Feature extraction of neural networks applied to magnetic models
"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included.&quo...
- Autores:
-
Salazar Jaramillo, Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/39082
- Acceso en línea:
- http://hdl.handle.net/1992/39082
- Palabra clave:
- Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_f10bfaa1ed9ca34351643329aecd1ea7 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/39082 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Botero Mejía, Alonsovirtual::10498-1Salazar Jaramillo, Santiago2755e57c-245c-4af3-9fc1-99fcb86de29a500Forero Romero, Jaime Ernesto2020-06-10T16:01:51Z2020-06-10T16:01:51Z2018http://hdl.handle.net/1992/39082u820923.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included."--Tomado del Formato de Documento de Grado"Las matrices de peso de una red neuronal capaz de clasificar las fases del modelo de Ising de red cuadrada, fueron estudiadas con el objetivo de identificar las variables físicas que el algoritmo reconoce. Una revisión de la teoría matemática de redes neuronales y materia condensada fue incluida en el trabajo."--Tomado del Formato de Documento de GradoFísicoPregrado92 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaFeature extraction of neural networks applied to magnetic modelsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPModelo de IsingRedes neurales (Computadores)Mecánica estadísticaCampos magnéticosFísicaPublicationhttps://scholar.google.es/citations?user=e06A7mUAAAAJvirtual::10498-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155721virtual::10498-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::10498-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::10498-1TEXTu820923.pdf.txtu820923.pdf.txtExtracted texttext/plain98118https://repositorio.uniandes.edu.co/bitstreams/c6d99d01-4379-43d8-b376-a32ee7526088/download671f69dde35bb014a4fd7b543e5d85a2MD54ORIGINALu820923.pdfapplication/pdf919666https://repositorio.uniandes.edu.co/bitstreams/4859ff88-d526-4fcc-8986-bb4ac8392892/downloaddaa1f0deaade4da069e8173e26312dcfMD51THUMBNAILu820923.pdf.jpgu820923.pdf.jpgIM Thumbnailimage/jpeg5039https://repositorio.uniandes.edu.co/bitstreams/ea8f0428-2764-4803-aeab-43320d29aafd/download439e74579dcfa48a38a5376dcd44b700MD551992/39082oai:repositorio.uniandes.edu.co:1992/390822024-03-13 14:12:03.415http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Feature extraction of neural networks applied to magnetic models |
title |
Feature extraction of neural networks applied to magnetic models |
spellingShingle |
Feature extraction of neural networks applied to magnetic models Modelo de Ising Redes neurales (Computadores) Mecánica estadística Campos magnéticos Física |
title_short |
Feature extraction of neural networks applied to magnetic models |
title_full |
Feature extraction of neural networks applied to magnetic models |
title_fullStr |
Feature extraction of neural networks applied to magnetic models |
title_full_unstemmed |
Feature extraction of neural networks applied to magnetic models |
title_sort |
Feature extraction of neural networks applied to magnetic models |
dc.creator.fl_str_mv |
Salazar Jaramillo, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Botero Mejía, Alonso |
dc.contributor.author.none.fl_str_mv |
Salazar Jaramillo, Santiago |
dc.contributor.jury.none.fl_str_mv |
Forero Romero, Jaime Ernesto |
dc.subject.keyword.es_CO.fl_str_mv |
Modelo de Ising Redes neurales (Computadores) Mecánica estadística Campos magnéticos |
topic |
Modelo de Ising Redes neurales (Computadores) Mecánica estadística Campos magnéticos Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included."--Tomado del Formato de Documento de Grado |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T16:01:51Z |
dc.date.available.none.fl_str_mv |
2020-06-10T16:01:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/39082 |
dc.identifier.pdf.none.fl_str_mv |
u820923.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/39082 |
identifier_str_mv |
u820923.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
92 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c6d99d01-4379-43d8-b376-a32ee7526088/download https://repositorio.uniandes.edu.co/bitstreams/4859ff88-d526-4fcc-8986-bb4ac8392892/download https://repositorio.uniandes.edu.co/bitstreams/ea8f0428-2764-4803-aeab-43320d29aafd/download |
bitstream.checksum.fl_str_mv |
671f69dde35bb014a4fd7b543e5d85a2 daa1f0deaade4da069e8173e26312dcf 439e74579dcfa48a38a5376dcd44b700 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133964460064768 |