Feature extraction of neural networks applied to magnetic models

"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included.&quo...

Full description

Autores:
Salazar Jaramillo, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39082
Acceso en línea:
http://hdl.handle.net/1992/39082
Palabra clave:
Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_f10bfaa1ed9ca34351643329aecd1ea7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/39082
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Botero Mejía, Alonsovirtual::10498-1Salazar Jaramillo, Santiago2755e57c-245c-4af3-9fc1-99fcb86de29a500Forero Romero, Jaime Ernesto2020-06-10T16:01:51Z2020-06-10T16:01:51Z2018http://hdl.handle.net/1992/39082u820923.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included."--Tomado del Formato de Documento de Grado"Las matrices de peso de una red neuronal capaz de clasificar las fases del modelo de Ising de red cuadrada, fueron estudiadas con el objetivo de identificar las variables físicas que el algoritmo reconoce. Una revisión de la teoría matemática de redes neuronales y materia condensada fue incluida en el trabajo."--Tomado del Formato de Documento de GradoFísicoPregrado92 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaFeature extraction of neural networks applied to magnetic modelsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPModelo de IsingRedes neurales (Computadores)Mecánica estadísticaCampos magnéticosFísicaPublicationhttps://scholar.google.es/citations?user=e06A7mUAAAAJvirtual::10498-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155721virtual::10498-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::10498-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::10498-1TEXTu820923.pdf.txtu820923.pdf.txtExtracted texttext/plain98118https://repositorio.uniandes.edu.co/bitstreams/c6d99d01-4379-43d8-b376-a32ee7526088/download671f69dde35bb014a4fd7b543e5d85a2MD54ORIGINALu820923.pdfapplication/pdf919666https://repositorio.uniandes.edu.co/bitstreams/4859ff88-d526-4fcc-8986-bb4ac8392892/downloaddaa1f0deaade4da069e8173e26312dcfMD51THUMBNAILu820923.pdf.jpgu820923.pdf.jpgIM Thumbnailimage/jpeg5039https://repositorio.uniandes.edu.co/bitstreams/ea8f0428-2764-4803-aeab-43320d29aafd/download439e74579dcfa48a38a5376dcd44b700MD551992/39082oai:repositorio.uniandes.edu.co:1992/390822024-03-13 14:12:03.415http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Feature extraction of neural networks applied to magnetic models
title Feature extraction of neural networks applied to magnetic models
spellingShingle Feature extraction of neural networks applied to magnetic models
Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
Física
title_short Feature extraction of neural networks applied to magnetic models
title_full Feature extraction of neural networks applied to magnetic models
title_fullStr Feature extraction of neural networks applied to magnetic models
title_full_unstemmed Feature extraction of neural networks applied to magnetic models
title_sort Feature extraction of neural networks applied to magnetic models
dc.creator.fl_str_mv Salazar Jaramillo, Santiago
dc.contributor.advisor.none.fl_str_mv Botero Mejía, Alonso
dc.contributor.author.none.fl_str_mv Salazar Jaramillo, Santiago
dc.contributor.jury.none.fl_str_mv Forero Romero, Jaime Ernesto
dc.subject.keyword.es_CO.fl_str_mv Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
topic Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
Física
dc.subject.themes.none.fl_str_mv Física
description "The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included."--Tomado del Formato de Documento de Grado
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T16:01:51Z
dc.date.available.none.fl_str_mv 2020-06-10T16:01:51Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/39082
dc.identifier.pdf.none.fl_str_mv u820923.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/39082
identifier_str_mv u820923.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 92 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c6d99d01-4379-43d8-b376-a32ee7526088/download
https://repositorio.uniandes.edu.co/bitstreams/4859ff88-d526-4fcc-8986-bb4ac8392892/download
https://repositorio.uniandes.edu.co/bitstreams/ea8f0428-2764-4803-aeab-43320d29aafd/download
bitstream.checksum.fl_str_mv 671f69dde35bb014a4fd7b543e5d85a2
daa1f0deaade4da069e8173e26312dcf
439e74579dcfa48a38a5376dcd44b700
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133964460064768