2017, 82 (14), 7602-7607.
99. Hirose, N.; Kuriyama, S.; Kato, Y.; Toyoshima, S., Antiinflammatory activity of some 2,3-dihydrobenzofuran-5-acetic acids and related compounds. J. Med. Chem. 1976, 19 (2), 303-308.
100. Reichardt, C.; Che, D.; Heckenkemper, G.; Schäfer, G., Syntheses and UV/Vis-Spectroscopic Properties of Hydrophilic 2-, 3-, and 4-Pyridyl-Substituted Solvatochromic and Halochromic Pyridinium N-Phenolate Betaine Dyes as New Empirical Solvent Polarity Indicators. Eur. JOC. 2001, 2001 (12), 2343-2361.
101. Pokhodylo, N. T.; Savka, R. D.; Matiichuk, V. S.; Obushak, N. D., Synthesis and selected transformations of 1-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)ethanones and 1-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl]ethanones. Russ. J. Gen. Chem. 2009, 79 (2), 309.
102. Press, J. B.; McNally, J. J., Thiophene systems. 10. The synthesis and chemistry of some thienopyridinols. J. Heterocycl. Chem. 1988, 25 (5), 1571-1581.
103. Hall, A.; Billinton, A.; Brown, S. H.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Hurst, D. N.; Naylor, A.; Patel, S.; Scoccitti, T.; Theobald, P. J., Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping. Bioorg. Med. Chem. Lett. 2008, 18 (8), 2684-2690.
104. Mollin, J.; Labodová, A., On mechanism of base-catalysed hydrolysis of thioamides. Collection of Czechoslovak ChemComm. 1977, 42 (2), 517-523.
105. Bedoya, M.; Rinné, S.; Kiper, A. K.; Decher, N.; González, W.; Ramírez, D., TASK Channels Pharmacology: New Challenges in Drug Design. J. Med. Chem. 2019, 62 (22), 10044-10058.
106. Latli, B.; Stiasni, M.; Hrapchak, M.; Li, Z.; Grinberg, N.; Lee, H.; Busacca, C. A.; Senanayake, C. H., Buscopan labeled with carbon-14 and deuterium. J. Label. Compd. Radiopharm. 2016, 59 (13), 557-564.
107. Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H., Iodine Catalyzes Efficient and Chemoselective Thioacetalization of Carbonyl Functions, Transthioacetalization of O,O- and S,O-Acetals and Acylals. J. Org. Chem. 2001, 66 (22), 7527-7529.
108. Yadav, J. S.; Reddy, B. V. S.; Sreelakshmi, C.; Narayana Kumar, G. G. K. S.; Rao, A. B., Enantioselective reduction of 2-substituted tetrahydropyran-4-ones using Daucus carota plant cells. Tetrahedron Lett. 2008, 49 (17), 2768-2771.
109. Neises, B.; Steglich, W., Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. 1978, 17 (7), 522-524.
110. Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L., Use of Pseudoephedrine as a Practical Chiral Auxiliary for Asymmetric Synthesis. J. Am. Chem. Soc. 1994, 116 (20), 9361-9362.
111. Pearson, R. G., Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.
112. Pearson, R. G., Hard and soft acids and bases, HSAB, part 1: ACS. 1968, 45 (9), 581.
113. Pearson, R. G., Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968, 45 (10), 643.
114. Pummerer, R., Über Phenyl-sulfoxyessigsäure. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2282-2291.
115. Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N., Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev. 2019, 119 (14), 8701-8780.
116. Gamba-Sánchez, D.; Garzón-Posse, F., Pummerer-Type Reactions as Powerful Tools in Organic Synthesis. Curr. Org. Synth. 2015, pp 661-702.
117. Acosta-Guzmán, P.; Rodríguez-López, A.; Gamba-Sánchez, D., Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org. Lett. 2019, 21 (17), 6903-6908.
118. Cao, Y.-J.; Lai, Y.-Y.; Cao, H.; Xing, X.-N.; Wang, X.; Xiao, W.-J., A highly efficient carbon sulfur bond formation reaction via microwave-assisted nucleophilic substitution of thiols to polychloroalkanes without a transition-metal catalyst. Can. J. Chem. 2006, 84 (11), 1529-1533.
119. Xie, H.-Q.; Truong, N.; Buncel, E.; Purdon, J. G., Basicity, nucleophilicity, and nucleofugality in the elimination substitution reactions of -phenylmercaptoethyl phenolates in DMSO-ethanol media. Can. J. Chem. 1994, 72 (2), 448-453.
120. Dey, D.; Pathak, T., Enantiopure Trisubstituted Tetrahydrofurans with Appendage Diversity: Vinyl Sulfone- and Vinyl Sulfoxide-Modified Furans Derived from Carbohydrates as Synthons for Diversity Oriented Synthesis. Molecules. 2016, 21 (6), 690.
121. Baldwin, J. E.; Lusch, M. J., Rules for ring closure: application to intramolecular aldol condensations in polyketonic substrates. Tetrahedron Lett. 1982, 38 (19), 2939-2947.
122. Baldwin, J. E.; Kruse, L. I., Rules for ring closure. Stereoelectronic control in the endocyclic alkylation of ketone enolates. J. Chem. Soc, ChemComm. 1977, (7), 233-235.
123. Henner, P.; Schiavon, M.; Morel, J.-L.; Lichtfouse, E., Polycyclic Aromatic Hydrocarbons (PAHs) Occurrence and Remediation Methods. Analysis. 1997, 25.
124. Harvey, R. G., Bridged polycyclic aromatic hydrocarbons. A review. Org. Prep. Proced. Int. 1997, 29 (3), 243-283.
125. Honda, M.; Suzuki, N., Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. 2020, 17 (4), 1363.
126. Patel, A. B.; Shaikh, S.; Jain, K. R.; Desai, C.; Madamwar, D., Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11.
127. Makar, S.; Saha, T.; Singh, S. K., Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem. 2019, 161, 252-276.
128. Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A., Phenacenes: A Family of Graphite Ribbons. 2. Syntheses of Some [7]Phenacenes and an [11]Phenacene by Stilbene-like Photocyclizations. J. Am. Chem. Soc. 1997, 119 (9), 2119-2124.
129. Ma, E.; Jeong, S.-J.; Choi, J.-S.; Nguyen, T. H.; Jeong, C.-H.; Joo, S. H., MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation. Biomol Ther. 2019, 27 (1), 48-53.
130. Gurung, S. K.; Dana, S.; Mandal, K.; Mukhopadhyay, P.; Mondal, N., Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem.-Biol. Interact. 2019, 304, 106-123.
131. Wang, Y.; Zhang, X.; Zhao, J.; Xie, S.; Wang, C., Nonhematotoxic Naphthalene Diimide Modified by Polyamine: Synthesis and Biological Evaluation. J. Med. Chem. 2012, 55 (7), 3502-3512.
132. Lee, M. H.; Lapidus, R. G.; Ferraris, D.; Emadi, A., Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules. 2019, 24 (17), 3121.
133. Xu, W.-T.; Shen, G.-N.; Luo, Y.-H.; Piao, X.-J.; Wang, J.-R.; Wang, H.; Zhang, Y.; Li, J.-Q.; Feng, Y.-C.; Zhang, Y.; Zhang, T.; Wang, S.-N.; Wang, C.-Y.; Jin, C.-H., New naphthalene derivatives induce human lung cancer A549cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chem.-Biol. Interact. 2019, 304, 148-157.
134. Arshad, A.; Arshad, I.; Humayun, M.; Malik, A., Modulation of Oxidative Status under Naphthalene Induced Nephrotoxicity in Mice. Pakistan J. Med. Sci. 2020, 14 (1), 20-25.
135. Zhang, Y.; Zhang, Q.; Xin, W.; Liu, N.; Zhang, H., Nudol, a phenanthrene derivative from Dendrobium nobile, induces cell cycle arrest and apoptosis and inhibits migration in osteosarcoma cells. Drug Des. Dev. 2019, 13, 2591-2601.
136. Hou, J.-w.; Fei, Y.-d.; Li, W.; Chen, Y.-h.; Wang, Q.; Xiao, Y.; Wang, Y.-p.; Li, Y.-g., The transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol modulates cardiac sodium channel. Br. J. Pharmacol. 2018, 175 (23), 4325-4337.
137. Some, S.; Dutta, B.; Ray, J. K., Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Lett. 2006, 47 (7), 1221-1224.
138. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold(I)-catalyzed double migration cascades toward (1E,3E)-dienes and naphthalenes. Tetrahedron Lett. 2009, 65 (9), 1859-1870.
139. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold-Catalyzed Double Migration-Benzannulation Cascade toward Naphthalenes. Org. Lett. 2008, 10 (7), 1465-1468.
140. Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J., Rhodium(II)-Catalyzed Cyclization of Bis(N-tosylhydrazone)s: An Efficient Approach towards Polycyclic Aromatic Compounds. Angew. Chem. Int. Ed. 2012, 51 (23), 5714-5717.
141. Zhu, C.; Qiu, L.; Xu, G.; Li, J.; Sun, J., Base-Promoted/Gold-Catalyzed Intramolecular Highly Selective and Controllable Detosylative Cyclization. Chemistry - Chem. Eur. J. 2015, 21 (37), 12871-12875.
142. Nonoyama, Y.; Yaguchi, K.; Kinoshita, H.; Miura, K., Cyclization of 1-ethynyl-2-alkenylbenzenes to naphthalenes using Et2AlCl and DIBAL-H. Tetrahedron Lett. 2021, 62, 152682.
143. Kurteva, V. B.; Santos, A. G.; Afonso, C. A. M., Microwave accelerated facile synthesis of fused polynuclear hydrocarbons in dry media by intramolecular Friedel-Crafts alkylation. OBC. 2004, 2 (4), 514-523.
144. Hong, D. J.; Kim, D. W.; Chi, D. Y., Facile ring-closure cyclization of arenes by nucleophilic C-alkylation reaction in ionic liquid. Tetrahedron Lett. 2010, 51 (1), 54-56.
145. Sakai, N.; Kobayashi, T.; Ogiwara, Y., One-pot Synthesis of Tetralin Derivatives from 3-Benzoylpropionic Acids: Indium-catalyzed Hydrosilylation of Ketones and Carboxylic Acids and Intramolecular Cyclization. Chem Lett. 2015, 44 (11), 1503-1505.
146. Wünsch, B., Eine neue Methode zur Darstellung von 3-Alkoxy- und 3-Hydroxy-3,4-dihydro-1H-2-benzopyranen. Arch. Pharm. 1990, 323 (8), 493-499.
147. Maryanoff, B. E.; Reitz, A. B., The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989, 89 (4), 863-927.
148. Takahashi, I.; Hayashi, M.; Fujita, T.; Ichikawa, J., Brønsted Acid-catalyzed Tandem Cycloaromatization of Naphthalene-based Bisacetals: Selective Synthesis of ortho-Fused Six-hexagon Benzenoids. Chem. Lett. 2017, 46 (3), 392-394.
149. Banerjee, A.; Maji, M. S., A Brønsted Acid Catalyzed Cascade Reaction for the Conversion of Indoles to a-(3-Indolyl) Ketones by Using 2-Benzyloxy Aldehydes. Chemistry - Chem. Eur. J. 2019, 25 (49), 11521-11527.
150. Miyaura, N.; Suzuki, A., Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, ChemComm. 1979, (19), 866-867.
151. Beletskaya, I. P.; Alonso, F.; Tyurin, V., The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chem. Rev. 2019, 385, 137-173.
152. Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S., Recent advances in the Suzuki Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Curr. 2019, 21 (3), 381-405.
153. Cousaert, N.; Toto, P.; Willand, N.; Deprez, B., Efficient, protection-free Suzuki Miyaura synthesis of ortho-biphenyltetrazoles. Tetrahedron Lett. 2005, 46 (38), 6529-6532.
154. Molina de la Torre, J. A.; Espinet, P.; Albéniz, A. C., Solvent-Induced Reduction of Palladium-Aryls, a Potential Interference in Pd Catalysis. Organometallics. 2013, 32 (19), 5428-5434.
155. Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M., Solvent effects in palladium catalysed cross-coupling reactions. Curr. 2019, 21 (9), 2164-2213.
156. Casares, J. A.; Espinet, P.; Salas, G., 14-Electron T-Shaped [PdRXL] Complexes: Evidence or Illusion? Mechanistic Consequences for the Stille Reaction and Related Processes. Chemistry Chem. Eur. J. 2002, 8 (21), 4843-4853.
157. Zhang, D.; Yang, D.; Wang, S.; Zeng, L.; Xin, J.; Zhang, H.; Lei, A., The Real Structure of Pd(OAc)2 in Various Solvents. Chin. J. Chem. 2021, 39 (2), 307-311.
158. Hashemi Fath, R.; Hoseini, S. J., Covalently cyclopalladium(II) complex/reduced-graphene oxide as the effective catalyst for the Suzuki Miyaura reaction at room temperature. J. Organomet. Chem. 2017, 828, 16-23.
159. Liu, Y.; Song, R.-J.; Li, J.-H., Palladium-catalyzed dearomatizative [2 + 2 + 1] carboannulation of 1,7-enynes with aryl diazonium salts and H2O: facile synthesis of spirocyclohexadienone-fused cyclopenta[c]quinolin-4(5H)-ones. ChemComm. 2017, 53 (61), 8600-8603.
160. Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F., Role of the Base and Control of Selectivity in the Suzuki Miyaura Cross-Coupling Reaction. ChemCatChem. 2014, 6 (5), 1291-1302.
161. Ishiyama, T.; Ishida, K.; Miyaura, N., Synthesis of pinacol arylboronates via cross-coupling reaction of bis(pinacolato)diboron with chloroarenes catalyzed by palladium(0) tricyclohexylphosphine complexes. Tetrahedron Lett.2001, 57 (49), 9813-9816.
162. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The J. Org. Chem. 1995, 60 (23), 7508-7510.
163. Martínez, A. G.; Herrera, A.; Martínez, R.; Teso, E.; García, A.; Osío, J.; Pargada, L.; Unanue, R.; Subramanian, L. R.; Hanack, M., A new and convenient synthesis of alkyl and aryl pyrimidines. J. Heterocycl. Chem. 1988, 25 (4), 1237-1241.
164. Watanabe, T.; Miyaura, N.; Suzuki, A., Synthesis of Sterically Hindered Biaryls via the Palladium-Catalyzed Cross-Coupling Reaction of Arylboronic Acids or their Esters with Haloarenes. Synlett 1992, 1992, 207-210.
165. Amatore, C.; Jutand, A.; Le Duc, G., Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base. Chemistry Chem. Eur. J. 2011, 17 (8), 2492-2503.
166. Xia, J.; Fu, Y.; He, G.; Sun, X.; Wang, X., Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl. Catal. B 2017, 200, 39-46.
167. Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, C. S., Copper-Facilitated Suzuki Reactions: Application to 2-Heterocyclic Boronates. Org. Lett. 2009, 11 (2), 345-347.
168. Snyder, S. A.; Brucks, A. P.; Treitler, D. S.; Moga, I., Concise Synthetic Approaches for the Laurencia Family: Formal Total Syntheses of (±)-Laurefucin and (±)-E- and (±)-Z-Pinnatifidenyne. J. Am. Chem. Soc. 2012, 134 (42), 17714-17721.
169. Chang, C.; Chu, K. C.; Yue, S., Anhydrous Deprotection of Dimethyl Acetals with Acetyl Chloride/ZnCl2. Synth. Commun. 1992, 22 (8), 1217-1220.
170. Foote, K. M.; Hayes, C. J.; John, M. P.; Pattenden, G., Synthetic studies towards the phomactins. Concise syntheses of the tricyclic furanochroman and the oxygenated bicyclo[9.3.1]pentadecane ring systems in phomactin A. OBC. 2003, 1 (22), 3917-3948.
171. Ballini, R.; Petrini, M., Facile and Inexpensive Synthesis of 4-Oxoalkanoic Acids from Primary Nitroalkanes and Acrolein. Synthesis. 1986, 1986, 1024-1026.
172. Xu, Y.-z.; Yakushijin, K.; Horne, D. A., Synthesis of C11N5 Marine Sponge Alkaloids: (±)-Hymenin, Stevensine, Hymenialdisine, and Debromohymenialdisine. J. Org. Chem. 1997, 62 (3), 456-464.
173. Barrios Sosa, A. C.; Yakushijin, K.; Horne, D. A., Controlling cyclizations of 2-pyrrolecarboxamidoacetals. Facile solvation of B-amido aldehydes and revised structure of synthetic homolongamide. Tetrahedron Lett. 2000, 41 (22), 4295-4299.
174. Goldring, W. P. D.; Paden, W. T., A ring-closing metathesis approach to the bicyclo[4.3.1]decane core of caryolanes. Tetrahedron Lett. 2011, 52 (8), 859-862.
175. Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J., Ferric Chloride Hexahydrate: A Mild Hydrolytic Agent for the Deprotection of Acetals. J. Org. Chem. 1997, 62 (19), 6684-6686.
176. Kocienski, P. J.; Street, S. D. A.; Yeates, C.; Campbell, S. F., A directed aldol approach to (+)-milbemycin B3. J. Chem. Soc. Perkin Trans. 1 1987, 2171-2181.
177. Ma, R.; Liu, A.-H.; Huang, C.-B.; Li, X.-D.; He, L.-N., Reduction of sulfoxides and pyridine-N-oxides over iron powder with water as hydrogen source promoted by carbon dioxide. Curr. 2013, 15 (5), 1274-1279.
178. Porwal, D.; Oestreich, M., B(C6F5)3-Catalyzed Reduction of Sulfoxides and Sulfones to Sulfides with Hydrosilanes. Synthesis 2017, 49 (20), 4698-4702.
179. Enthaler, S., A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catal. Sci. Technol. 2011, 1 (1), 104-110.
180. Bahrami, K.; Khodaei, M. M.; Karimi, A., Mild and Efficient Deoxygenation of Sulfoxides to Sulfides with Triflic Anhydride/Potassium Iodide Reagent System. Synthesis. 2008, 2008 (16), 2543-2546.
181. Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z., Efficient reduction of sulfoxides with NaHSO3 catalyzed by I2. Tetrahedron Lett. 2015, 56 (47), 6610-6613.
182. Bhatia, G. S.; Graczyk, P. P., A mild protocol for the deoxygenation of a-hydrogen-containing sulfoxides to the corresponding sulfides. Tetrahedron Lett. 2004, 45 (27), 5193-5195.
183. Jang, Y.; Kim, K. T.; Jeon, H. B., Deoxygenation of Sulfoxides to Sulfides with Thionyl Chloride and Triphenylphosphine: Competition with the Pummerer Reaction. J. Org. Chem. 2013, 78 (12), 6328-6331.
184. Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K., Deoxygenation of sulphoxides to sulphides with trichlorophosphane. OBC.2018, 16 (7), 1200-1204.
185. Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.; Simonsen, K. B., Novel Reactions Initiated by Titanocene Methylidenes: Deoxygenation of Sulfoxides, N-Oxides, and Selenoxides. Angew. Chem. Int. Ed. 2000, 39 (14), 2529-2533.
186. Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2014, 53 (32), 8348-8351.
187. Fu, Z.; Li, Z.; Song, Y.; Yang, R.; Liu, Y.; Cai, H., Decarboxylative Halogenation and Cyanation of Electron-Deficient Aryl Carboxylic Acids via Cu Mediator as Well as Electron-Rich Ones through Pd Catalyst under Aerobic Conditions. J. Org. Chem. 2016, 81 (7), 2794-2803.
188. Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N., Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Org. Lett. 2015, 17 (12), 2886-2889.
189. Singh, J.; Yadav, D.; Singh, J. D., En Route Activity of Hydration Water Allied with Uranyl (UO22+) Salts Amid Complexation Reactions with an Organothio-Based (O, N, S) Donor Base. Inorg 2019, 58 (8), 4972-4978.
190. Miki, K.; Kohki, I.; Rumi, K.; Hideki, K., Stereoselective Syntheses of (E) a-,B-Didehydroamino Acid and Peptide Containing Its Residue Utilizing Oxazolidinone Derivative. Bull. Chem. Soc. Jpn. 2009, 82 (3), 364-380.
191. Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N., Ecological Base-Conditioned Preparation of Dipeptides Using Unprotected a-Amino Acids Containing Hydrophilic Side Chains. Bull. Chem. Soc. Jpn. 2017, 90 (6), 689-696.
192. Serpier, F.; Brayer, J.-L.; Folléas, B.; Darses, S., Access to Polyfunctionalized Chiral Piperidines through Enantioselective Addition Carbocyclization Cascade Reaction Catalyzed by a Rhodium(I) Diene Complex. Org. Lett. 2015, 17 (21), 5496-5499.
193. Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sánchez, D., Transamidation of Carboxamides Catalyzed by Fe(III) and Water. J. Org. Chem. 2014, 79 (10), 4544-4552.
194. Wang, B.; Liu, Y.; Lin, C.; Xu, Y.; Liu, Z.; Zhang, Y., Synthesis of Sulfur-Bridged Polycycles via Pd-Catalyzed Dehydrogenative Cyclization. Org. Lett. 2014, 16 (17), 4574-4577.
195. Schevenels, F. T.; Shen, M.; Snyder, S. A., Alkyldisulfanium Salts: Isolable, Electrophilic Sulfur Reagents Competent for Polyene Cyclizations. Org. Lett. 2017, 19 (1), 2-5.
196. Yang, T.; Liu, Q.; Cheng, Y.; Cai, W.; Ma, Y.; Yang, L.; Wu, Q.; Orband-Miller, L. A.; Zhou, L.; Xiang, Z.; Huxdorf, M.; Zhang, W.; Zhang, J.; Xiang, J.-N.; Leung, S.; Qiu, Y.; Zhong, Z.; Elliott, J. D.; Lin, X.; Wang, Y., Discovery of Tertiary Amine and Indole Derivatives as Potent RORt Inverse Agonists. ACS Med. Chem. Lett. 2014, 5 (1), 65-68.
197. Abe, H.; Fujii, H.; Masunari, C.; Itani, J.; Kashino, S.; Shibaike, K.; Harayama, T., Construction of 1,3-Oxathiane Ring through Pummerer Reaction of gamma, delta-Unsaturated Sulfinyl Compounds. Chem. Pharm. Bull. 1997, 45 (5), 778-785.
198. Hiessböck, R.; Kratzel, M., Synthesis of [1,4]dioxino[2,3-c]quinolines and [1,4]dioxepino-[2,3-c]quinolines and their 1-sulfur analogues. J. Heterocycl. Chem. 1999, 36 (5), 1295-1300.
199. Barry, C. N.; Baumrucker, S. J.; Andrews, R. C.; Evans, S. A., Cyclodehydration and selective chlorination of trans-2-hydroxycyclohexyl 2-hydroxyethyl sulfide with triphenylphosphine and tetrachloromethane. J. Org. Chem. 1982, 47 (20), 3980-3983.
200. Konstantinova, T. V.; Dyubankova, N. N.; Klykov, V. N.; Maslov, M. A.; Serebrennikova, G. A., The Synthesis of Cationic Glycerolipid Acetals Containing Aliphatic and Heterocyclic Bases. Russ. J. Bioorganic Chem. 2002, 28 (2), 158-161.
201. Xu, H.; Lv, M.; Tian, X., A Review on Hemisynthesis, Biosynthesis, Biological Activities, Mode of Action, and Structure-Activity Relationship of Podophyllotoxins: 2003- 2007. Curr. Med. Chem. 2009, 16 (3), 327-349.
202. Mooradian, A. D.; Morley, J. E.; Korenman, S. G., Biological Actions of Androgens. Endocr. Rev. 1987, 8 (1), 1-28.
203. Fels, E., Treatment of Breast Cancer with Testosterone Propionate. J. Clin. Endocrinol. Metab. 1944, 4 (3), 121-125.
204. Katsiki, N.; Tsioufis, K.; Ural, D.; Volpe, M., Fifteen years of LIFE (Losartan Intervention for Endpoint Reduction in Hypertension) Lessons learned for losartan: An old dog playing good tricks. J. Clin. Hypertens. 2018, 20 (8), 1153-1159.
205. Esu, E.; Effa, E. E.; Opie, O. N.; Uwaoma, A.; Meremikwu, M. M., Artemether intramuscular injection for severe malaria in children. CDSR. 2013, (8).
206. Skrzypek, R.; Callaghan, R., The "pushmi-pullyu" of resistance to chloroquine in malaria. Essays Biochem. 2017, 61 (1), 167-175.
207. Cheng, E., Proton pump inhibitors for eosinophilic oesophagitis. Curr. Opin. Gastroenterol. 2013, 29 (4), 416-420.
208. Movahedi, F.; Li, L.; Gu, W.; Xu, Z. P., Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomed. J. 2017, 12 (20), 2555-2574.
209. Cannizzaro, S., Ueber den der Benzoësäure entsprechenden Alkohol. Justus Liebigs Ann. Chem. 1853, 88 (1), 129-130.
210. Strässler, C.; Linden, A.; Heimgartner, H., Novel Heterospirocyclic 3-Amino-2H-azirines as Synthons for Heterocyclic a-Amino Acids. Helv. Chim. Acta 1997, 80 (5), 1528-1554.
211. Lowe, R. F.; Nelson, J.; Dang, T. N.; Crowe, P. D.; Pahuja, A.; McCarthy, J. R.; Grigoriadis, D. E.; Conlon, P.; Saunders, J.; ChenChen; Szabo, T.; Chen, T. K.; Bozigian, H., Rational Design, Synthesis, and Structure-Activity Relationships of Aryltriazoles as Novel Corticotropin-Releasing Factor-1 Receptor Antagonists. J. Med. Chem. 2005, 48 (5), 1540-1549.
212. Müller, P.; Chappellet, S., Asymmetric 1,3-Dipolar Cycloadditions of 2-Diazocyclohexane-1,3-diones and Alkyl Diazopyruvates. Helv. Chim. Acta. 2005, 88 (5), 1010-1021.
213. Ramkumar, N.; Nagarajan, R., Total Synthesis of Calothrixin A and B via C-H Activation. J. Org. Chem. 2013, 78 (6), 2802-2807.
214. Becerra-Cely, L.; Rueda-Espinosa, J.; Ojeda-Porras, A.; Gamba-Sánchez, D., Insights into the Pummerer synthesis of oxazolines. OBC. 2016, 14 (36), 8474-8485.
215. Gardner, J. N.; Kaiser, S.; Krubiner, A.; Lucas, H., A Facile Reduction of Sulfones to Sulfides. Can. J. Chem. 1973, 51 (9), 1419-1421.
216. Akgün, E.; Mahmood, K.; Mathis, C. A., Rapid reduction of sulfones to sulfides using LiAlH4 TiCl4. J. Chem. Soc., Chem. Commun. 1994, (6), 761-762.
217. Wu, P.-Y.; Wu, H.-L.; Uang, B.-J., Asymmetric Synthesis of Functionalized Diarylmethanols Catalyzed by a New y-Amino Thiol. J. Org. Chem. 2006, 71 (2), 833-835.
218. Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. G., Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis. 2017, 49 (04), 917-924.
219. Shen, T.; Wang, T.; Qin, C.; Jiao, N., Silver-Catalyzed Nitrogenation of Alkynes: A Direct Approach to Nitriles through C-C Bond Cleavage. Angew. Chem. Int. Ed. 2013, 52 (26), 6677-6680.
220. Bull, J. A.; Mousseau, J. J.; Charette, A. B., Convenient One-Pot Synthesis of (E)-B-Aryl Vinyl Halides from Benzyl Bromides and Dihalomethanes. Org. Lett. 2008, 10 (23), 5485-5488.
221. Kotovshchikov, Y. N.; Latyshev, G. V.; Lukashev, N. V.; Beletskaya, I. P., An Efficient Approach to Azolyl-Substituted Steroids through Copper-Catalyzed Ullmann C-N Coupling. Eur. J. Org. Chem. 2013, 2013 (34), 7823-7832.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 276 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ciencias - Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Química
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/b3967e01-f851-47b7-b101-68a71f675da1/download
https://repositorio.uniandes.edu.co/bitstreams/4bb3c79f-eda1-48dd-99a7-9ce0111e9c68/download
https://repositorio.uniandes.edu.co/bitstreams/9a82e13c-3663-4701-9af5-1cf67a95429f/download
https://repositorio.uniandes.edu.co/bitstreams/81c7899d-c491-4610-a0b1-730141253da7/download
https://repositorio.uniandes.edu.co/bitstreams/1fe85593-3400-4d27-a765-daa682f95d75/download
https://repositorio.uniandes.edu.co/bitstreams/f0ad0025-21b8-4952-bafc-62d43cde371b/download
https://repositorio.uniandes.edu.co/bitstreams/571c16d2-23e8-4458-8a78-f74304629cbe/download
bitstream.checksum.fl_str_mv 3ea26d5634578dd53dce848d6ec626c7
504fef28ee28c871e5e5240c86d29e9e
ef8c93bd9695609ab3c06610d8a36d20
4491fe1afb58beaaef41a73cf7ff2e27
5aa5c691a1ffe97abd12c2966efcb8d6
c153eb10e5cf288474aabb9fd37c962d
005b24f72a442e39df7f658990e11c22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390458149175296
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gamba Sánchez, Diego Alexandervirtual::15102-1Mahecha Mahecha, Camilo Andres201531dd-87b2-41d6-8a0d-6b7752f7c129600Portilla Salinas, Jaime AntonioAbonía González, RodrigoQuiroga Daza, Diego EnriqueRamírez Sánchez, David MauricioPérez, Edwin G.Laboratorio de síntesis orgánica bio y organocatálisis2022-07-29T19:48:25Z2022-07-29T19:48:25Z2022-07-22http://hdl.handle.net/1992/59375instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este documento presenta los resultados experimentales más relevantes de la investigación realizada en el Laboratorio de Síntesis Orgánica, Bio y Organocatálisis del Departamento de Química de la Universidad de los Andes bajo la dirección del Dr. Diego Alexander Gamba Sánchez como tesis doctoral, cuyo objetivo general fue la síntesis de derivados de tipo 2-bencilbenzofurano, y algunos derivados de naftaleno y fenantreno que se caracterizan por tener actividad frente a canales de potasio TASK-3, considerados como oncogenes presentes en diferentes tipos de células cancerígenas . El documento se ha dividido en 5 capítulos; el primero de ellos describe la importancia de los canales de potasio TASK-3, las consideraciones tenidas en cuenta para el diseño de las moléculas objetivo, y el planteamiento general de la estrategia sintética propuesta. En el segundo capítulo se presentan inicialmente las principales metodologías existentes para la síntesis de 2-alquilbenzofuranos, continuando con los resultados obtenidos tras la aplicación de la ruta de síntesis planteada para esta investigación, así como propuestas alternativas encaminadas hacia la obtención enantioselectiva de los productos en cuestión y sus respectivos resultados. El tercer capítulo aborda los resultados obtenidos en conjunto con el grupo del profesor Sebastien Thiabudeau de la Universidad de Poitiers. En este se planteó el desarrollo de una ruta sintética para la obtención de unos precursores sobre los cuales se evaluó una reacción de ciclación que dio lugar a la generación de derivados de naftaleno y fenantreno. En el cuarto capítulo se retoman los resultados parciales de la aplicación de la reacción de Pummerer como estrategia de ciclación para la obtención del núcleo benzofuránico; a partir de dichas observaciones se diseñó y desarrolló una metodología enfocada hacia la reducción de sulfóxidos con un amplio campo de acción. Finalmente, la última sección corresponde a la parte experimental del trabajo, incluyendo una descripción de los procedimientos empleados y la información correspondiente a la caracterización de los productos sintetizados.Doctor en Ciencias - QuímicaDoctoradoSíntesis orgánica y desarrollo de metodologías276 páginasapplication/pdfspaUniversidad de los AndesDoctorado en Ciencias - QuímicaFacultad de CienciasDepartamento de QuímicaSíntesis y funcionalización de (hetero)árenos mediante reacciones catalizadas por paladio o reducción de sulfóxidos: un enfoque hacia la obtención de 2-alquilbenzofuranos y otras moléculas de interés biológicoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TD2-alquilbenzofuranosAntracenoModuladores de canales de potasioFenantrenoReducción de sulfóxidosQuímica1. Doyle Declan, A.; Cabral João, M.; Pfuetzner Richard, A.; Kuo, A.; Gulbis Jacqueline, M.; Cohen Steven, L.; Chait Brian, T.; MacKinnon, R., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science. 1998, 280 (5360), 69-77.2. Meadows, H. J.; Randall, A. D., Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology. 2001, 40 (4), 551-559.3. Bardou, O.; Thu, N.; Trinh, N.; Brochiero, E., Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296 (2), 145-155.4. Mathie, A.; Veale, In Encyclopedia of Neuroscience, 2009; pp 2792-2797.5. Coetzee, W. A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; McCormack, T. O. M.; Morena, H.; Nadal, M. S.; Ozaita, A.; Pountney, D.; Saganich, M.; De Miera, E. V.-S.; Rudy, B., Molecular Diversity of K+ Channels. Ann. N. Y. Acad. Sci. 1999, 868 (1), 233-255.6. Talley, E. M.; Bayliss, D. A., Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 2002, 277 (20), 17733-17742.7. Mu, D.; Chen, L.; Zhang, X.; See, L.-H.; Koch, C. M.; Yen, C.; Tong, J. J.; Spiegel, L.; Nguyen, K. C. Q.; Servoss, A.; Peng, Y.; Pei, L.; Marks, J. R.; Lowe, S.; Hoey, T.; Jan, L. Y.; McCombie, W. R.; Wigler, M. H.; Powers, S., Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003, 3 (3), 297-302.8. Innamaa, A.; Jackson, L.; Asher, V.; Van Schalkwyk, G.; Warren, A.; Keightley, A.; Hay, D.; Bali, A.; Sowter, H.; Khan, R., Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Am. J. Clin. 2013, 15 (11), 910-918.9. Zúñiga, R.; Concha, G.; Cayo, A.; Cikutovic-Molina, R.; Arevalo, B.; González, W.; Catalán, M. A.; Zúñiga, L., Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed. Pharmacother. 2020, 129, 110383.10. Pocsai, K.; Kosztka, L.; Bakondi, G.; Gönczi, M.; Fodor, J.; Dienes, B.; Szentesi, P.; Kovács, I.; Feniger-Barish, R.; Kopf, E.; Zharhary, D.; Szucs, G.; Csernoch, L.; Rusznák, Z., Melanoma cells exhibit strong intracellular TASK-3-specific immunopositivity in both tissue sections and cell culture. Cell Mol Life Sci. 2006, 63 (19-20), 2364-2376.11. Philip, B.; Ito, K.; Moreno-Sánchez, R.; Ralph, S. J., HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis. 2013, 34 (8), 1699-1707.12. Bertout, J. A.; Patel, S. A.; Simon, M. C., The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008, 8 (12), 967-75.13. Cikutovíc-Molina, R.; Herrada, A. A.; González, W.; Brown, N.; Zúñiga, L., TASK-3 gene knockdown dampens invasion and migration and promotes apoptosis in KATO III and MKN-45 human gastric adenocarcinoma cell lines. Int. J. Mol. Sci. 2019, 20 (23), 6077.14. Toczylowska-Maminska, R.; Olszewska, A.; Laskowski, M.; Bednarczyk, P.; Skowronek, K.; Szewczyk, A., Potassium channel in the mitochondria of human keratinocytes. JID. 2014, 134 (3), 764-772.15. Rusznák, Z.; Bakondi, G.; Kosztka, L.; Pocsai, K.; Dienes, B.; Fodor, J.; Telek, A.; Gönczi, M.; Szucs, G.; Csernoch, L., Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Archiv. 2008, 452 (4), 415-426.16. Pei, L.; Wiser, O.; Slavin, A.; Mu, D.; Powers, S.; Jan, L. Y.; Hoey, T., Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci U S A. 2003, 100 (13), 7803-7807.17. Cunningham, K. P.; MacIntyre, D. E.; Mathie, A.; Veale, E. L., Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) Acta Physiol. Scand. 2020, 228 (2).18. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur J Pharmacol. 2014, 740, 603-603.19. Cotten, J. F., TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth Analg 2013, 116 (4), 810-816.20. Czirják, G.; Enyedi, P., Ruthenium Red Inhibits TASK-3 Potassium Channel by Interconnecting Glutamate 70 of the Two Subunits. Mol. Pharmacol. 2003, 63 (3), 646.21. Piechotta, P. L.; Rapedius, M.; Stansfeld, P. J.; Bollepalli, M. K.; Erhlich, G.; Andres-Enguix, I.; Fritzenschaft, H.; Decher, N.; Sansom, M. S. P.; Tucker, S. J.; Baukrowitz, T., The pore structure and gating mechanism of K2P channels. EMBO J. 2011, 30 (17), 3607-3619.22. Concha, G.; Bustos, D.; Zúñiga, R.; Catalán, M. A.; Zúñiga, L., The Insensitivity of TASK-3 K2P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. Int. J. Mol. Sci. 2018, 19 (8), 2437.23. Huang, X.; Jan, L. Y., Targeting potassium channels in cancer. J Cell Biol. 2014, 206 (2), 151-162.24. Ramírez, D.; Concha, G.; Arévalo, B.; Prent-Peñaloza, L.; Zúñiga, L.; Kiper, A. K.; Rinné, S.; Reyes-Parada, M.; Decher, N.; González, W.; Caballero, J., Discovery of novel TASK-3 channel blockers using a pharmacophore-based virtual screening. Int. J. Mol. Sci. 2019, 20 (16), 4014.25. Fiser, A.; Sali, A., Modeller: Generation and Refinement of Homology-Based Protein Structure Models. In Methods in Enzymology, AP. 2003; Vol. 374, pp 461-491.26. Brohawn, S. G.; del Mármol, J.; MacKinnon, R., Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science (New York, N.Y.) 2012, 335 (6067), 436-441.27. Coburn, C. A.; Luo, Y.; Cui, M.; Wang, J.; Soll, R.; Dong, J.; Hu, B.; Lyon, M. A.; Santarelli, V. P.; Kraus, R. L.; Gregan, Y.; Wang, Y.; Fox, S. V.; Binns, J.; Doran, S. M.; Reiss, D. R.; Tannenbaum, P. L.; Gotter, A. L.; Meinke, P. T.; Renger, J. J., Discovery of a pharmacologically active antagonist of the two-pore-domain potassium channel K 2P9.1 (TASK-3). ChemMedChem. 2012, 7 (1), 123-133.28. Bruner, J. K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M., Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur. J. Pharmacol. 2014, 740, 603-610.29. Sandhu, M. S.; Lee, K. Z.; Gonzalez-Rothi, E. J.; Fuller, D. D., Repeated intravenous doxapram induces phrenic motor facilitation. Exp. Neurol. 2013, 250, 108-115.30. Dixon, S. L.; Smondyrev, A. M.; Rao, S. N., PHASE: A novel approach to pharmacophore modeling and 3D database searching. In Chem Biol Drug Des, 2006; 67, 370-372.31. Hughes, J. P.; Rees, S. S.; Kalindjian, S. B.; Philpott, K. L., Principles of early drug discovery. Br. J. Pharmacol. 2011, 162 (6), 1239-1249.32. Horton, D. A.; Bourne, G. T.; Smythe, M. L., The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev. 2003, 103 (3), 893-930.33. Rangaswamy, J.; Vijay Kumar, H.; Harini, S. T.; Naik, N., Synthesis of benzofuran based 1,3,5-substituted pyrazole derivatives: As a new class of potent antioxidants and antimicrobials-A novel accost to amend biocompatibility. Bioorg. Med. Chem. Lett. 2012,22 (14), 4773-4777.34. More, K. R., Review on Synthetic Routes for Synthesis of Benzofuran-Based Compounds. J. chem. pharm. 2007, 9 (5), 210-220.35. Kim, K. O.; Tae, J., Synthesis of 2,3-Disubstituted benzofurans from ortho-acylphenols. Synthesis. 2005, 2005, 387-390.36. Enholm, E. J.; Prasad, G., Tributyltin hydride-induced O-stannyl ketyls in the cyclization of aldehydes and ketones with alkenes. Tetrahedron Lett. 1989, 30 (37), 4939-4942.37. Fang, Y.; Li, C., O-Arylation versus C-Arylation: Copper-Catalyzed Intramolecular Coupling of Aryl Bromides with 1,3-Dicarbonyls. J. Org. Chem. 2006, 71 (17), 6427-6431.38. Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M., Cascade Reactions: Sequential Homobimetallic Catalysis Leading to Benzofurans and Unsaturated Esters. ASC. 2006, 348, 1101-1109.39. Hofbeck, T.; Yersin, H., The Triplet State of fac-Ir(ppy)3. Inorg. 2010, 49 (20), 9290-9299.40. Ramella, V.; He, Z.; Daniliuc, C. G.; Studer, A., Palladium-Catalyzed Dearomatizing Difunctionalization of Indoles and Benzofurans. Eur. J. Org. Chem. 2016, 2016 (13), 2268-2273.41. Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. C., Nickel-catalyzed direct alkylation of heterocycles with ±-bromo carbonyl compounds: C3-selective functionalization of 2-pyridones. Chemistry - Chem. Eur. J. 2013, 19 (24), 7691-7695.42. Yamane, Y.; Yoshinaga, K.; Sumimoto, M.; Nishikata, T., Iron-Enhanced Reactivity of Radicals Enables C-H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catal. 2019, 9 (3), 1757-1762.43. Tian, W.; Li, B.; Tian, D.; Tang, W., Regioselective 2-alkylation of indoles with a-bromo esters catalyzed by Pd/P,P=O system. Chin. Chem. Lett. 2022, 33 (1), 197-200.44. Chakravarty, M.; Kumara Swamy, K. C., Palladium-Catalyzed Coupling of Allenylphosphonates, Phenylallenes, and Allenyl Esters: Remarkable Salt Effect and Routes to Novel Benzofurans and Isocoumarins. J. Org. Chem. 2006, 71 (24), 9128-9138.45. Katritzky, A. R.; Fali, C. N.; Li, J., General Synthesis of Polysubstituted Benzo[b]furans. J. Org. Chem. 1997, 62 (23), 8205-8209.46. Mandali, P. K.; Chand, D. K., Palladium Nanoparticles Catalyzed Synthesis of Benzofurans by a Domino Approach. Synthesis. 2015, 47 (11), 1661-1668.47. Yang, O.-K.; Kim, J.-E.; Park, H. J., Synthesis of 2-Substituted Benzofurans from o-Iodophenols and Terminal Alkynes with a Recyclable Palladium Catalyst Supported on Nano-sized Carbon Balls under Copper- and Ligand-Free Conditions. BKCS. 2013, 34 (9), 2645-2649.48. Cano, R.; Yus, M.; Ramón, D. J., Impregnated copper or palladium-copper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: a straightforward synthesis of benzo[b]furans and indoles. Tetrahedron Lett. 2012, 68 (5), 1393-1400.49. Banerjee, T. S.; Paul, S.; Sinha, S.; Das, S., Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties. Bioorg. Med. Chem. 2014, 22 (21), 6062-6070.50. Gu, Z.-S.; Zhou, A.-n.; Xiao, Y.; Zhang, Q.-W.; Li, J.-Q., Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Eur. J. Med. Chem. 2018, 144, 701-715.51. Wagner, R. B.; Tome, J. M., Derivatives of Benzofuran. J. Am. Chem. Soc. 1950, 72 (8), 3477-3478.52. Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B., Photocarboxylation of Benzylic C-H Bonds. J. Am. Chem. Soc. 2019, 141 (29), 11393-11397.53. Ghosh, S.; Das, J.; Saikh, F., A new synthesis of 2-aryl/alkylbenzofurans by visible light stimulated intermolecular Sonogashira coupling and cyclization reaction in water. Tetrahedron Lett. 2012, 53 (44), 5883-5886.54. Liu, J.; Zhou, X.; Wang, C.; Fu, W.; Chu, W.; Sun, Z., Total synthesis of protosappanin A and its derivatives via palladium catalyzed ortho C-H activation/C-C cyclization under microwave irradiation. ChemComms. 2016, 52 (29), 5152-5155.55. Vondervoort, L. S.-v. d.; Bouttemy, S.; Padrón, J. M.; Bras, J. L.; Muzart, J.; Alsters, P. L., Chromium Catalyzed Oxidation of (Homo-)Allylic and (Homo-)Propargylic Alcohols with Sodium Periodate to Ketones or Carboxylic Acids. ChemInform. 2002, 33, 243-246.56. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient Synthesis of B2-Amino Acid by Homologation of a-Amino Acids Involving the Reformatsky Reaction and Mannich-Type Imminium Electrophile. J. Org. Chem. 2006, 71 (8), 3332-3334.57. Fischer, E.; Speier, A., Darstellung der Ester. Ber. Dtsch. Chem. Ges 1895, 28 (3), 3252-3258.58. Sheehan, J. C.; Hess, G. P., A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 1955, 77 (4), 1067-1068.59. Pagoti, S.; Dutta, D.; Dash, J., A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1,3-Dipolar Cycloadditions. ASC. 2013,355 (18), 3532-3538.60. Martínez, C.; Aurrecoechea, J. M.; Madich, Y.; Denis, J. G.; de Lera, A. R.; Álvarez, R., Synthesis of Tetrahydrodibenzofuran and Tetrahydrophenanthridinone Skeletons by Intramolecular Nucleopalladation/ Oxidative Heck Cascades. Eur. J. Org. Chem. 2012, 2012 (1), 99-106.61. Chinchilla, R.; Nájera, C., The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107 (3), 874-922.62. Jutand, A.; Négri, S.; Principaud, A., Formation of ArPdXL(amine) Complexes by Substitution of One Phosphane Ligand by an Amine in trans-ArPdX(PPh3)2 Complexes. Eur. J. Inorg. Chem. 2005, 2005 (4), 631-635.63. Snider, B. B.; Spindell, D. K., Lewis acid catalyzed [2 + 2] cycloaddition of methyl 2,3-butadienoate to alkenes. J. Org. Chem. 1980, 45 (25), 5017-5020.64. Crombie, L.; Jenkins, P. A.; Mitchard, D. A., Heterogeneous catalytic hydrogenation of allenes over supported palladium: selectivity, stereoselectivity, and regioselectivity. J. Chem. Soc., Perkin Trans. 1 1975, (12), 1081-1090.65. Matsushita, K.; Suzuki, K.; Ohmori, K., Total Syntheses of Atrovenetin and Atrovenetinone: A Naphthalene-Annulation Approach to a Discoid Tricycle Using Allenic Acid. Synlett. 2017, 28 (8), 944-950.66. An, G.-i.; Ahn, H.; Castro, K. A. D.; Rhee, H., Pd/C and NaBH4 inBasic Aqueous Alcohol: An Efficient System for an EnvironmentallyBenign Oxidation of Alcohols. Synthesis. 2010, 2010 (3), 477-485.67. Leivers, M.; Miller, J. F.; Chan, S. A.; Lauchli, R.; Liehr, S.; Mo, W.; Ton, T.; Turner, E. M.; Youngman, M.; Falls, J. G.; Long, S.; Mathis, A.; Walker, J., Imidazopyridazine Hepatitis C Virus Polymerase Inhibitors. Structure Activity Relationship Studies and the Discovery of a Novel, Traceless Prodrug Mechanism. J. Med. Chem. 2014, 57 (5), 1964-1975.68. Smith, A. B.; Toder, B. H.; Branca, S. J.; Dieter, R. K., Lewis acid promoted decomposition of unsaturated .alpha.-diazo ketones. 1. An efficient approach to simple and annulated cyclopentenones. J. Am. Chem. Soc. 1981, 103 (8), 1996-2008.69. Snajdr, I.; Froese, J.; Dudding, T.; Horáková, P.; Hudlický, T., Investigation of a new chiral auxiliary derived chemoenzymatically from toluene: experimental and computational study. Can. J. Chem. 2016, 94 (10), 848-856.70. Tanaka, F.; Node, M.; Tanaka, K.; Mizuchi, M.; Hosoi, S.; Nakayama, M.; Taga, T.; Fuji, K., 1,1'-Binaphthalene-2,2'-diol as a Chiral Auxiliary. Diastereoselective Alkylation of Binaphthyl Esters, Complex-Induced Proximity Effects in Enolate Formation, and One-Step Synthesis of an Optically Active beta-Substituted Ketone. J. Am. Chem. Soc. 1995, 117 (49), 12159-12171.71. Fuji, K.; Node, M.; Tanaka, F., Complex-induced proximity effects in enolate formation. Highly diastereoselective a-methylation of binaphthyl esters of arylacetic acids. Tetrahedron Lett. 1990, 31 (45), 6553-6556.72. Fuji, K.; Node, M.; Tanaka, F.; Hosoi, S., Binaphthol as a chiral auxiliary. Asymmetrical alkylation of arylacetic acid. Tetrahedron Lett. 1989, 30 (21), 2825-2828.73. Yamazaki, J.; Watanabe, T.; Tanaka, K., Enantioselective synthesis of allenecarboxylates from phenyl acetates through C=C bond forming reactions. Tetrahedron: Asymmetry. 2001, 12 (4), 669-675.74. Ahmadi, A.; Naderi, N.; Daniali, M.; Kazemi, S.; Aazami, S.; Alizadeh, N.; Nahri-Niknafs, B., Synthesis and Pharmacological Evaluation of New Chemical Entities from Ibuprofen as Novel Analgesic Candidates. Drug Res. (Stuttg) 2015, 65 (9), 457-62.75. Rajagopal, R.; Srinivasan, K. V., Regio-selective Mono Nitration of Phenols with Ferric Nitrate in Room Temperature Ionic Liquid. Synth. Commun. 2003, 33 (6), 961-966.76. Haghnazari, N.; Karami, C.; Ghodrati, K.; Maleki, F., Nitration of phenols with Fe(NO3)3*9H2O in the presence of Nano-SiO2 as an efficient catalyst. Int. Nano Lett. 2011, 1 (1), 30-33.77. Liu, Y.; Zu, M.; Zou, X.; Zheng, Q.; Li, Y., Coordination-mediated radical nitration of methyl salicylate by ferric nitrate. Asian J. Chem. 2014, 26 (1), 241-246.78. Chan, W. N.; Hadley, M. S.; Harling, J. D.; Herdon, H. J.; Orlek, B. S.; Riley, G. J.; Stead, R. E. A.; Stean, T. O.; Thompson, M.; Upton, N.; Ward, R. W., Evaluation of a Series of Anticonvulsant 1,2,3,4-Tetrahydroisoquinolinyl-benzamides. Bioorg. Med. Chem. 2000, 8 (8), 2085-2094.79. Duan, H.; Zheng, J.; Lai, Q.; Liu, Z.; Tian, G.; Wang, Z.; Li, J.; Shen, J., 2-Phenylquinazolin-4(3H)-one, a class of potent PDE5 inhibitors with high selectivity versus PDE6. Bioorg. Med. Chem. Lett. 2009, 19 (10), 2777-2779.80. Golliher, A. E.; Tenorio, A. J.; Dimauro, N. O.; Mairata, N. R.; Holguin, F. O.; Maio, W., Using (+)-carvone to access novel derivatives of (+)-ent-cannabidiol: The first asymmetric syntheses of (+)-ent-CBDP and (+)-ent-CBDV. Tetrahedron Lett. 2021, 67, 152891.81. Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W., Boron Trichloride/Tetra-n-Butylammonium Iodide: A Mild, Selective Combination Reagent for the Cleavage of Primary Alkyl Aryl Ethers. J. Org. Chem. 1999, 64 (26), 9719-9721.82. Mondal, M.; Puranik, V. G.; Argade, N. P., A Facile Phenol-Driven Intramolecular Diastereoselective Thermal/Base-Catalyzed Dipolar [2 + 2] Annulation Reactions: An Easy Access to Complex Bioactive Natural and Unnatural Benzopyran Congeners. J. Org. Chem. 2007, 72 (6), 2068-2076.83. Koura, M.; Yamaguchi, Y.; Kurobuchi, S.; Sumida, H.; Watanabe, Y.; Enomoto, T.; Matsuda, T.; Okuda, A.; Koshizawa, T.; Matsumoto, Y.; Shibuya, K., Discovery of a 2-hydroxyacetophenone derivative as an outstanding linker to enhance potency and B-selectivity of liver X receptor agonist. Bioorg. Med. Chem. 2016, 24 (16), 3436-3446.84. Oshimoto, K.; Tsuji, H.; Kawatsura, M., Synthesis of benzoxazoles via the copper-catalyzed hydroamination of alkynones with 2-aminophenols. OBC. 2019, 17 (17), 4225-4229.85. Popat, V. R.; Padhiyar, N., Kinetic Study of Bechamp Process for p-Nitrotoluene Reduction to p-Toluidine. Int. J. Chem. Eng. 2013, 4, 401-405.86. Fushimi, N.; Fujikura, H.; Shiohara, H.; Teranishi, H.; Shimizu, K.; Yonekubo, S.; Ohno, K.; Miyagi, T.; Itoh, F.; Shibazaki, T.; Tomae, M.; Ishikawa-Takemura, Y.; Nakabayashi, T.; Kamada, N.; Ozawa, T.; Kobayashi, S.; Isaji, M., Structure-activity relationship studies of 4-benzyl-1H-pyrazol-3-yl B-d-glucopyranoside derivatives as potent and selective sodium glucose co-transporter 1 (SGLT1) inhibitors with therapeutic activity on postprandial hyperglycemia. Bioorg. Med. Chem. 2012, 20 (22), 6598-6612.87. Kim, A. N.; Stoltz, B. M., Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes. ACS Catalysis. 2020, 10 (23), 13834-13851.88. Karakhanov, É. A.; Viktorova, E. A., Hydrogenation and dehydrogenation reactions of benzofuran and its derivatives (review). Chem. Heterocycl. Compd. 1976, 12 (4), 367-375.89. Karakhanov, É. A.; Dedov, A. G.; Loktev, A. S., Hydrogenation of oxygen-containing heterocyclic compounds on group VIII metals. Chem. Heterocycl. Compd. 1981, 17 (10), 993-995.90. Grayson, D. H.; McCarthy, Ú.; Roycroft, E. D., Intramolecular acylative ring-switching reactions of 3-(tetrahydro-2-furyl)propanoic acid derivatives to give butanolides: mechanism and scope. OBC. 2003,1 (11), 1930-1937.91. Hodgson, H. H., The iodination of o-nitrophenol. J. Chem. Soc. 1927, 1141-1144.92. Darabi, H. R.; Aghapoor, K.; Tabar-Heidar, K., A Fast and Solvent-Free Conversion of Thioamides into Thioesters. Monatsh. für Chem / Monatsh. Chem. 2004, 135 (1), 79-81.93. Willgerodt, C., Ueber die Einwirkung von gelbem Schwefelammonium auf Ketone und Chinone. Ber. Dtsch. Chem. Ges. 1887, 20 (2), 2467-2470.94. Kindler, K., Studien über den Mechanismus chemischer Reaktionen. Erste Abhandlung. Reduktion von Amiden und Oxydation von Aminen. Liebigs Ann. 1923, 431 (1), 187-230.95. Dauben, W. G.; Ciula, R. P.; Rogan, J. B., Mechanism of the Willgerodt Reaction. Studies with 1-Tetralones1. J. Org. Chem. 1957, 22 (4), 362-365.96. Asinger, F.; Schäfer, W.; Halcour, K.; Saus, A.; Triem, H., Zum Verlauf der Willgerodt-Kindler-Reaktion bei Aryl-alkylketonen. Angew. Chem. Int. Ed. 1963, 75 (22), 1050-1059.97. Wagner, E.; Wittmann, H.-J.; Elz, S.; Strasser, A., Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH1R, but low affinity to hH4R. Bioorg. Med. Chem. Lett. 2011, 21 (21), 6274-6280.98. Xuan, Q.; Kong, W.; Song, Q., Copper(I)-Catalyzed Chemoselective Reduction of Benzofuran-2-yl Ketones to Alcohols with B2pin2 via a Domino-Borylation-Protodeboronation Strategy. J. Org. Chem. 2017, 82 (14), 7602-7607.99. Hirose, N.; Kuriyama, S.; Kato, Y.; Toyoshima, S., Antiinflammatory activity of some 2,3-dihydrobenzofuran-5-acetic acids and related compounds. J. Med. Chem. 1976, 19 (2), 303-308.100. Reichardt, C.; Che, D.; Heckenkemper, G.; Schäfer, G., Syntheses and UV/Vis-Spectroscopic Properties of Hydrophilic 2-, 3-, and 4-Pyridyl-Substituted Solvatochromic and Halochromic Pyridinium N-Phenolate Betaine Dyes as New Empirical Solvent Polarity Indicators. Eur. JOC. 2001, 2001 (12), 2343-2361.101. Pokhodylo, N. T.; Savka, R. D.; Matiichuk, V. S.; Obushak, N. D., Synthesis and selected transformations of 1-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)ethanones and 1-[4-(4-R-5-methyl-1H-1,2,3-triazol-1-yl)phenyl]ethanones. Russ. J. Gen. Chem. 2009, 79 (2), 309.102. Press, J. B.; McNally, J. J., Thiophene systems. 10. The synthesis and chemistry of some thienopyridinols. J. Heterocycl. Chem. 1988, 25 (5), 1571-1581.103. Hall, A.; Billinton, A.; Brown, S. H.; Chowdhury, A.; Giblin, G. M. P.; Goldsmith, P.; Hurst, D. N.; Naylor, A.; Patel, S.; Scoccitti, T.; Theobald, P. J., Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping. Bioorg. Med. Chem. Lett. 2008, 18 (8), 2684-2690.104. Mollin, J.; Labodová, A., On mechanism of base-catalysed hydrolysis of thioamides. Collection of Czechoslovak ChemComm. 1977, 42 (2), 517-523.105. Bedoya, M.; Rinné, S.; Kiper, A. K.; Decher, N.; González, W.; Ramírez, D., TASK Channels Pharmacology: New Challenges in Drug Design. J. Med. Chem. 2019, 62 (22), 10044-10058.106. Latli, B.; Stiasni, M.; Hrapchak, M.; Li, Z.; Grinberg, N.; Lee, H.; Busacca, C. A.; Senanayake, C. H., Buscopan labeled with carbon-14 and deuterium. J. Label. Compd. Radiopharm. 2016, 59 (13), 557-564.107. Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H., Iodine Catalyzes Efficient and Chemoselective Thioacetalization of Carbonyl Functions, Transthioacetalization of O,O- and S,O-Acetals and Acylals. J. Org. Chem. 2001, 66 (22), 7527-7529.108. Yadav, J. S.; Reddy, B. V. S.; Sreelakshmi, C.; Narayana Kumar, G. G. K. S.; Rao, A. B., Enantioselective reduction of 2-substituted tetrahydropyran-4-ones using Daucus carota plant cells. Tetrahedron Lett. 2008, 49 (17), 2768-2771.109. Neises, B.; Steglich, W., Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. 1978, 17 (7), 522-524.110. Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L., Use of Pseudoephedrine as a Practical Chiral Auxiliary for Asymmetric Synthesis. J. Am. Chem. Soc. 1994, 116 (20), 9361-9362.111. Pearson, R. G., Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.112. Pearson, R. G., Hard and soft acids and bases, HSAB, part 1: ACS. 1968, 45 (9), 581.113. Pearson, R. G., Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ. 1968, 45 (10), 643.114. Pummerer, R., Über Phenyl-sulfoxyessigsäure. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2282-2291.115. Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N., Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev. 2019, 119 (14), 8701-8780.116. Gamba-Sánchez, D.; Garzón-Posse, F., Pummerer-Type Reactions as Powerful Tools in Organic Synthesis. Curr. Org. Synth. 2015, pp 661-702.117. Acosta-Guzmán, P.; Rodríguez-López, A.; Gamba-Sánchez, D., Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org. Lett. 2019, 21 (17), 6903-6908.118. Cao, Y.-J.; Lai, Y.-Y.; Cao, H.; Xing, X.-N.; Wang, X.; Xiao, W.-J., A highly efficient carbon sulfur bond formation reaction via microwave-assisted nucleophilic substitution of thiols to polychloroalkanes without a transition-metal catalyst. Can. J. Chem. 2006, 84 (11), 1529-1533.119. Xie, H.-Q.; Truong, N.; Buncel, E.; Purdon, J. G., Basicity, nucleophilicity, and nucleofugality in the elimination substitution reactions of -phenylmercaptoethyl phenolates in DMSO-ethanol media. Can. J. Chem. 1994, 72 (2), 448-453.120. Dey, D.; Pathak, T., Enantiopure Trisubstituted Tetrahydrofurans with Appendage Diversity: Vinyl Sulfone- and Vinyl Sulfoxide-Modified Furans Derived from Carbohydrates as Synthons for Diversity Oriented Synthesis. Molecules. 2016, 21 (6), 690.121. Baldwin, J. E.; Lusch, M. J., Rules for ring closure: application to intramolecular aldol condensations in polyketonic substrates. Tetrahedron Lett. 1982, 38 (19), 2939-2947.122. Baldwin, J. E.; Kruse, L. I., Rules for ring closure. Stereoelectronic control in the endocyclic alkylation of ketone enolates. J. Chem. Soc, ChemComm. 1977, (7), 233-235.123. Henner, P.; Schiavon, M.; Morel, J.-L.; Lichtfouse, E., Polycyclic Aromatic Hydrocarbons (PAHs) Occurrence and Remediation Methods. Analysis. 1997, 25.124. Harvey, R. G., Bridged polycyclic aromatic hydrocarbons. A review. Org. Prep. Proced. Int. 1997, 29 (3), 243-283.125. Honda, M.; Suzuki, N., Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. 2020, 17 (4), 1363.126. Patel, A. B.; Shaikh, S.; Jain, K. R.; Desai, C.; Madamwar, D., Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11.127. Makar, S.; Saha, T.; Singh, S. K., Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem. 2019, 161, 252-276.128. Mallory, F. B.; Butler, K. E.; Evans, A. C.; Brondyke, E. J.; Mallory, C. W.; Yang, C.; Ellenstein, A., Phenacenes: A Family of Graphite Ribbons. 2. Syntheses of Some [7]Phenacenes and an [11]Phenacene by Stilbene-like Photocyclizations. J. Am. Chem. Soc. 1997, 119 (9), 2119-2124.129. Ma, E.; Jeong, S.-J.; Choi, J.-S.; Nguyen, T. H.; Jeong, C.-H.; Joo, S. H., MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation. Biomol Ther. 2019, 27 (1), 48-53.130. Gurung, S. K.; Dana, S.; Mandal, K.; Mukhopadhyay, P.; Mondal, N., Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem.-Biol. Interact. 2019, 304, 106-123.131. Wang, Y.; Zhang, X.; Zhao, J.; Xie, S.; Wang, C., Nonhematotoxic Naphthalene Diimide Modified by Polyamine: Synthesis and Biological Evaluation. J. Med. Chem. 2012, 55 (7), 3502-3512.132. Lee, M. H.; Lapidus, R. G.; Ferraris, D.; Emadi, A., Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules. 2019, 24 (17), 3121.133. Xu, W.-T.; Shen, G.-N.; Luo, Y.-H.; Piao, X.-J.; Wang, J.-R.; Wang, H.; Zhang, Y.; Li, J.-Q.; Feng, Y.-C.; Zhang, Y.; Zhang, T.; Wang, S.-N.; Wang, C.-Y.; Jin, C.-H., New naphthalene derivatives induce human lung cancer A549cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chem.-Biol. Interact. 2019, 304, 148-157.134. Arshad, A.; Arshad, I.; Humayun, M.; Malik, A., Modulation of Oxidative Status under Naphthalene Induced Nephrotoxicity in Mice. Pakistan J. Med. Sci. 2020, 14 (1), 20-25.135. Zhang, Y.; Zhang, Q.; Xin, W.; Liu, N.; Zhang, H., Nudol, a phenanthrene derivative from Dendrobium nobile, induces cell cycle arrest and apoptosis and inhibits migration in osteosarcoma cells. Drug Des. Dev. 2019, 13, 2591-2601.136. Hou, J.-w.; Fei, Y.-d.; Li, W.; Chen, Y.-h.; Wang, Q.; Xiao, Y.; Wang, Y.-p.; Li, Y.-g., The transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol modulates cardiac sodium channel. Br. J. Pharmacol. 2018, 175 (23), 4325-4337.137. Some, S.; Dutta, B.; Ray, J. K., Synthesis of substituted benzene derivatives by homo- and hetero-coupling of 2-bromobenzaldehyde and bromovinylaldehydes followed by McMurry coupling. Tetrahedron Lett. 2006, 47 (7), 1221-1224.138. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold(I)-catalyzed double migration cascades toward (1E,3E)-dienes and naphthalenes. Tetrahedron Lett. 2009, 65 (9), 1859-1870.139. Dudnik, A. S.; Schwier, T.; Gevorgyan, V., Gold-Catalyzed Double Migration-Benzannulation Cascade toward Naphthalenes. Org. Lett. 2008, 10 (7), 1465-1468.140. Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J., Rhodium(II)-Catalyzed Cyclization of Bis(N-tosylhydrazone)s: An Efficient Approach towards Polycyclic Aromatic Compounds. Angew. Chem. Int. Ed. 2012, 51 (23), 5714-5717.141. Zhu, C.; Qiu, L.; Xu, G.; Li, J.; Sun, J., Base-Promoted/Gold-Catalyzed Intramolecular Highly Selective and Controllable Detosylative Cyclization. Chemistry - Chem. Eur. J. 2015, 21 (37), 12871-12875.142. Nonoyama, Y.; Yaguchi, K.; Kinoshita, H.; Miura, K., Cyclization of 1-ethynyl-2-alkenylbenzenes to naphthalenes using Et2AlCl and DIBAL-H. Tetrahedron Lett. 2021, 62, 152682.143. Kurteva, V. B.; Santos, A. G.; Afonso, C. A. M., Microwave accelerated facile synthesis of fused polynuclear hydrocarbons in dry media by intramolecular Friedel-Crafts alkylation. OBC. 2004, 2 (4), 514-523.144. Hong, D. J.; Kim, D. W.; Chi, D. Y., Facile ring-closure cyclization of arenes by nucleophilic C-alkylation reaction in ionic liquid. Tetrahedron Lett. 2010, 51 (1), 54-56.145. Sakai, N.; Kobayashi, T.; Ogiwara, Y., One-pot Synthesis of Tetralin Derivatives from 3-Benzoylpropionic Acids: Indium-catalyzed Hydrosilylation of Ketones and Carboxylic Acids and Intramolecular Cyclization. Chem Lett. 2015, 44 (11), 1503-1505.146. Wünsch, B., Eine neue Methode zur Darstellung von 3-Alkoxy- und 3-Hydroxy-3,4-dihydro-1H-2-benzopyranen. Arch. Pharm. 1990, 323 (8), 493-499.147. Maryanoff, B. E.; Reitz, A. B., The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989, 89 (4), 863-927.148. Takahashi, I.; Hayashi, M.; Fujita, T.; Ichikawa, J., Brønsted Acid-catalyzed Tandem Cycloaromatization of Naphthalene-based Bisacetals: Selective Synthesis of ortho-Fused Six-hexagon Benzenoids. Chem. Lett. 2017, 46 (3), 392-394.149. Banerjee, A.; Maji, M. S., A Brønsted Acid Catalyzed Cascade Reaction for the Conversion of Indoles to a-(3-Indolyl) Ketones by Using 2-Benzyloxy Aldehydes. Chemistry - Chem. Eur. J. 2019, 25 (49), 11521-11527.150. Miyaura, N.; Suzuki, A., Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, ChemComm. 1979, (19), 866-867.151. Beletskaya, I. P.; Alonso, F.; Tyurin, V., The Suzuki-Miyaura reaction after the Nobel prize. Coordination Chem. Rev. 2019, 385, 137-173.152. Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S., Recent advances in the Suzuki Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Curr. 2019, 21 (3), 381-405.153. Cousaert, N.; Toto, P.; Willand, N.; Deprez, B., Efficient, protection-free Suzuki Miyaura synthesis of ortho-biphenyltetrazoles. Tetrahedron Lett. 2005, 46 (38), 6529-6532.154. Molina de la Torre, J. A.; Espinet, P.; Albéniz, A. C., Solvent-Induced Reduction of Palladium-Aryls, a Potential Interference in Pd Catalysis. Organometallics. 2013, 32 (19), 5428-5434.155. Sherwood, J.; Clark, J. H.; Fairlamb, I. J. S.; Slattery, J. M., Solvent effects in palladium catalysed cross-coupling reactions. Curr. 2019, 21 (9), 2164-2213.156. Casares, J. A.; Espinet, P.; Salas, G., 14-Electron T-Shaped [PdRXL] Complexes: Evidence or Illusion? Mechanistic Consequences for the Stille Reaction and Related Processes. Chemistry Chem. Eur. J. 2002, 8 (21), 4843-4853.157. Zhang, D.; Yang, D.; Wang, S.; Zeng, L.; Xin, J.; Zhang, H.; Lei, A., The Real Structure of Pd(OAc)2 in Various Solvents. Chin. J. Chem. 2021, 39 (2), 307-311.158. Hashemi Fath, R.; Hoseini, S. J., Covalently cyclopalladium(II) complex/reduced-graphene oxide as the effective catalyst for the Suzuki Miyaura reaction at room temperature. J. Organomet. Chem. 2017, 828, 16-23.159. Liu, Y.; Song, R.-J.; Li, J.-H., Palladium-catalyzed dearomatizative [2 + 2 + 1] carboannulation of 1,7-enynes with aryl diazonium salts and H2O: facile synthesis of spirocyclohexadienone-fused cyclopenta[c]quinolin-4(5H)-ones. ChemComm. 2017, 53 (61), 8600-8603.160. Lima, C. F. R. A. C.; Rodrigues, A. S. M. C.; Silva, V. L. M.; Silva, A. M. S.; Santos, L. M. N. B. F., Role of the Base and Control of Selectivity in the Suzuki Miyaura Cross-Coupling Reaction. ChemCatChem. 2014, 6 (5), 1291-1302.161. Ishiyama, T.; Ishida, K.; Miyaura, N., Synthesis of pinacol arylboronates via cross-coupling reaction of bis(pinacolato)diboron with chloroarenes catalyzed by palladium(0) tricyclohexylphosphine complexes. Tetrahedron Lett.2001, 57 (49), 9813-9816.162. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The J. Org. Chem. 1995, 60 (23), 7508-7510.163. Martínez, A. G.; Herrera, A.; Martínez, R.; Teso, E.; García, A.; Osío, J.; Pargada, L.; Unanue, R.; Subramanian, L. R.; Hanack, M., A new and convenient synthesis of alkyl and aryl pyrimidines. J. Heterocycl. Chem. 1988, 25 (4), 1237-1241.164. Watanabe, T.; Miyaura, N.; Suzuki, A., Synthesis of Sterically Hindered Biaryls via the Palladium-Catalyzed Cross-Coupling Reaction of Arylboronic Acids or their Esters with Haloarenes. Synlett 1992, 1992, 207-210.165. Amatore, C.; Jutand, A.; Le Duc, G., Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base. Chemistry Chem. Eur. J. 2011, 17 (8), 2492-2503.166. Xia, J.; Fu, Y.; He, G.; Sun, X.; Wang, X., Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl. Catal. B 2017, 200, 39-46.167. Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, C. S., Copper-Facilitated Suzuki Reactions: Application to 2-Heterocyclic Boronates. Org. Lett. 2009, 11 (2), 345-347.168. Snyder, S. A.; Brucks, A. P.; Treitler, D. S.; Moga, I., Concise Synthetic Approaches for the Laurencia Family: Formal Total Syntheses of (±)-Laurefucin and (±)-E- and (±)-Z-Pinnatifidenyne. J. Am. Chem. Soc. 2012, 134 (42), 17714-17721.169. Chang, C.; Chu, K. C.; Yue, S., Anhydrous Deprotection of Dimethyl Acetals with Acetyl Chloride/ZnCl2. Synth. Commun. 1992, 22 (8), 1217-1220.170. Foote, K. M.; Hayes, C. J.; John, M. P.; Pattenden, G., Synthetic studies towards the phomactins. Concise syntheses of the tricyclic furanochroman and the oxygenated bicyclo[9.3.1]pentadecane ring systems in phomactin A. OBC. 2003, 1 (22), 3917-3948.171. Ballini, R.; Petrini, M., Facile and Inexpensive Synthesis of 4-Oxoalkanoic Acids from Primary Nitroalkanes and Acrolein. Synthesis. 1986, 1986, 1024-1026.172. Xu, Y.-z.; Yakushijin, K.; Horne, D. A., Synthesis of C11N5 Marine Sponge Alkaloids: (±)-Hymenin, Stevensine, Hymenialdisine, and Debromohymenialdisine. J. Org. Chem. 1997, 62 (3), 456-464.173. Barrios Sosa, A. C.; Yakushijin, K.; Horne, D. A., Controlling cyclizations of 2-pyrrolecarboxamidoacetals. Facile solvation of B-amido aldehydes and revised structure of synthetic homolongamide. Tetrahedron Lett. 2000, 41 (22), 4295-4299.174. Goldring, W. P. D.; Paden, W. T., A ring-closing metathesis approach to the bicyclo[4.3.1]decane core of caryolanes. Tetrahedron Lett. 2011, 52 (8), 859-862.175. Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magrath, J., Ferric Chloride Hexahydrate: A Mild Hydrolytic Agent for the Deprotection of Acetals. J. Org. Chem. 1997, 62 (19), 6684-6686.176. Kocienski, P. J.; Street, S. D. A.; Yeates, C.; Campbell, S. F., A directed aldol approach to (+)-milbemycin B3. J. Chem. Soc. Perkin Trans. 1 1987, 2171-2181.177. Ma, R.; Liu, A.-H.; Huang, C.-B.; Li, X.-D.; He, L.-N., Reduction of sulfoxides and pyridine-N-oxides over iron powder with water as hydrogen source promoted by carbon dioxide. Curr. 2013, 15 (5), 1274-1279.178. Porwal, D.; Oestreich, M., B(C6F5)3-Catalyzed Reduction of Sulfoxides and Sulfones to Sulfides with Hydrosilanes. Synthesis 2017, 49 (20), 4698-4702.179. Enthaler, S., A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catal. Sci. Technol. 2011, 1 (1), 104-110.180. Bahrami, K.; Khodaei, M. M.; Karimi, A., Mild and Efficient Deoxygenation of Sulfoxides to Sulfides with Triflic Anhydride/Potassium Iodide Reagent System. Synthesis. 2008, 2008 (16), 2543-2546.181. Abbasi, M.; Mohammadizadeh, M. R.; Moradi, Z., Efficient reduction of sulfoxides with NaHSO3 catalyzed by I2. Tetrahedron Lett. 2015, 56 (47), 6610-6613.182. Bhatia, G. S.; Graczyk, P. P., A mild protocol for the deoxygenation of a-hydrogen-containing sulfoxides to the corresponding sulfides. Tetrahedron Lett. 2004, 45 (27), 5193-5195.183. Jang, Y.; Kim, K. T.; Jeon, H. B., Deoxygenation of Sulfoxides to Sulfides with Thionyl Chloride and Triphenylphosphine: Competition with the Pummerer Reaction. J. Org. Chem. 2013, 78 (12), 6328-6331.184. Zhao, X.; Zheng, X.; Yang, B.; Sheng, J.; Lu, K., Deoxygenation of sulphoxides to sulphides with trichlorophosphane. OBC.2018, 16 (7), 1200-1204.185. Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.; Simonsen, K. B., Novel Reactions Initiated by Titanocene Methylidenes: Deoxygenation of Sulfoxides, N-Oxides, and Selenoxides. Angew. Chem. Int. Ed. 2000, 39 (14), 2529-2533.186. Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Hydrogenation of Sulfoxides to Sulfides under Mild Conditions Using Ruthenium Nanoparticle Catalysts. Angew. Chem. Int. Ed. 2014, 53 (32), 8348-8351.187. Fu, Z.; Li, Z.; Song, Y.; Yang, R.; Liu, Y.; Cai, H., Decarboxylative Halogenation and Cyanation of Electron-Deficient Aryl Carboxylic Acids via Cu Mediator as Well as Electron-Rich Ones through Pd Catalyst under Aerobic Conditions. J. Org. Chem. 2016, 81 (7), 2794-2803.188. Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N., Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Org. Lett. 2015, 17 (12), 2886-2889.189. Singh, J.; Yadav, D.; Singh, J. D., En Route Activity of Hydration Water Allied with Uranyl (UO22+) Salts Amid Complexation Reactions with an Organothio-Based (O, N, S) Donor Base. Inorg 2019, 58 (8), 4972-4978.190. Miki, K.; Kohki, I.; Rumi, K.; Hideki, K., Stereoselective Syntheses of (E) a-,B-Didehydroamino Acid and Peptide Containing Its Residue Utilizing Oxazolidinone Derivative. Bull. Chem. Soc. Jpn. 2009, 82 (3), 364-380.191. Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N., Ecological Base-Conditioned Preparation of Dipeptides Using Unprotected a-Amino Acids Containing Hydrophilic Side Chains. Bull. Chem. Soc. Jpn. 2017, 90 (6), 689-696.192. Serpier, F.; Brayer, J.-L.; Folléas, B.; Darses, S., Access to Polyfunctionalized Chiral Piperidines through Enantioselective Addition Carbocyclization Cascade Reaction Catalyzed by a Rhodium(I) Diene Complex. Org. Lett. 2015, 17 (21), 5496-5499.193. Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sánchez, D., Transamidation of Carboxamides Catalyzed by Fe(III) and Water. J. Org. Chem. 2014, 79 (10), 4544-4552.194. Wang, B.; Liu, Y.; Lin, C.; Xu, Y.; Liu, Z.; Zhang, Y., Synthesis of Sulfur-Bridged Polycycles via Pd-Catalyzed Dehydrogenative Cyclization. Org. Lett. 2014, 16 (17), 4574-4577.195. Schevenels, F. T.; Shen, M.; Snyder, S. A., Alkyldisulfanium Salts: Isolable, Electrophilic Sulfur Reagents Competent for Polyene Cyclizations. Org. Lett. 2017, 19 (1), 2-5.196. Yang, T.; Liu, Q.; Cheng, Y.; Cai, W.; Ma, Y.; Yang, L.; Wu, Q.; Orband-Miller, L. A.; Zhou, L.; Xiang, Z.; Huxdorf, M.; Zhang, W.; Zhang, J.; Xiang, J.-N.; Leung, S.; Qiu, Y.; Zhong, Z.; Elliott, J. D.; Lin, X.; Wang, Y., Discovery of Tertiary Amine and Indole Derivatives as Potent RORt Inverse Agonists. ACS Med. Chem. Lett. 2014, 5 (1), 65-68.197. Abe, H.; Fujii, H.; Masunari, C.; Itani, J.; Kashino, S.; Shibaike, K.; Harayama, T., Construction of 1,3-Oxathiane Ring through Pummerer Reaction of gamma, delta-Unsaturated Sulfinyl Compounds. Chem. Pharm. Bull. 1997, 45 (5), 778-785.198. Hiessböck, R.; Kratzel, M., Synthesis of [1,4]dioxino[2,3-c]quinolines and [1,4]dioxepino-[2,3-c]quinolines and their 1-sulfur analogues. J. Heterocycl. Chem. 1999, 36 (5), 1295-1300.199. Barry, C. N.; Baumrucker, S. J.; Andrews, R. C.; Evans, S. A., Cyclodehydration and selective chlorination of trans-2-hydroxycyclohexyl 2-hydroxyethyl sulfide with triphenylphosphine and tetrachloromethane. J. Org. Chem. 1982, 47 (20), 3980-3983.200. Konstantinova, T. V.; Dyubankova, N. N.; Klykov, V. N.; Maslov, M. A.; Serebrennikova, G. A., The Synthesis of Cationic Glycerolipid Acetals Containing Aliphatic and Heterocyclic Bases. Russ. J. Bioorganic Chem. 2002, 28 (2), 158-161.201. Xu, H.; Lv, M.; Tian, X., A Review on Hemisynthesis, Biosynthesis, Biological Activities, Mode of Action, and Structure-Activity Relationship of Podophyllotoxins: 2003- 2007. Curr. Med. Chem. 2009, 16 (3), 327-349.202. Mooradian, A. D.; Morley, J. E.; Korenman, S. G., Biological Actions of Androgens. Endocr. Rev. 1987, 8 (1), 1-28.203. Fels, E., Treatment of Breast Cancer with Testosterone Propionate. J. Clin. Endocrinol. Metab. 1944, 4 (3), 121-125.204. Katsiki, N.; Tsioufis, K.; Ural, D.; Volpe, M., Fifteen years of LIFE (Losartan Intervention for Endpoint Reduction in Hypertension) Lessons learned for losartan: An old dog playing good tricks. J. Clin. Hypertens. 2018, 20 (8), 1153-1159.205. Esu, E.; Effa, E. E.; Opie, O. N.; Uwaoma, A.; Meremikwu, M. M., Artemether intramuscular injection for severe malaria in children. CDSR. 2013, (8).206. Skrzypek, R.; Callaghan, R., The "pushmi-pullyu" of resistance to chloroquine in malaria. Essays Biochem. 2017, 61 (1), 167-175.207. Cheng, E., Proton pump inhibitors for eosinophilic oesophagitis. Curr. Opin. Gastroenterol. 2013, 29 (4), 416-420.208. Movahedi, F.; Li, L.; Gu, W.; Xu, Z. P., Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomed. J. 2017, 12 (20), 2555-2574.209. Cannizzaro, S., Ueber den der Benzoësäure entsprechenden Alkohol. Justus Liebigs Ann. Chem. 1853, 88 (1), 129-130.210. Strässler, C.; Linden, A.; Heimgartner, H., Novel Heterospirocyclic 3-Amino-2H-azirines as Synthons for Heterocyclic a-Amino Acids. Helv. Chim. Acta 1997, 80 (5), 1528-1554.211. Lowe, R. F.; Nelson, J.; Dang, T. N.; Crowe, P. D.; Pahuja, A.; McCarthy, J. R.; Grigoriadis, D. E.; Conlon, P.; Saunders, J.; ChenChen; Szabo, T.; Chen, T. K.; Bozigian, H., Rational Design, Synthesis, and Structure-Activity Relationships of Aryltriazoles as Novel Corticotropin-Releasing Factor-1 Receptor Antagonists. J. Med. Chem. 2005, 48 (5), 1540-1549.212. Müller, P.; Chappellet, S., Asymmetric 1,3-Dipolar Cycloadditions of 2-Diazocyclohexane-1,3-diones and Alkyl Diazopyruvates. Helv. Chim. Acta. 2005, 88 (5), 1010-1021.213. Ramkumar, N.; Nagarajan, R., Total Synthesis of Calothrixin A and B via C-H Activation. J. Org. Chem. 2013, 78 (6), 2802-2807.214. Becerra-Cely, L.; Rueda-Espinosa, J.; Ojeda-Porras, A.; Gamba-Sánchez, D., Insights into the Pummerer synthesis of oxazolines. OBC. 2016, 14 (36), 8474-8485.215. Gardner, J. N.; Kaiser, S.; Krubiner, A.; Lucas, H., A Facile Reduction of Sulfones to Sulfides. Can. J. Chem. 1973, 51 (9), 1419-1421.216. Akgün, E.; Mahmood, K.; Mathis, C. A., Rapid reduction of sulfones to sulfides using LiAlH4 TiCl4. J. Chem. Soc., Chem. Commun. 1994, (6), 761-762.217. Wu, P.-Y.; Wu, H.-L.; Uang, B.-J., Asymmetric Synthesis of Functionalized Diarylmethanols Catalyzed by a New y-Amino Thiol. J. Org. Chem. 2006, 71 (2), 833-835.218. Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. G., Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis. 2017, 49 (04), 917-924.219. Shen, T.; Wang, T.; Qin, C.; Jiao, N., Silver-Catalyzed Nitrogenation of Alkynes: A Direct Approach to Nitriles through C-C Bond Cleavage. Angew. Chem. Int. Ed. 2013, 52 (26), 6677-6680.220. Bull, J. A.; Mousseau, J. J.; Charette, A. B., Convenient One-Pot Synthesis of (E)-B-Aryl Vinyl Halides from Benzyl Bromides and Dihalomethanes. Org. Lett. 2008, 10 (23), 5485-5488.221. Kotovshchikov, Y. N.; Latyshev, G. V.; Lukashev, N. V.; Beletskaya, I. P., An Efficient Approach to Azolyl-Substituted Steroids through Copper-Catalyzed Ullmann C-N Coupling. Eur. J. Org. Chem. 2013, 2013 (34), 7823-7832.201629460Publication768cde9e-dd3c-49a0-b6fb-5b47a0eeefdavirtual::15102-1768cde9e-dd3c-49a0-b6fb-5b47a0eeefdavirtual::15102-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785261virtual::15102-1ORIGINALTesis Camilo Mahecha.pdfTesis Camilo Mahecha.pdfTesis doctoradoapplication/pdf8835639https://repositorio.uniandes.edu.co/bitstreams/b3967e01-f851-47b7-b101-68a71f675da1/download3ea26d5634578dd53dce848d6ec626c7MD52formato entrega tesis 1 Firmado firmado por Diego.pdfformato entrega tesis 1 Firmado firmado por Diego.pdfHIDEapplication/pdf245272https://repositorio.uniandes.edu.co/bitstreams/4bb3c79f-eda1-48dd-99a7-9ce0111e9c68/download504fef28ee28c871e5e5240c86d29e9eMD53TEXTTesis Camilo Mahecha.pdf.txtTesis Camilo Mahecha.pdf.txtExtracted texttext/plain501682https://repositorio.uniandes.edu.co/bitstreams/9a82e13c-3663-4701-9af5-1cf67a95429f/downloadef8c93bd9695609ab3c06610d8a36d20MD54formato entrega tesis 1 Firmado firmado por Diego.pdf.txtformato entrega tesis 1 Firmado firmado por Diego.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/81c7899d-c491-4610-a0b1-730141253da7/download4491fe1afb58beaaef41a73cf7ff2e27MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/1fe85593-3400-4d27-a765-daa682f95d75/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTesis Camilo Mahecha.pdf.jpgTesis Camilo Mahecha.pdf.jpgIM Thumbnailimage/jpeg20145https://repositorio.uniandes.edu.co/bitstreams/f0ad0025-21b8-4952-bafc-62d43cde371b/downloadc153eb10e5cf288474aabb9fd37c962dMD55formato entrega tesis 1 Firmado firmado por Diego.pdf.jpgformato entrega tesis 1 Firmado firmado por Diego.pdf.jpgIM Thumbnailimage/jpeg16352https://repositorio.uniandes.edu.co/bitstreams/571c16d2-23e8-4458-8a78-f74304629cbe/download005b24f72a442e39df7f658990e11c22MD571992/59375oai:repositorio.uniandes.edu.co:1992/593752024-03-13 15:22:18.763http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==