Feature extraction of neural networks applied to magnetic models

"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included.&quo...

Full description

Autores:
Salazar Jaramillo, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39082
Acceso en línea:
http://hdl.handle.net/1992/39082
Palabra clave:
Modelo de Ising
Redes neurales (Computadores)
Mecánica estadística
Campos magnéticos
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:"The weight matrices of a neural network capable of classifying the phases of the square lattice Ising model, were studied in order to identified the physical features that such an algorithm identifies. A review of the theory of neural networks and condensed matter physics is also included."--Tomado del Formato de Documento de Grado