Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño

El catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral trae en sus anexos las figuras con foto de los minerales, espectros obtenidos de la literatura y espectros obtenidos de los minerales en la foto, además en los anexos también se encuentra un paso a paso para...

Full description

Autores:
Saavedra Morales, Isabella
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/67939
Acceso en línea:
http://hdl.handle.net/1992/67939
Palabra clave:
Espectrometría Raman
Piroclastos juveniles del volcán Azufral
Catálogo de imágenes
Protocolo de identificación mineral
Análisis de espectros Raman
Sistematización del proceso de adquisición
Geociencias
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_edc6f2a69a37c0420f6647c29f6e33aa
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/67939
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
title Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
spellingShingle Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
Espectrometría Raman
Piroclastos juveniles del volcán Azufral
Catálogo de imágenes
Protocolo de identificación mineral
Análisis de espectros Raman
Sistematización del proceso de adquisición
Geociencias
title_short Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
title_full Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
title_fullStr Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
title_full_unstemmed Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
title_sort Catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, Nariño
dc.creator.fl_str_mv Saavedra Morales, Isabella
dc.contributor.advisor.none.fl_str_mv Sierra Rojas, Maria Isabel
Pardo Villaveces, Natalia
dc.contributor.author.none.fl_str_mv Saavedra Morales, Isabella
dc.contributor.jury.none.fl_str_mv Rodríguez Vargas, Andrés Ignacio
dc.subject.keyword.none.fl_str_mv Espectrometría Raman
Piroclastos juveniles del volcán Azufral
Catálogo de imágenes
Protocolo de identificación mineral
Análisis de espectros Raman
Sistematización del proceso de adquisición
topic Espectrometría Raman
Piroclastos juveniles del volcán Azufral
Catálogo de imágenes
Protocolo de identificación mineral
Análisis de espectros Raman
Sistematización del proceso de adquisición
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description El catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral trae en sus anexos las figuras con foto de los minerales, espectros obtenidos de la literatura y espectros obtenidos de los minerales en la foto, además en los anexos también se encuentra un paso a paso para la adquisición de espectros Raman.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-27T20:58:52Z
dc.date.available.none.fl_str_mv 2023-06-27T20:58:52Z
dc.date.issued.none.fl_str_mv 2023-06-14
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/67939
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/67939
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Aliatis, I., Lambruschi, E., Mantovani, L., Bersani, D., Andò, S., Diego Gatta, G., Gentile, P., Salvioli-Mariani, E., Prencipe, M., & Tribaudino, M. (2015). A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). Journal of Raman Spectroscopy, 46(5), 501-508.
Andò, S., y Garzanti, E. (2016). Raman spectroscopy in heavy-mineral studies. In Scott,R.A.,Smyth,H.R.,Morton,A.C. y Richardson,N.(eds), Sediment Provenance Studies in hydrocarbon Exploration and Production. Geological Society, London, Special Publications,386,395-412.
Andò, S., & Garzanti, E. (2014). Raman spectroscopy in heavy-mineral studies. Geological Society, London, Special Publications, 386(1), 395-412. https://doi.org/10.1144/SP386.2
Andrut, M., Gottschalk, M., Melzer, S., & Najorka, J. (2000). Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions. Physics and Chemistry of Minerals, 27, 301-309.
Apopei, A. I., Buzgar, N., & Buzatu, A. (2011). Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Analele Stiintifice Ale Universitatii "Al I Cuza" Din Iasi Seria Geologie, 57(2), 35-58.
Apopei, A. I., & Buzgar, N. (2010). The Raman study of amphiboles. Analele Stiintifice de Universitatii AI Cuza Din Iasi. Sect. 2, Geologie, 56(1), 57.
Aspiotis, S., Schlüter, J., Redhammer, G. J., & Mihailova, B. (2022). Non-destructive determination of the biotite crystal chemistry using Raman spectroscopy: how far we can go? European Journal of Mineralogy, 34(6), 573-590.
Bartholomew, P. R., Dyar, M. D., & Brady, J. B. (2015). The role of intensity and instrument sensitivity in Raman mineral identification. Journal of Raman Spectroscopy, 46(10), 889-893.
Bathgate, E. J., Maynard-Casely, H. E., Caprarelli, G., Xiao, L., Stuart, B., Smith, K. T., & Pogson, R. (2015). Raman, FTIR and XRD study of Icelandic tephra minerals: implications for Mars. Journal of Raman Spectroscopy, 46(10), 846-855. https://doi.org/https://doi.org/10.1002/jrs.4694
Bersani, D., Aliatis, I., Tribaudino, M., Mantovani, L., Benisek, A., Carpenter, M. A., Gatta, G. D., & Lottici, P. P. (2018). Plagioclase composition by Raman spectroscopy. Journal of Raman Spectroscopy, 49(4), 684-698.
Bersani, D., Andò, S., Scrocco, L., Gentile, P., Salvioli-Mariani, E., Fornasini, L., & Lottici, P. P. (2019). Composition of amphiboles in the tremolite-ferro-actinolite series by Raman Spectroscopy. Minerals, 9(8), 491.
Bower, D. M. (2011). Micro-Raman spectroscopic investigations of mineral assemblages in parallel to bedding laminae in 2.9 Ga sandstones of the Pongola Supergroup, South Africa. Journal of Raman Spectroscopy, 42(8), 1626-1633. https://doi.org/https://doi.org/10.1002/jrs.2903
Caggiani, M. C., Mangone, A., & Acquafredda, P. (2022). Blue coloured haüyne from Mt. Vulture (Italy) volcanic rocks: SEM-EDS and Raman investigation of natural and heated crystals. Journal of Raman Spectroscopy.
Castilla, S. C., Pardo, N., Larrea, P., Zuluaga, C. A., Sarmiento, S., Noguera, D., & Sarmiento, G. A. (2019). Pre-eruptive conditions and pyroclastic emplacement of the last known vulcanian eruption of Azufral Volcano, SW Colombia. Journal of South American Earth Sciences, 91, 372-386. https://doi.org/https://doi.org/10.1016/j.jsames.2018.08.007
Chazhengina, S. Y., & Kovalevski, V. V. (2017). Raman spectroscopy of weathered shungites. Journal of Raman Spectroscopy, 48(11), 1590-1596. https://doi.org/https://doi.org/10.1002/jrs.5188
Della Ventura, G., Capitelli, F., Sbroscia, M., & Sodo, A. (2020). A Raman study of chalcogen species in sodalite-group minerals from the volcanic rocks of Latium (Italy). Journal of Raman Spectroscopy, 51(9), 1513-1521.
Di Genova, D., Morgavi, D., Hess, K. U., Neuville, D. R., Borovkov, N., Perugini, D., & Dingwell, D. B. (2015). Approximate chemical analysis of volcanic glasses using Raman spectroscopy. Journal of Raman Spectroscopy, 46(12), 1235-1244. https://doi.org/10.1002/JRS.4751
Dumanska-Slowik, M., Powolny, T., Natkaniec-Nowak, L., & Stankiewicz, K. (2022a). Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia). Ore Geology Reviews, 141, 104684.
Dumanska-Slowik, M., Powolny, T., Natkaniec-Nowak, L., & Stankiewicz, K. (2022b). Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia). Ore Geology Reviews, 141, 104684. https://doi.org/https://doi.org/10.1016/j.oregeorev.2021.104684
Enami, M., Nishiyama, T., & Mouri, T. (2007). Laser Raman microspectrometry of metamorphic quartz: A simple method for comparison of metamorphic pressures. American Mineralogist, 92(8-9), 1303-1315.
Freeman, J. J., Wang, A., Kuebler, K. E., Jolliff, B. L., & Haskin, L. A. (2008). Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46(6), 1477-1500.
Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20.
Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., & Lupker, M. (2011). Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302(1-2), 107-120.
Giordano, D., González-García, D., Russell, J. K., Raneri, S., Bersani, D., Fornasini, L., Di Genova, D., Ferrando, S., Kaliwoda, M., Lottici, P. P., Smit, M., & Dingwell, D. B. (2020). A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt physical properties. Journal of Raman Spectroscopy, 51(9), 1822-1838. https://doi.org/10.1002/jrs.5675
Gong, X., Wang, J., You, J., Wang, M., Zhang, F., Tang, X., Ma, N., Lu, L., Wan, S., & Zhang, Q. (2022). Effect of MgO on the structure of SiO2-poor/rich MgO-CaO-SiO2 melts by in situ high temperature time-gated Raman spectroscopy and theoretical calculation. Journal of Raman Spectroscopy, 53(9), 1635-1646. https://doi.org/https://doi.org/10.1002/jrs.6406
González-García, D., Giordano, D., Russell, J. K., & Dingwell, D. B. (2020). A Raman spectroscopic tool to estimate chemical composition of natural volcanic glasses. Chemical Geology, 556, 119819. https://doi.org/10.1016/J.CHEMGEO.2020.119819
Griffith, W. P. (1969). Raman Spectroscopy of Minerals. Nature 1969 224:5216, 224(5216), 264-266. https://doi.org/10.1038/224264a0
Hawthorne, F. C. (2018). Spectroscopic methods in mineralogy and geology (Vol. 18). Walter de Gruyter GmbH & Co KG.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V, Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97(11-12), 2031-2048.
Henderson, G. S., Neuville, D. R., & Downs, R. T. (2015). Spectroscopic methods in mineralogy and materials sciences. De Gruyter. https://doi.org/10.1515/9781614517863
Ivleva, N. P., Huckele, S., Weinzierl, B., Niessner, R., Haisch, C., & Baumann, T. (2013). Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 405, 9071-9084.
Korsakov, A. V., Kohn, M. J., & Perraki, M. (2020). Applications of Raman spectroscopy in metamorphic petrology and tectonics. Elements, 16(2), 105-110. https://doi.org/10.2138/GSELEMENTS.16.2.105
Larkin, P. (2011). Infrared and Raman Spectroscopy Principles and Spectral Interpretation (Peter Larkin) (z-lib.org).
Larkin, P. (2017). Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier
Leissner, L., Schlüter, J., Horn, I., & Mihailova, B. (2015). Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. American Mineralogist, 100(11-12), 2682-2694.
Li, Y., Huang, F., Gao, W., Zhu, Q., Shen, C., Li, M., Sun, X., & Wang, X. (2022). Raman spectroscopy and XPS study of the thermal decomposition of Mg-hornblende into augite. Journal of Raman Spectroscopy, 53(4), 820-831.
MacKensie, W. S., & Guilford, C. (1980). Atlas of rock-forming minerals in thin sections. Longman, New York.
McKeown, D. A. (2005). Raman spectroscopy and vibrational analyses of albite: From 25 C through the melting temperature. American Mineralogist, 90(10), 1506-1517.
Mysen, B. (2003). Physics and chemistry of silicate glasses and melts. European Journal of Mineralogy, 15(5), 781-802.
Nakatani, T., Sugaya, S., Yasui, M., Okumura, S., & Nakamura, M. (2021). Amorphous silica coating on flank deposits of the 1783 CE eruption at Asama volcano. Journal of Volcanology and Geothermal Research, 411, 107149. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2020.107149
Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume, A.-M., Wang, X., Dubessy, J., Caumon, M. C., & Rull, F. (2012). Raman and fluorescence. EMU Notes in Mineralogy, 12(2), 61-82.
Prinsloo, L. C., Colomban, P., Brink, J. D., & Meiklejohn, I. (2011). A Raman spectroscopic study of the igneous rocks on Marion Island: a possible terrestrial analogue for the geology on Mars. Journal of Raman Spectroscopy, 42(4), 626-632.
Ramos, J. C., Luna, A. E. V., & Lima, C. M. O. (2013). Espectroscopia Raman y sus aplicaciones. Opt. Pura. Apl, 83-95.
Ritz, M., Vaculíková, L., Kupková, J., Plevová, E., & Bartonová, L. (2016). Different level of fluorescence in Raman spectra of montmorillonites. Vibrational Spectroscopy, 84, 7-15.
Rull, F., Martinez-Frias, J., & Rodríguez-Losada, J. A. (2007). Micro-Raman spectroscopic study of El Gasco pumice, western Spain. Journal of Raman Spectroscopy, 38(2), 239-244. https://doi.org/10.1002/JRS.1628
Sbroscia, M., Della Ventura, G., Iezzi, G., & Sodo, A. (2018). Quantifying the A-site occupancy in amphiboles: A Raman study in the OH-stretching region. European Journal of Mineralogy, 30(3), 429-436.
Shebanova, O. N., & Lazor, P. (2003). Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Journal of Solid State Chemistry, 174(2), 424-430.
Sims, M., Jaret, S. J., Johnson, J. R., Whitaker, M. L., & Glotch, T. D. (2020). Unconventional high-pressure Raman spectroscopy study of kinetic and peak pressure effects in plagioclase feldspars. Physics and Chemistry of Minerals, 47, 1-10.
Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
Surtees, A. P. H., Swindles, G. T., Savov, I. P., Scowen, I. J., Edwards, H. G. M., & Munshi, T. (2016). Raman spectroscopy for the discrimination of tephras from the Hekla eruptions of AD 1510 and 1947. The Holocene, 26(3), 432-438.
Tomie, Z., Makreski, P., & Gajie, B. (2010). Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction. Journal of Raman Spectroscopy, 41(5), 582-586. https://doi.org/https://doi.org/10.1002/jrs.2476
Torres, M. P., Cortéz, G. P., Calvache, M. L., & Monsalve, M. L. (2001). GEOLOGÍA Y ESTRATIGRAFÍA DEL VOLCÁN AZUFRAL, COLOMBIA.
Tsang, L., & Kong, J. A. (2004). Scattering of electromagnetic waves: advanced topics. John Wiley & Sons.
Vandenabeele, P., Edwards, H. G. M., & Jehlicka, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 43(8), 2628-2649. https://doi.org/10.1039/C3CS60263J
Waeselmann, N., Schlüter, J., Malcherek, T., Della Ventura, G., Oberti, R., & Mihailova, B. (2020). Nondestructive determination of the amphibole crystal-chemical formulae by Raman spectroscopy: One step closer. Journal of Raman Spectroscopy, 51(9), 1530-1548.
Wang, A., Dhamelincourt, P., & Turrell, G. (1988). Raman microspectroscopic study of the cation distribution in amphiboles. Applied Spectroscopy, 42(8), 1441-1450.
Wang, A., Freeman, J. J., & Jolliff, B. L. (2015). Understanding the Raman spectral features of phyllosilicates. Journal of Raman Spectroscopy, 46(10), 829-845.
Williams, M., Bursik, M. I., Cortes, G. P., & Garcia, A. M. (2017). Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units. Journal of Volcanology and Geothermal Research, 341, 21-32.
Ye, K., Liou, J.-B., Cong, B., & Maruyama, S. (2001). Overpressures induced by coesite-quartz transition in zircon. American Mineralogist, 86(10), 1151-1155.
Yoshida, K., Tamura, Y., Sato, T., Hanyu, T., Usui, Y., Chang, Q., & Ono, S. (2022). Variety of the drift pumice clasts from the 2021 Fukutoku-Oka-no-Ba eruption, Japan. Island Arc, 31(1), e12441. https://doi.org/10.1111/IAR.12441
Yoshida, K., Tamura, Y., Sato, T., Sangmanee, C., Puttapreecha, R., & Ono, S. (2022). Voyage to the west: pumice raft from the Fukutoku-Oka-no-Ba in the northwest Pacific drifted over the South China Sea to Thailand.
Zhang, S., Yin, J., Xiao, R., Hou, L., Wu, X., Zhu, Y., & Pang, S. (2022). Mineralogical and geochemical characteristics of the Mesoproterozoic sedimentary rocks in Rwanda and their implication for hydrocarbon investigation. Journal of African Earth Sciences, 196, 104669.
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 110 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/72d6c016-bbd3-4214-8e7f-b2b1b86e9dd4/download
https://repositorio.uniandes.edu.co/bitstreams/86871627-2670-46c2-8b9f-d843343140cf/download
https://repositorio.uniandes.edu.co/bitstreams/217d8cba-b1e0-4440-92fc-16b00a47741d/download
https://repositorio.uniandes.edu.co/bitstreams/0e63d538-21f0-4ea3-bb65-28d1d65af1c8/download
https://repositorio.uniandes.edu.co/bitstreams/ba35950f-4502-4316-9222-986ae3b598ab/download
https://repositorio.uniandes.edu.co/bitstreams/8a25b849-54e1-4455-9367-86ceaff4473d/download
https://repositorio.uniandes.edu.co/bitstreams/bb29901e-2641-4020-9689-b7b609a2dd34/download
https://repositorio.uniandes.edu.co/bitstreams/9ca7102c-c4d4-4971-941e-3e50d9790b31/download
bitstream.checksum.fl_str_mv 3ef129070c375edb809d8178ab341545
e207f57e199a2b3be97cd83261da30ad
a12aa67085dccbeeff30e22578c5ddda
08b106dfeb12472e88207a069e15ba30
5aa5c691a1ffe97abd12c2966efcb8d6
f7d494f61e544413a13e6ba1da2089cd
70a2ffaf09f9819bcf97afc2443ab518
99096e90027e4adedbc6e7392ecfbe67
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133919685869568
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Rojas, Maria Isabel39e2528f-d766-44e7-b9fc-b6ce8e33930d600Pardo Villaveces, Nataliavirtual::7679-1Saavedra Morales, Isabella62e50dae-ab70-4101-8a7d-ec5ef2301592600Rodríguez Vargas, Andrés Ignacio2023-06-27T20:58:52Z2023-06-27T20:58:52Z2023-06-14http://hdl.handle.net/1992/67939instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El catálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral trae en sus anexos las figuras con foto de los minerales, espectros obtenidos de la literatura y espectros obtenidos de los minerales en la foto, además en los anexos también se encuentra un paso a paso para la adquisición de espectros Raman.La espectrometría Raman es una técnica espectroscópica que permite ser utilizada tanto en laboratorio como directamente sobre muestras en el campo. Esta técnica no requiere preparación de muestra y además brinda información detallada sobre la composición y estructura de las sustancias a las que se le aplique. En este proyecto, se analizaron anfíboles, plagioclasas, biotitas, cuarzos y minerales opacos de cinco muestras de piroclastos juveniles del volcán Azufral utilizando el espectrómetro Raman de la Universidad de Los Andes. Se pudo comprobar que este equipo permite obtener espectros de buena calidad y comparables con aquellos obtenidos de la literatura. Con los resultados obtenidos y a través de la experiencia de la aplicación de la técnica pudo construirse un inventario de imágenes de las fases minerales seleccionadas, un protocolo de identificación mineral y realizarse un análisis de los espectros Raman obtenidos, sistematizando así el proceso de adquisición de espectros Raman para el caso de estudio.GeocientíficoPregrado110 páginasapplication/pdfspaUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasCatálogo de espectros Raman para minerales de depósitos piroclásticos del volcán Azufral, NariñoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEspectrometría RamanPiroclastos juveniles del volcán AzufralCatálogo de imágenesProtocolo de identificación mineralAnálisis de espectros RamanSistematización del proceso de adquisiciónGeocienciasAliatis, I., Lambruschi, E., Mantovani, L., Bersani, D., Andò, S., Diego Gatta, G., Gentile, P., Salvioli-Mariani, E., Prencipe, M., & Tribaudino, M. (2015). A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). Journal of Raman Spectroscopy, 46(5), 501-508.Andò, S., y Garzanti, E. (2016). Raman spectroscopy in heavy-mineral studies. In Scott,R.A.,Smyth,H.R.,Morton,A.C. y Richardson,N.(eds), Sediment Provenance Studies in hydrocarbon Exploration and Production. Geological Society, London, Special Publications,386,395-412.Andò, S., & Garzanti, E. (2014). Raman spectroscopy in heavy-mineral studies. Geological Society, London, Special Publications, 386(1), 395-412. https://doi.org/10.1144/SP386.2Andrut, M., Gottschalk, M., Melzer, S., & Najorka, J. (2000). Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions. Physics and Chemistry of Minerals, 27, 301-309.Apopei, A. I., Buzgar, N., & Buzatu, A. (2011). Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Analele Stiintifice Ale Universitatii "Al I Cuza" Din Iasi Seria Geologie, 57(2), 35-58.Apopei, A. I., & Buzgar, N. (2010). The Raman study of amphiboles. Analele Stiintifice de Universitatii AI Cuza Din Iasi. Sect. 2, Geologie, 56(1), 57.Aspiotis, S., Schlüter, J., Redhammer, G. J., & Mihailova, B. (2022). Non-destructive determination of the biotite crystal chemistry using Raman spectroscopy: how far we can go? European Journal of Mineralogy, 34(6), 573-590.Bartholomew, P. R., Dyar, M. D., & Brady, J. B. (2015). The role of intensity and instrument sensitivity in Raman mineral identification. Journal of Raman Spectroscopy, 46(10), 889-893.Bathgate, E. J., Maynard-Casely, H. E., Caprarelli, G., Xiao, L., Stuart, B., Smith, K. T., & Pogson, R. (2015). Raman, FTIR and XRD study of Icelandic tephra minerals: implications for Mars. Journal of Raman Spectroscopy, 46(10), 846-855. https://doi.org/https://doi.org/10.1002/jrs.4694Bersani, D., Aliatis, I., Tribaudino, M., Mantovani, L., Benisek, A., Carpenter, M. A., Gatta, G. D., & Lottici, P. P. (2018). Plagioclase composition by Raman spectroscopy. Journal of Raman Spectroscopy, 49(4), 684-698.Bersani, D., Andò, S., Scrocco, L., Gentile, P., Salvioli-Mariani, E., Fornasini, L., & Lottici, P. P. (2019). Composition of amphiboles in the tremolite-ferro-actinolite series by Raman Spectroscopy. Minerals, 9(8), 491.Bower, D. M. (2011). Micro-Raman spectroscopic investigations of mineral assemblages in parallel to bedding laminae in 2.9 Ga sandstones of the Pongola Supergroup, South Africa. Journal of Raman Spectroscopy, 42(8), 1626-1633. https://doi.org/https://doi.org/10.1002/jrs.2903Caggiani, M. C., Mangone, A., & Acquafredda, P. (2022). Blue coloured haüyne from Mt. Vulture (Italy) volcanic rocks: SEM-EDS and Raman investigation of natural and heated crystals. Journal of Raman Spectroscopy.Castilla, S. C., Pardo, N., Larrea, P., Zuluaga, C. A., Sarmiento, S., Noguera, D., & Sarmiento, G. A. (2019). Pre-eruptive conditions and pyroclastic emplacement of the last known vulcanian eruption of Azufral Volcano, SW Colombia. Journal of South American Earth Sciences, 91, 372-386. https://doi.org/https://doi.org/10.1016/j.jsames.2018.08.007Chazhengina, S. Y., & Kovalevski, V. V. (2017). Raman spectroscopy of weathered shungites. Journal of Raman Spectroscopy, 48(11), 1590-1596. https://doi.org/https://doi.org/10.1002/jrs.5188Della Ventura, G., Capitelli, F., Sbroscia, M., & Sodo, A. (2020). A Raman study of chalcogen species in sodalite-group minerals from the volcanic rocks of Latium (Italy). Journal of Raman Spectroscopy, 51(9), 1513-1521.Di Genova, D., Morgavi, D., Hess, K. U., Neuville, D. R., Borovkov, N., Perugini, D., & Dingwell, D. B. (2015). Approximate chemical analysis of volcanic glasses using Raman spectroscopy. Journal of Raman Spectroscopy, 46(12), 1235-1244. https://doi.org/10.1002/JRS.4751Dumanska-Slowik, M., Powolny, T., Natkaniec-Nowak, L., & Stankiewicz, K. (2022a). Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia). Ore Geology Reviews, 141, 104684.Dumanska-Slowik, M., Powolny, T., Natkaniec-Nowak, L., & Stankiewicz, K. (2022b). Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia). Ore Geology Reviews, 141, 104684. https://doi.org/https://doi.org/10.1016/j.oregeorev.2021.104684Enami, M., Nishiyama, T., & Mouri, T. (2007). Laser Raman microspectrometry of metamorphic quartz: A simple method for comparison of metamorphic pressures. American Mineralogist, 92(8-9), 1303-1315.Freeman, J. J., Wang, A., Kuebler, K. E., Jolliff, B. L., & Haskin, L. A. (2008). Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46(6), 1477-1500.Frezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20.Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., & Lupker, M. (2011). Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302(1-2), 107-120.Giordano, D., González-García, D., Russell, J. K., Raneri, S., Bersani, D., Fornasini, L., Di Genova, D., Ferrando, S., Kaliwoda, M., Lottici, P. P., Smit, M., & Dingwell, D. B. (2020). A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt physical properties. Journal of Raman Spectroscopy, 51(9), 1822-1838. https://doi.org/10.1002/jrs.5675Gong, X., Wang, J., You, J., Wang, M., Zhang, F., Tang, X., Ma, N., Lu, L., Wan, S., & Zhang, Q. (2022). Effect of MgO on the structure of SiO2-poor/rich MgO-CaO-SiO2 melts by in situ high temperature time-gated Raman spectroscopy and theoretical calculation. Journal of Raman Spectroscopy, 53(9), 1635-1646. https://doi.org/https://doi.org/10.1002/jrs.6406González-García, D., Giordano, D., Russell, J. K., & Dingwell, D. B. (2020). A Raman spectroscopic tool to estimate chemical composition of natural volcanic glasses. Chemical Geology, 556, 119819. https://doi.org/10.1016/J.CHEMGEO.2020.119819Griffith, W. P. (1969). Raman Spectroscopy of Minerals. Nature 1969 224:5216, 224(5216), 264-266. https://doi.org/10.1038/224264a0Hawthorne, F. C. (2018). Spectroscopic methods in mineralogy and geology (Vol. 18). Walter de Gruyter GmbH & Co KG.Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V, Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97(11-12), 2031-2048.Henderson, G. S., Neuville, D. R., & Downs, R. T. (2015). Spectroscopic methods in mineralogy and materials sciences. De Gruyter. https://doi.org/10.1515/9781614517863Ivleva, N. P., Huckele, S., Weinzierl, B., Niessner, R., Haisch, C., & Baumann, T. (2013). Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 405, 9071-9084.Korsakov, A. V., Kohn, M. J., & Perraki, M. (2020). Applications of Raman spectroscopy in metamorphic petrology and tectonics. Elements, 16(2), 105-110. https://doi.org/10.2138/GSELEMENTS.16.2.105Larkin, P. (2011). Infrared and Raman Spectroscopy Principles and Spectral Interpretation (Peter Larkin) (z-lib.org).Larkin, P. (2017). Infrared and Raman spectroscopy: principles and spectral interpretation. ElsevierLeissner, L., Schlüter, J., Horn, I., & Mihailova, B. (2015). Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. American Mineralogist, 100(11-12), 2682-2694.Li, Y., Huang, F., Gao, W., Zhu, Q., Shen, C., Li, M., Sun, X., & Wang, X. (2022). Raman spectroscopy and XPS study of the thermal decomposition of Mg-hornblende into augite. Journal of Raman Spectroscopy, 53(4), 820-831.MacKensie, W. S., & Guilford, C. (1980). Atlas of rock-forming minerals in thin sections. Longman, New York.McKeown, D. A. (2005). Raman spectroscopy and vibrational analyses of albite: From 25 C through the melting temperature. American Mineralogist, 90(10), 1506-1517.Mysen, B. (2003). Physics and chemistry of silicate glasses and melts. European Journal of Mineralogy, 15(5), 781-802.Nakatani, T., Sugaya, S., Yasui, M., Okumura, S., & Nakamura, M. (2021). Amorphous silica coating on flank deposits of the 1783 CE eruption at Asama volcano. Journal of Volcanology and Geothermal Research, 411, 107149. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2020.107149Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume, A.-M., Wang, X., Dubessy, J., Caumon, M. C., & Rull, F. (2012). Raman and fluorescence. EMU Notes in Mineralogy, 12(2), 61-82.Prinsloo, L. C., Colomban, P., Brink, J. D., & Meiklejohn, I. (2011). A Raman spectroscopic study of the igneous rocks on Marion Island: a possible terrestrial analogue for the geology on Mars. Journal of Raman Spectroscopy, 42(4), 626-632.Ramos, J. C., Luna, A. E. V., & Lima, C. M. O. (2013). Espectroscopia Raman y sus aplicaciones. Opt. Pura. Apl, 83-95.Ritz, M., Vaculíková, L., Kupková, J., Plevová, E., & Bartonová, L. (2016). Different level of fluorescence in Raman spectra of montmorillonites. Vibrational Spectroscopy, 84, 7-15.Rull, F., Martinez-Frias, J., & Rodríguez-Losada, J. A. (2007). Micro-Raman spectroscopic study of El Gasco pumice, western Spain. Journal of Raman Spectroscopy, 38(2), 239-244. https://doi.org/10.1002/JRS.1628Sbroscia, M., Della Ventura, G., Iezzi, G., & Sodo, A. (2018). Quantifying the A-site occupancy in amphiboles: A Raman study in the OH-stretching region. European Journal of Mineralogy, 30(3), 429-436.Shebanova, O. N., & Lazor, P. (2003). Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Journal of Solid State Chemistry, 174(2), 424-430.Sims, M., Jaret, S. J., Johnson, J. R., Whitaker, M. L., & Glotch, T. D. (2020). Unconventional high-pressure Raman spectroscopy study of kinetic and peak pressure effects in plagioclase feldspars. Physics and Chemistry of Minerals, 47, 1-10.Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.Surtees, A. P. H., Swindles, G. T., Savov, I. P., Scowen, I. J., Edwards, H. G. M., & Munshi, T. (2016). Raman spectroscopy for the discrimination of tephras from the Hekla eruptions of AD 1510 and 1947. The Holocene, 26(3), 432-438.Tomie, Z., Makreski, P., & Gajie, B. (2010). Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction. Journal of Raman Spectroscopy, 41(5), 582-586. https://doi.org/https://doi.org/10.1002/jrs.2476Torres, M. P., Cortéz, G. P., Calvache, M. L., & Monsalve, M. L. (2001). GEOLOGÍA Y ESTRATIGRAFÍA DEL VOLCÁN AZUFRAL, COLOMBIA.Tsang, L., & Kong, J. A. (2004). Scattering of electromagnetic waves: advanced topics. John Wiley & Sons.Vandenabeele, P., Edwards, H. G. M., & Jehlicka, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 43(8), 2628-2649. https://doi.org/10.1039/C3CS60263JWaeselmann, N., Schlüter, J., Malcherek, T., Della Ventura, G., Oberti, R., & Mihailova, B. (2020). Nondestructive determination of the amphibole crystal-chemical formulae by Raman spectroscopy: One step closer. Journal of Raman Spectroscopy, 51(9), 1530-1548.Wang, A., Dhamelincourt, P., & Turrell, G. (1988). Raman microspectroscopic study of the cation distribution in amphiboles. Applied Spectroscopy, 42(8), 1441-1450.Wang, A., Freeman, J. J., & Jolliff, B. L. (2015). Understanding the Raman spectral features of phyllosilicates. Journal of Raman Spectroscopy, 46(10), 829-845.Williams, M., Bursik, M. I., Cortes, G. P., & Garcia, A. M. (2017). Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units. Journal of Volcanology and Geothermal Research, 341, 21-32.Ye, K., Liou, J.-B., Cong, B., & Maruyama, S. (2001). Overpressures induced by coesite-quartz transition in zircon. American Mineralogist, 86(10), 1151-1155.Yoshida, K., Tamura, Y., Sato, T., Hanyu, T., Usui, Y., Chang, Q., & Ono, S. (2022). Variety of the drift pumice clasts from the 2021 Fukutoku-Oka-no-Ba eruption, Japan. Island Arc, 31(1), e12441. https://doi.org/10.1111/IAR.12441Yoshida, K., Tamura, Y., Sato, T., Sangmanee, C., Puttapreecha, R., & Ono, S. (2022). Voyage to the west: pumice raft from the Fukutoku-Oka-no-Ba in the northwest Pacific drifted over the South China Sea to Thailand.Zhang, S., Yin, J., Xiao, R., Hou, L., Wu, X., Zhu, Y., & Pang, S. (2022). Mineralogical and geochemical characteristics of the Mesoproterozoic sedimentary rocks in Rwanda and their implication for hydrocarbon investigation. Journal of African Earth Sciences, 196, 104669.201612086Publicationhttps://scholar.google.es/citations?user=ikmh8i0AAAAJvirtual::7679-10000-0002-8247-4116virtual::7679-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000406740virtual::7679-1a782b64a-d94d-4fd1-b866-03e18a0b504fvirtual::7679-1a782b64a-d94d-4fd1-b866-03e18a0b504fvirtual::7679-1ORIGINALTESIS VERSION FINAL.pdfTESIS VERSION FINAL.pdfTrabajo de gradoapplication/pdf41275240https://repositorio.uniandes.edu.co/bitstreams/72d6c016-bbd3-4214-8e7f-b2b1b86e9dd4/download3ef129070c375edb809d8178ab341545MD53autorizacion tesis_NPV_MIS.pdfautorizacion tesis_NPV_MIS.pdfHIDEapplication/pdf291948https://repositorio.uniandes.edu.co/bitstreams/86871627-2670-46c2-8b9f-d843343140cf/downloade207f57e199a2b3be97cd83261da30adMD56TEXTTESIS VERSION FINAL.pdf.txtTESIS VERSION FINAL.pdf.txtExtracted texttext/plain75996https://repositorio.uniandes.edu.co/bitstreams/217d8cba-b1e0-4440-92fc-16b00a47741d/downloada12aa67085dccbeeff30e22578c5dddaMD57autorizacion tesis_NPV_MIS.pdf.txtautorizacion tesis_NPV_MIS.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/0e63d538-21f0-4ea3-bb65-28d1d65af1c8/download08b106dfeb12472e88207a069e15ba30MD59LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/ba35950f-4502-4316-9222-986ae3b598ab/download5aa5c691a1ffe97abd12c2966efcb8d6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/8a25b849-54e1-4455-9367-86ceaff4473d/downloadf7d494f61e544413a13e6ba1da2089cdMD52THUMBNAILTESIS VERSION FINAL.pdf.jpgTESIS VERSION FINAL.pdf.jpgIM Thumbnailimage/jpeg10086https://repositorio.uniandes.edu.co/bitstreams/bb29901e-2641-4020-9689-b7b609a2dd34/download70a2ffaf09f9819bcf97afc2443ab518MD58autorizacion tesis_NPV_MIS.pdf.jpgautorizacion tesis_NPV_MIS.pdf.jpgIM Thumbnailimage/jpeg15895https://repositorio.uniandes.edu.co/bitstreams/9ca7102c-c4d4-4971-941e-3e50d9790b31/download99096e90027e4adedbc6e7392ecfbe67MD5101992/67939oai:repositorio.uniandes.edu.co:1992/679392024-03-13 13:29:32.8http://creativecommons.org/licenses/by-nd/4.0/restrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==