Development of surface correction software for medical image segmentation
ARDS (Acute respiratory distress syndrome) is a severe and life-threatening respiratory syn- drome, characterized by lung inflammation, infiltration, alveolar edema and progressive hypox- emia. It is not the result of a specific condition, but rather a complication that can arise from existing condi...
- Autores:
-
Garzón Robayo, Pablo Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/69227
- Acceso en línea:
- http://hdl.handle.net/1992/69227
- Palabra clave:
- Medical imaging
3d meshes
ARDS
3d surfaces
Medical segmentation correction
Medical software
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_f2e88ce1123571c96fd74a2506599d7f |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/69227 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Development of surface correction software for medical image segmentation |
title |
Development of surface correction software for medical image segmentation |
spellingShingle |
Development of surface correction software for medical image segmentation Medical imaging 3d meshes ARDS 3d surfaces Medical segmentation correction Medical software Ingeniería |
title_short |
Development of surface correction software for medical image segmentation |
title_full |
Development of surface correction software for medical image segmentation |
title_fullStr |
Development of surface correction software for medical image segmentation |
title_full_unstemmed |
Development of surface correction software for medical image segmentation |
title_sort |
Development of surface correction software for medical image segmentation |
dc.creator.fl_str_mv |
Garzón Robayo, Pablo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Orkisz, Maciej Dávila Serrano, Eduardo Enrique Hernández Hoyos, Marcela |
dc.contributor.author.none.fl_str_mv |
Garzón Robayo, Pablo Andrés |
dc.subject.keyword.none.fl_str_mv |
Medical imaging 3d meshes ARDS 3d surfaces Medical segmentation correction Medical software |
topic |
Medical imaging 3d meshes ARDS 3d surfaces Medical segmentation correction Medical software Ingeniería |
dc.subject.themes.es_CO.fl_str_mv |
Ingeniería |
description |
ARDS (Acute respiratory distress syndrome) is a severe and life-threatening respiratory syn- drome, characterized by lung inflammation, infiltration, alveolar edema and progressive hypox- emia. It is not the result of a specific condition, but rather a complication that can arise from existing conditions or as a result of infection and injuries. In most cases, patients require exten- sive care and mechanical breathing until the underlying condition is treated and the patient can use their lungs correctly. An essential step in ARDS treatment is the segmentation of CT(computerized tomography) images used to assess the lung conditions. However, such activity can be very time consuming if done manually, therefore, there is a lot of work being done to develop AI(Artificial Intelligence) automated methods that can provide rapid and accurate segmentations. Although the use of AI Has shown promising accuracy, errors can present themselves in some cases. Consequently, the development of such methods requires a mechanism for correcting erroneous segmentations, so that specialists can use them immediately on patients and to facilitate retraining of the existing AI models. Subsequently, this work focuses on the development and improvement of correction tools for resulting lung segmentations created by AI. The tools take advantage of the 3D mask created from the AI, utilize it as a 3D surface and operate directly on the mesh representing it, something which is not usually done on segmentation editing software. This way, the developed tools integrate numerous mesh editing techniques focused on the modification of a 3D mesh representing a lung surface. The development was done on the existing creaSDRA medical software which integrates multiple modules used in the segmentation process. Ultimately, the majority of the existing tools underwent substantial modifications to align with the specified requirements, augment their functionality, and optimize their usability. This comprehensive set of tools encompassed a deformation tool, a smoothing tool, and two surface- based tools. Moreover, in order to enhance the overall functionality and user experience of the software, two supplementary tools were developed, accompanied by multiple user interface (UI) changes. These enhancements collectively aimed to improve the efficacy and usability of the software solution. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-04T18:20:11Z |
dc.date.available.none.fl_str_mv |
2023-08-04T18:20:11Z |
dc.date.issued.none.fl_str_mv |
2023-08-03 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/69227 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/69227 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Rhino3dmedical. https://rhino3dmedical.com/, 2022. Mirrakoi. Key features of maya. https://www.autodesk.com/products/maya/features, 2023. Autodesk Inc Rhinoceros 3d. https://www.rhino3d.com/, 2023. Robert McNeel & Associates. The black box toolkit. https://www.creatis.insa-lyon.fr/site7/en/CreatoolsBBTK, n.d. CREATIS (Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé). L. Ball, V. Vercesi, F. Costantino, K. Chandrapatham, and P. Pelosi. Lung imaging: How to get better look inside the lung. Annals of Translational Medicine, 5(14):294, 2017. doi: 10.21037/atm.2017.07.20. URL https://doi.org/10.21037/atm.2017.07.20. G. Bellani, J. G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. van Haren, A. Larsson, D. F. McAuley, M. Ranieri, G. Rubenfeld, B. T. Thompson, H. Wrigge, A. S. Slutsky, A. Pesenti, for the LUNG SAFE Investigators, and the ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315(8):788-800, 02 2016. ISSN 0098-7484. doi: 10.1001/jama.2016.0291. URL https://doi.org/10.1001/jama.2016.0291. L. Bitker, D. Talmor, and J.-C. Richard. Imaging the acute respiratory distress syndrome: Past, present and future. Intensive Care Medicine, 48(8):995-1008, 2022. doi: 10.1007/s00134-022-06809-8. URL https://doi.org/10.1007/s00134-022-06809-8. M. Diamond, H. L. Peniston, D. K. Sanghavi, et al. Acute respiratory distress syndrome. In StatPearls. StatPearls Publishing, Treasure Island (FL), updated edition, April 6 2023. URL https://www.ncbi.nlm.nih.gov/books/NBK436002/. T. A. D. T. Force*. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 307(23):2526-2533, 06 2012. ISSN 0098-7484. doi: 10.1001/jama.2012.5669. URL https://doi.org/10.1001/jama.2012.5669. P. G. Gibson, L. Qin, and S. H. Puah. Covid-19 acute respiratory distress syndrome (ards): Clinical features and differences from typical pre-covid-19 ards. The Medical Journal of Australia, 213(2):54-56.e1, 2020. doi: 10.5694/mja2.50674. URL https://doi.org/10.5694/mja2.50674. H. Johnson, M. McCormick, and L. Ibanez. The ITK Software Guide: Design and Functionality. Kitware Inc., fourth edition, 2015. ISBN 978-1-930934-28 R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences, 95(15):8431-8435, 1998. doi: 10.1073/pnas.95.15.8431. URL https://www.pnas.org/doi/abs/10.1073/pnas.95.15.8431. R. Marshall, G. Bellingan, and G. Laurent. The acute respiratory distress syndrome: Fibrosis in the fast lane. Thorax, 53(9):815-817, 1998 N. J. Meyer, L. Gattinoni, and C. S. Calfee. Acute respiratory distress syndrome. The Lancet, 398(10300):622-637, 2021. ISSN 0140-6736. doi: https://doi.org/10.1016/S0140-6736(21)00439-6. URL https://www.sciencedirect.com/science/article/pii/S0140673621004396. L. Penarrubia, N. Pinon, E. Roux, E. Dávila Serrano, J.-C. Richard, M. Orkisz, and D. Sar rut. Improving motion-mask segmentation in thoracic CT with multiplanar U-nets. Med ical Physics, 49(1):420-431, 2022. doi: 10.1002/mp.15347. URL https://hal.science/hal-03464276. C. Pinter, A. Lasso, and G. Fichtinger. Polymorph segmentation representation for medical image computing. Computer Methods and Programs in Biomedicine, 171:19-26, 2019. ISSN 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2019.02.011. URL https://www.sciencedirect.com/science/article/pii/S0169260718313038. G. Rawal, S. Yadav, and R. Kumar. Acute respiratory distress syndrome: An update and review. Journal of translational internal medicine, 6(2):74-77, 2018. doi: 10.1515/jtim-2016-0012. URL https://doi.org/10.1515/jtim-2016-0012. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit (4th ed.). Kitware, 2006. ISBN 978-1-930934-19-1. |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
57 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Sistemas y Computación |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/01dafbbf-9ae5-40aa-9c45-b1c67195a6c2/download https://repositorio.uniandes.edu.co/bitstreams/2315817c-b23e-4b27-bb22-39e1a6eca84f/download https://repositorio.uniandes.edu.co/bitstreams/705b6aa3-d4c2-4835-9769-8b3cc3090062/download https://repositorio.uniandes.edu.co/bitstreams/1dea1ff8-c367-4f70-a355-a17562564caa/download https://repositorio.uniandes.edu.co/bitstreams/22c89ae6-2758-48fb-b849-103cd5ee47bd/download https://repositorio.uniandes.edu.co/bitstreams/139ca286-90ed-46fa-a31c-664214b1760d/download https://repositorio.uniandes.edu.co/bitstreams/f196752c-bca8-48ea-ba6d-3cfea911ff5e/download |
bitstream.checksum.fl_str_mv |
6547b86ebbf29b0ada789cffd288bc6c c8d755e52c2e499ffdca3573874b7a43 5aa5c691a1ffe97abd12c2966efcb8d6 8af7f6c921be19251524825227539e4e decc9ce3ea77ce3c5e26923bea57f3df 0737f5b8b6cc617f0ee606a251f57a4f 08b106dfeb12472e88207a069e15ba30 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927801055281152 |
spelling |
Orkisz, Maciej5dfd6039-2e82-4a23-833e-619a1e93a10a600Dávila Serrano, Eduardo Enrique1d79e72c-77f9-4752-8592-055a6a38de69600Hernández Hoyos, Marcelavirtual::14852-1Garzón Robayo, Pablo Andrésd3d9b5f6-0ce5-49f1-aea7-2143957385c96002023-08-04T18:20:11Z2023-08-04T18:20:11Z2023-08-03http://hdl.handle.net/1992/69227instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/ARDS (Acute respiratory distress syndrome) is a severe and life-threatening respiratory syn- drome, characterized by lung inflammation, infiltration, alveolar edema and progressive hypox- emia. It is not the result of a specific condition, but rather a complication that can arise from existing conditions or as a result of infection and injuries. In most cases, patients require exten- sive care and mechanical breathing until the underlying condition is treated and the patient can use their lungs correctly. An essential step in ARDS treatment is the segmentation of CT(computerized tomography) images used to assess the lung conditions. However, such activity can be very time consuming if done manually, therefore, there is a lot of work being done to develop AI(Artificial Intelligence) automated methods that can provide rapid and accurate segmentations. Although the use of AI Has shown promising accuracy, errors can present themselves in some cases. Consequently, the development of such methods requires a mechanism for correcting erroneous segmentations, so that specialists can use them immediately on patients and to facilitate retraining of the existing AI models. Subsequently, this work focuses on the development and improvement of correction tools for resulting lung segmentations created by AI. The tools take advantage of the 3D mask created from the AI, utilize it as a 3D surface and operate directly on the mesh representing it, something which is not usually done on segmentation editing software. This way, the developed tools integrate numerous mesh editing techniques focused on the modification of a 3D mesh representing a lung surface. The development was done on the existing creaSDRA medical software which integrates multiple modules used in the segmentation process. Ultimately, the majority of the existing tools underwent substantial modifications to align with the specified requirements, augment their functionality, and optimize their usability. This comprehensive set of tools encompassed a deformation tool, a smoothing tool, and two surface- based tools. Moreover, in order to enhance the overall functionality and user experience of the software, two supplementary tools were developed, accompanied by multiple user interface (UI) changes. These enhancements collectively aimed to improve the efficacy and usability of the software solution.Ingeniero de Sistemas y ComputaciónPregrado57 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y Computaciónhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Development of surface correction software for medical image segmentationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMedical imaging3d meshesARDS3d surfacesMedical segmentation correctionMedical softwareIngenieríaRhino3dmedical. https://rhino3dmedical.com/, 2022. Mirrakoi.Key features of maya. https://www.autodesk.com/products/maya/features, 2023. Autodesk IncRhinoceros 3d. https://www.rhino3d.com/, 2023. Robert McNeel & Associates.The black box toolkit. https://www.creatis.insa-lyon.fr/site7/en/CreatoolsBBTK, n.d. CREATIS (Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé).L. Ball, V. Vercesi, F. Costantino, K. Chandrapatham, and P. Pelosi. Lung imaging: How to get better look inside the lung. Annals of Translational Medicine, 5(14):294, 2017. doi: 10.21037/atm.2017.07.20. URL https://doi.org/10.21037/atm.2017.07.20.G. Bellani, J. G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. van Haren, A. Larsson, D. F. McAuley, M. Ranieri, G. Rubenfeld, B. T. Thompson, H. Wrigge, A. S. Slutsky, A. Pesenti, for the LUNG SAFE Investigators, and the ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315(8):788-800, 02 2016. ISSN 0098-7484. doi: 10.1001/jama.2016.0291. URL https://doi.org/10.1001/jama.2016.0291.L. Bitker, D. Talmor, and J.-C. Richard. Imaging the acute respiratory distress syndrome: Past, present and future. Intensive Care Medicine, 48(8):995-1008, 2022. doi: 10.1007/s00134-022-06809-8. URL https://doi.org/10.1007/s00134-022-06809-8.M. Diamond, H. L. Peniston, D. K. Sanghavi, et al. Acute respiratory distress syndrome. In StatPearls. StatPearls Publishing, Treasure Island (FL), updated edition, April 6 2023. URL https://www.ncbi.nlm.nih.gov/books/NBK436002/.T. A. D. T. Force*. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 307(23):2526-2533, 06 2012. ISSN 0098-7484. doi: 10.1001/jama.2012.5669. URL https://doi.org/10.1001/jama.2012.5669.P. G. Gibson, L. Qin, and S. H. Puah. Covid-19 acute respiratory distress syndrome (ards): Clinical features and differences from typical pre-covid-19 ards. The Medical Journal of Australia, 213(2):54-56.e1, 2020. doi: 10.5694/mja2.50674. URL https://doi.org/10.5694/mja2.50674.H. Johnson, M. McCormick, and L. Ibanez. The ITK Software Guide: Design and Functionality. Kitware Inc., fourth edition, 2015. ISBN 978-1-930934-28R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences, 95(15):8431-8435, 1998. doi: 10.1073/pnas.95.15.8431. URL https://www.pnas.org/doi/abs/10.1073/pnas.95.15.8431.R. Marshall, G. Bellingan, and G. Laurent. The acute respiratory distress syndrome: Fibrosis in the fast lane. Thorax, 53(9):815-817, 1998N. J. Meyer, L. Gattinoni, and C. S. Calfee. Acute respiratory distress syndrome. The Lancet, 398(10300):622-637, 2021. ISSN 0140-6736. doi: https://doi.org/10.1016/S0140-6736(21)00439-6. URL https://www.sciencedirect.com/science/article/pii/S0140673621004396.L. Penarrubia, N. Pinon, E. Roux, E. Dávila Serrano, J.-C. Richard, M. Orkisz, and D. Sar rut. Improving motion-mask segmentation in thoracic CT with multiplanar U-nets. Med ical Physics, 49(1):420-431, 2022. doi: 10.1002/mp.15347. URL https://hal.science/hal-03464276.C. Pinter, A. Lasso, and G. Fichtinger. Polymorph segmentation representation for medical image computing. Computer Methods and Programs in Biomedicine, 171:19-26, 2019. ISSN 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2019.02.011. URL https://www.sciencedirect.com/science/article/pii/S0169260718313038.G. Rawal, S. Yadav, and R. Kumar. Acute respiratory distress syndrome: An update and review. Journal of translational internal medicine, 6(2):74-77, 2018. doi: 10.1515/jtim-2016-0012. URL https://doi.org/10.1515/jtim-2016-0012.W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit (4th ed.). Kitware, 2006. ISBN 978-1-930934-19-1.201822762Publicationhttps://scholar.google.es/citations?user=9nnSYmMAAAAJvirtual::14852-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000326453virtual::14852-130e973c9-1db4-4731-b61b-bc73c4aceecdvirtual::14852-130e973c9-1db4-4731-b61b-bc73c4aceecdvirtual::14852-1ORIGINALDevelopment of surface correction software for medical image segmentation.pdfDevelopment of surface correction software for medical image segmentation.pdfTrabajo de gradoapplication/pdf6986749https://repositorio.uniandes.edu.co/bitstreams/01dafbbf-9ae5-40aa-9c45-b1c67195a6c2/download6547b86ebbf29b0ada789cffd288bc6cMD53Formato de autorizacion trabajo de grado.pdfFormato de autorizacion trabajo de grado.pdfHIDEapplication/pdf316554https://repositorio.uniandes.edu.co/bitstreams/2315817c-b23e-4b27-bb22-39e1a6eca84f/downloadc8d755e52c2e499ffdca3573874b7a43MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/705b6aa3-d4c2-4835-9769-8b3cc3090062/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILDevelopment of surface correction software for medical image segmentation.pdf.jpgDevelopment of surface correction software for medical image segmentation.pdf.jpgIM Thumbnailimage/jpeg6631https://repositorio.uniandes.edu.co/bitstreams/1dea1ff8-c367-4f70-a355-a17562564caa/download8af7f6c921be19251524825227539e4eMD55Formato de autorizacion trabajo de grado.pdf.jpgFormato de autorizacion trabajo de grado.pdf.jpgIM Thumbnailimage/jpeg15983https://repositorio.uniandes.edu.co/bitstreams/22c89ae6-2758-48fb-b849-103cd5ee47bd/downloaddecc9ce3ea77ce3c5e26923bea57f3dfMD57TEXTDevelopment of surface correction software for medical image segmentation.pdf.txtDevelopment of surface correction software for medical image segmentation.pdf.txtExtracted texttext/plain95969https://repositorio.uniandes.edu.co/bitstreams/139ca286-90ed-46fa-a31c-664214b1760d/download0737f5b8b6cc617f0ee606a251f57a4fMD54Formato de autorizacion trabajo de grado.pdf.txtFormato de autorizacion trabajo de grado.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/f196752c-bca8-48ea-ba6d-3cfea911ff5e/download08b106dfeb12472e88207a069e15ba30MD561992/69227oai:repositorio.uniandes.edu.co:1992/692272024-03-13 15:18:33.284https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |