Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem
In this thesis, we propose different ways to adapt the Wasserstein distance and the Sinkhorn divergence to the multivariate non-parametric two-sample problem when sample sizes are in the thousands, using permutation tests based on the Sinkhorn divergence between relative frequency vectors supported...
- Autores:
-
Osorio Salcedo, Juan Sebastián
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74911
- Acceso en línea:
- https://hdl.handle.net/1992/74911
- Palabra clave:
- Wasserstein distance
Optimal transport
Sinkhorn divergence
Sinkhorn algorithm
Two-sample problem
Permutation test
Matemáticas
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNIANDES2_ee0c14f658447548a5d38c2914988c03 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74911 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
title |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
spellingShingle |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem Wasserstein distance Optimal transport Sinkhorn divergence Sinkhorn algorithm Two-sample problem Permutation test Matemáticas |
title_short |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
title_full |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
title_fullStr |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
title_full_unstemmed |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
title_sort |
Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem |
dc.creator.fl_str_mv |
Osorio Salcedo, Juan Sebastián |
dc.contributor.advisor.none.fl_str_mv |
Quiroz Salazar, Adolfo José |
dc.contributor.author.none.fl_str_mv |
Osorio Salcedo, Juan Sebastián |
dc.contributor.jury.none.fl_str_mv |
González Barrios, José María Giraldo Henao, Ramón Hoegele, Michael Anton |
dc.subject.keyword.eng.fl_str_mv |
Wasserstein distance Optimal transport Sinkhorn divergence Sinkhorn algorithm Two-sample problem Permutation test |
topic |
Wasserstein distance Optimal transport Sinkhorn divergence Sinkhorn algorithm Two-sample problem Permutation test Matemáticas |
dc.subject.themes.spa.fl_str_mv |
Matemáticas |
description |
In this thesis, we propose different ways to adapt the Wasserstein distance and the Sinkhorn divergence to the multivariate non-parametric two-sample problem when sample sizes are in the thousands, using permutation tests based on the Sinkhorn divergence between relative frequency vectors supported on finite discrete sets, associated to data-dependent partitions. We compare the statistics in simulated examples with the test proposed by Schilling. The performance of the tests considered is evaluated in terms of statistical power in different distributional settings and terms of computational efficiency. We prove a central limit theorem for the Sinkhorn divergence statistic in our main framework of data-dependent partitions under the null hypothesis, which depends only on the underlying distribution of the samples and the limit data-dependent partitions. The speed of convergence in the central limit theorem is evaluated under different conditions on the data and on the parameters that define the permutation statistic. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-01-13 |
dc.date.accessioned.none.fl_str_mv |
2024-08-02T16:23:24Z |
dc.date.available.none.fl_str_mv |
2024-08-02T16:23:24Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74911 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/74911 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74911 |
identifier_str_mv |
10.57784/1992/74911 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
114 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/77844ba4-979e-44b3-a209-a0cdb55fa9d3/download https://repositorio.uniandes.edu.co/bitstreams/3fc702ea-9945-4fc8-9eba-438048fd07d5/download https://repositorio.uniandes.edu.co/bitstreams/f614ff7d-67a8-47e9-ac12-58fd000ca3be/download https://repositorio.uniandes.edu.co/bitstreams/8067cbde-50eb-4f64-bd6b-19094ed36bf9/download https://repositorio.uniandes.edu.co/bitstreams/bf55d217-1bba-4e8c-89ed-820b8244dcaa/download https://repositorio.uniandes.edu.co/bitstreams/39157330-d458-4395-be16-3f8cc0e252a7/download https://repositorio.uniandes.edu.co/bitstreams/3a5dd4aa-bcdb-4907-af04-6dec9a4fb139/download https://repositorio.uniandes.edu.co/bitstreams/4726a87f-3121-4202-9855-a944e9a09665/download |
bitstream.checksum.fl_str_mv |
1037d84ac3037b69c500ccf6379ff5fb 80cf66256315ec8b136da4e309dbd202 ae9e573a68e7f92501b6913cc846c39f 934f4ca17e109e0a05eaeaba504d7ce4 f6d179e69d679584a2593a27634ef4b9 2d56ce7b72a479151181faac857277c6 0119d4e0ad4de0ce8cd590e98058c5c4 d6cfa48c6d97736472a9d6fda6eea82d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133900755927040 |
spelling |
Quiroz Salazar, Adolfo Josévirtual::19614-1Osorio Salcedo, Juan SebastiánGonzález Barrios, José MaríaGiraldo Henao, RamónHoegele, Michael Antonvirtual::19615-12024-08-02T16:23:24Z2024-08-02T16:23:24Z2023-01-13https://hdl.handle.net/1992/7491110.57784/1992/74911instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this thesis, we propose different ways to adapt the Wasserstein distance and the Sinkhorn divergence to the multivariate non-parametric two-sample problem when sample sizes are in the thousands, using permutation tests based on the Sinkhorn divergence between relative frequency vectors supported on finite discrete sets, associated to data-dependent partitions. We compare the statistics in simulated examples with the test proposed by Schilling. The performance of the tests considered is evaluated in terms of statistical power in different distributional settings and terms of computational efficiency. We prove a central limit theorem for the Sinkhorn divergence statistic in our main framework of data-dependent partitions under the null hypothesis, which depends only on the underlying distribution of the samples and the limit data-dependent partitions. The speed of convergence in the central limit theorem is evaluated under different conditions on the data and on the parameters that define the permutation statistic.Doctorado114 páginasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Permutation Test Based on the Sinkhorn Divergence For the Two-Sample ProblemTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDWasserstein distanceOptimal transportSinkhorn divergenceSinkhorn algorithmTwo-sample problemPermutation testMatemáticas200415782Publicationhttps://scholar.google.es/citations?user=qwMDh-4AAAAJvirtual::19614-10000-0003-4033-3400virtual::19614-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001497101virtual::19614-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001632250virtual::19615-11be19e5b-39c2-4d92-b44f-b9b4a48991cavirtual::19614-11be19e5b-39c2-4d92-b44f-b9b4a48991cavirtual::19614-1ec8a37d7-ebef-44bf-823c-e5eed39e7600virtual::19615-1ec8a37d7-ebef-44bf-823c-e5eed39e7600virtual::19615-1ORIGINALautorizacion tesis firma 1.pdfautorizacion tesis firma 1.pdfHIDEapplication/pdf368153https://repositorio.uniandes.edu.co/bitstreams/77844ba4-979e-44b3-a209-a0cdb55fa9d3/download1037d84ac3037b69c500ccf6379ff5fbMD51Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdfPermutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdfapplication/pdf1373135https://repositorio.uniandes.edu.co/bitstreams/3fc702ea-9945-4fc8-9eba-438048fd07d5/download80cf66256315ec8b136da4e309dbd202MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f614ff7d-67a8-47e9-ac12-58fd000ca3be/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/8067cbde-50eb-4f64-bd6b-19094ed36bf9/download934f4ca17e109e0a05eaeaba504d7ce4MD55TEXTautorizacion tesis firma 1.pdf.txtautorizacion tesis firma 1.pdf.txtExtracted texttext/plain2058https://repositorio.uniandes.edu.co/bitstreams/bf55d217-1bba-4e8c-89ed-820b8244dcaa/downloadf6d179e69d679584a2593a27634ef4b9MD56Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdf.txtPermutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdf.txtExtracted texttext/plain103057https://repositorio.uniandes.edu.co/bitstreams/39157330-d458-4395-be16-3f8cc0e252a7/download2d56ce7b72a479151181faac857277c6MD58THUMBNAILautorizacion tesis firma 1.pdf.jpgautorizacion tesis firma 1.pdf.jpgGenerated Thumbnailimage/jpeg10949https://repositorio.uniandes.edu.co/bitstreams/3a5dd4aa-bcdb-4907-af04-6dec9a4fb139/download0119d4e0ad4de0ce8cd590e98058c5c4MD57Permutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdf.jpgPermutation Test Based on the Sinkhorn Divergence For the Two-Sample Problem.pdf.jpgGenerated Thumbnailimage/jpeg6092https://repositorio.uniandes.edu.co/bitstreams/4726a87f-3121-4202-9855-a944e9a09665/downloadd6cfa48c6d97736472a9d6fda6eea82dMD591992/74911oai:repositorio.uniandes.edu.co:1992/749112024-09-12 15:52:42.077http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |