Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario

Wolbachia es un endosimbionte intracelular obligado que se encuentra ampliamente distribuido entre los insectos. Las relaciones simbióticas que mantiene con sus hospederos pueden ir desde mutualismo obligado hasta parasitismo reproductivo. Debido a las interacciones del simbionte con el hospedero, s...

Full description

Autores:
Palma Escobar, Andrea Carolina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73427
Acceso en línea:
https://hdl.handle.net/1992/73427
Palabra clave:
Wolbachia
Rhodnius prolixus
Triatoma infestans
Microbiología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_ed7c0e0b25ff4af34a142f21d8581c3f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73427
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
dc.title.alternative.eng.fl_str_mv Detection of Wolbachia in triatomines of the genus Rhodnius and Triatoma from wild and insectary environments
title Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
spellingShingle Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
Wolbachia
Rhodnius prolixus
Triatoma infestans
Microbiología
title_short Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
title_full Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
title_fullStr Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
title_full_unstemmed Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
title_sort Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectario
dc.creator.fl_str_mv Palma Escobar, Andrea Carolina
dc.contributor.advisor.none.fl_str_mv Guhl Nannetti, Felipe
Carrasquilla Ferro, María Cristina
dc.contributor.author.none.fl_str_mv Palma Escobar, Andrea Carolina
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Cimpat. Centro de Investigaciones en Microbiología y Parasitologia Tropical
dc.subject.keyword.spa.fl_str_mv Wolbachia
Rhodnius prolixus
Triatoma infestans
topic Wolbachia
Rhodnius prolixus
Triatoma infestans
Microbiología
dc.subject.themes.spa.fl_str_mv Microbiología
description Wolbachia es un endosimbionte intracelular obligado que se encuentra ampliamente distribuido entre los insectos. Las relaciones simbióticas que mantiene con sus hospederos pueden ir desde mutualismo obligado hasta parasitismo reproductivo. Debido a las interacciones del simbionte con el hospedero, se ha utilizado extensamente como estrategia de control en varias partes de Asia, Australia y América. Principalmente se emplea como control del mosquito Aedes aegypti y de la transmisión del virus del dengue. Teniendo en cuenta las estrategias aplicadas en insectos como A. aegypti, lo que se propone es detectar Wolbachia en triatominos y evaluar la posibilidad de que esta bacteria pueda usarse como control de los triatominos en un futuro. En este estudio, se utilizaron Rhodnius prolixus provenientes de campo y de insectario, y Triatoma infestans provenientes de insectario. En todos los casos fue negativa la presencia de Wolbachia, lo cual hace pertinente continuar con estudios sobre el efecto de la bacteria en el insecto para determinar su uso potencial como control de los vectores de la enfermedad de Chagas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-24T15:32:19Z
dc.date.available.none.fl_str_mv 2024-01-24T15:32:19Z
dc.date.issued.none.fl_str_mv 2024-01-23
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73427
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73427
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aliota, M. T., Peinado, S. A., Velez, I. D., & Osorio, J. E. (2016). The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Scientific Reports, 6, 28792. https://doi.org/10.1038/srep28792
Arias-Giraldo, L. M., Muñoz, M., Hernández, C., Herrera, G., Velásquez-Ortiz, N., Cantillo-Barraza, O., Urbano, P., & Ramírez, J. D. (2020). Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLOS ONE, 15(11), 1–16. https://doi.org/10.1371/journal.pone.0240916
Cantillo-Barraza, O., Solis, C., Zamora, A., Herazo, R., Osorio, M. I., Garcés, E., Xavier, S., Mejía-Jaramillo, A. M., & Triana-Chávez, O. (2022). Enzootic Trypanosoma cruzi infection by Rhodnius prolixus shows transmission to humans and dogs in Vichada, Colombia. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.999082
da Mota, F. F., Marinho, L. P., Moreira, C. J. de C., Lima, M. M., Mello, C. B., Garcia, E. S., Carels, N., & Azambuja, P. (2012). Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease. PLOS Neglected Tropical Diseases, 6(5), 1–13. https://doi.org/10.1371/journal.pntd.0001631
Depickère, S., Villacís, A. G., Santillán-Guayasamín, S., Callapa Rafael, J. E., Brenière, S. F., & Revollo Zepita, S. (2022). Rhodnius (Stål, 1859) (Hemiptera, Triatominae) genus in Bolivian Amazonia: a risk for human populations?. Parasites & Vectors, 15(1), 307. https://doi.org/10.1186/s13071-022-05423-3
Dobson, S. L., Rattanadechakul, W., & Marsland, E. J. (2004). Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus. Heredity, 93(2), 135–142. https://doi.org/10.1038/sj.hdy.6800458
Eichler, S., & Schaub, G. A. (2002). Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Experimental Parasitology, 100(1), 17–27. https://doi.org/10.1006/expr.2001.4653
Espino, C. I., Gómez, T., González, G., do Santos, M. F. B., Solano, J., Sousa, O., Moreno, N., Windsor, D., Ying, A., Vilchez, S., & Osuna, A. (2009). Detection of Wolbachia Bacteria in Multiple Organs and Feces of the Triatomine Insect Rhodnius pallescens (Hemiptera, Reduviidae). Applied and Environmental Microbiology, 75(2), 547–550. https://doi.org/10.1128/AEM.01665-08
Filée, J., Agésilas-Lequeux, K., Lacquehay, L., Bérenger, J. M., Dupont, L., Mendonça, V., Rosa, J. A. da, & Harry, M. (2023). Wolbachia genomics reveals a potential for a nutrition-based symbiosis in blood-sucking Triatomine bugs. BioRxiv, 2022.09.06.506778. https://doi.org/10.1101/2022.09.06.506778
Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S., Posfai, J., Vincze, T., Ingram, J., Moran, L., Lapidus, A., Omelchenko, M., Kyrpides, N., Ghedin, E., Wang, S., Goltsman, E., … Slatko, B. (2005). The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode. PLOS Biology, 3(4), null. https://doi.org/10.1371/journal.pbio.0030121
Gayen, P., Maitra, S., Datta, S., & Sinha Babu, S. P. (2010). Evidence for Wolbachia symbiosis in microfilariae of Wuchereria bancrofti from West Bengal, India. Journal of Biosciences, 35(1), 73–77. https://doi.org/10.1007/s12038-010-0009-3
Gil, R., Latorre, A., & Moya, A. (2004). Bacterial endosymbionts of insects: insights from comparative genomics. Environmental Microbiology, 6(11), 1109–1122. https://doi.org/10.1111/j.1462-2920.2004.00691.x
Gomes, T. M. F. F., Wallau, G. L., & Loreto, E. L. S. (2022). Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Scientific Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-12299-x
Gómez Zafra, M. J., & González Rosas, C. (2017). Valoración del riesgo de transmisión oral de Trypanosoma cruzi por ingestión de triatominos en mamíferos silvestres (disertación). Uniandes.
Hernández, C., da Rosa, J., Vallejo, G. A., Guhl, F., & Ramírez, J. D. (2020). Taxonomy, Evolution, and Biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity, 12(3). https://doi.org/10.3390/d12030097
Hertig, M., & Wolbach, S. B. (1924). Studies on Rickettsia-Like Micro-Organisms in Insects. The Journal of medical research, 44(3), 329–374.7.
Hertig, M. (1936). The Rickettsia, Wolbachia pipientis (gen. et sp.n.) and Associated Inclusions of the Mosquito, Culex pipiens. Parasitology, 28(4), 453–486. https://doi.org/10.1017/S0031182000022666
Hise, A. G., Gillette-Ferguson, I., & Pearlman, E. (2004). The role of endosymbiotic Wolbachia bacteria in filarial disease. Cellular Microbiology, 6(2), 97–104. https://doi.org/10.1046/j.1462-5822.2003.00350.x
Hussain, M., Zhang, G., Leitner, M., Hedges, L. M., & Asgari, S. (2023). Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti. IScience, 26(1). https://doi.org/10.1016/j.isci.2022.105836
Jiménez-Cortés, J. G., García-Contreras, R., Bucio-Torres, M. I., Cabrera-Bravo, M., Córdoba-Aguilar, A., Benelli, G., & Salazar-Schettino, P. M. (2018). Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Tropica, 186, 69–101. https://doi.org/https://doi.org/10.1016/j.actatropica.2018.07.005
Kaur, R., Shropshire, J. D., Cross, K. L., Leigh, B., Mansueto, A. J., Stewart, V., Bordenstein, S. R., & Bordenstein, S. R. (2021). Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host & Microbe, 29(6), 879–893. https://doi.org/10.1016/j.chom.2021.03.006
Kieran, T. J., Arnold, K. M. H., Thomas, J. C., Varian, C. P., Saldaña, A., Calzada, J. E., Glenn, T. C., & Gottdenker, N. L. (2019). Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasites & Vectors, 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8
Landmann, F. (2019). The Wolbachia Endosymbionts. Microbiology Spectrum, 7(2), 10.1128/microbiolspec.bai-0018–2019. https://doi.org/10.1128/microbiolspec.bai-0018-2019
Lefoulon, E., Clark, T., Guerrero, R., Cañizales, I., Cardenas-Callirgos, J. M., Junker, K., Vallarino-Lhermitte, N., Makepeace, B. L., Darby, A. C., Foster, J. M., Martin, C., & Slatko, B. E. (2020). Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microbial Genomics, 6(12), mgen000487. https://doi.org/10.1099/mgen.0.000487
Lu, P., Sun, Q., Fu, P., Li, K., Liang, X., & Xi, Z. (2020). Wolbachia Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01750
Manoj, R. R. S., Latrofa, M. S., Epis, S., & Otranto, D. (2021). Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasites & Vectors, 14(1), 245. https://doi.org/10.1186/s13071-021-04742-1
Margulis, L., & Fester, R. (Eds.). (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT press.
Méndez-Cardona, S., Ortiz, M. I., Carrasquilla, M. C., Fuya, P., Guhl, F., & González, C. (2022). Altitudinal distribution and species richness of triatomines (Hemiptera:Reduviidae) in Colombia. Parasites & Vectors, 15(1), 450. https://doi.org/10.1186/s13071-022-05574-3
Mesquita, R. D., Vionette-Amaral, R. J., Lowenberger, C., Rivera-Pomar, R., Monteiro, F. A., Minx, P., Spieth, J., Carvalho, A. B., Panzera, F., Lawson, D., Torres, A. Q., Ribeiro, J. M. C., Sorgine, M. H. F., Waterhouse, R. M., Montague, M. J., Abad-Franch, F., Alves-Bezerra, M., Amaral, L. R., Araujo, H. M., … Oliveira, P. L. (2015). Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proceedings of the National Academy of Sciences, 112(48), 14936–14941. https://doi.org/10.1073/pnas.1506226112
Murillo-Solano, C., López-Domínguez, J., Gongora, R. et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Scientific Reports 11, 12306 (2021). https://doi.org/10.1038/s41598-021-91783-2
Nikoh, N., Hosokawa, T., Moriyama, M., Oshima, K., Hattori, M., & Fukatsu, T. (2014). Evolutionary origin of insect-Wolbachia nutritional mutualism. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10257–10262. https://doi.org/10.1073/pnas.1409284111
Nowack, E. C. M., & Melkonian, M. (2010). Endosymbiotic associations within protists. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1541), 699–712. https://doi.org/10.1098/rstb.2009.0188
ONeill S. L. (2018). The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses. Advances in Experimental Medicine and Biology, 1062, 355–360. https://doi.org/10.1007/978-981-10-8727-1_24
OPS. (2023). Enfermedad de Chagas en las Américas: Análisis de la Situación Actual y Revisión Estratégica de la Agenda Regional. Informe Final,, 14-16 de marzo del 2023, Medellín (Colombia).
Perlmutter, J. I., Bordenstein, S. R., Unckless, R. L., LePage, D. P., Metcalf, J. A., Hill, T., Martinez, J., Jiggins, F. M., & Bordenstein, S. R. (2019). The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathogens, 15(9), 1–29. https://doi.org/10.1371/journal.ppat.1007936
Ramírez, M., Ortiz, M. I., Guerenstein, P., & Molina, J. (2020). Novel repellents for the blood-sucking insects Rhodnius prolixus and Triatoma infestans, vectors of Chagas disease. Parasites & Vectors, 13(1), 142. https://doi.org/10.1186/s13071-020-04013-5
Roberts L. S. Janovy J. & Nadler S. (2013). Gerald D. Schmidt & Larry S. Roberts Foundations of Parasitology (Ninth). McGraw Hill.
Rolandi, C., Iglesias, M. S., & Schilman, P. E. (2014). Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature. The Journal of Experimental Biology, 217(Pt 24), 4414–4422. https://doi.org/10.1242/jeb.109298
Ross, P. A., Turelli, M., & Hoffmann, A. A. (2019). Evolutionary Ecology of Wolbachia Releases for Disease Control. Annual Review of Genetics, 53(1), 93–116. https://doi.org/10.1146/annurev-genet-112618-043609
Salcedo-Porras, N., Umaña-Diaz, C., Bitencourt, R. O. B., & Lowenberger, C. (2020). The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms, 8(9), 1438. https://doi.org/10.3390/microorganisms8091438
Sanaei, E., Charlat, S., & Engelstädter, J. (2021). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. https://doi.org/https://doi.org/10.1111/brv.12663
Stouthamer, R., Breeuwer, J. A. J., & Hurst, G. D. D. (1999). Wolbachia pipientis: Microbial Manipulator of Arthropod Reproduction. Annual Review of Microbiology, 53(1), 71–102. https://doi.org/10.1146/annurev.micro.53.1.71
Torres, R., Hernandez, E., Flores, V., Ramirez, J. L., & Joyce, A. L. (2020). Wolbachia in mosquitoes from the Central Valley of California, USA. Parasites & Vectors, 13(1), 558. https://doi.org/10.1186/s13071-020-04429-z
Velez, I. D., Tanamas, S. K., Arbelaez, M. P., Kutcher, S. C., Duque, S. L., Uribe, A., Zuluaga, L., Martínez, L., Patiño, A. C., Barajas, J., Muñoz, E., Mejia Torres, M. C., Uribe, S., Porras, S., Almanza, R., Pulido, H., O’Neill, S. L., Santacruz-Sanmartin, E., Gonzalez, S., … Anders, K. L. (2023). Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: Interrupted time series analysis and a prospective case-control study. PLOS Neglected Tropical Diseases, 17(11), 1–20. https://doi.org/10.1371/journal.pntd.0011713
Velez, I. D., Uribe, A., Barajas, J., Uribe, S., Ángel, S., Suaza-Vasco, J. D., Mejia Torres, M. C., Arbeláez, M. P., Santacruz-Sanmartin, E., Duque, L., Martínez, L., Posada, T., Patiño, A. C., Gonzalez, S. M., Velez, A. L., Ramírez, J., Salazar, M., Gómez, S., Osorio, J. E., … O’Neill, S. L. (2023). Large-scale releases and establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello, Medellín and Itagüí, Colombia. PLOS Neglected Tropical Diseases, 17(11), 1–27. https://doi.org/10.1371/journal.pntd.0011642
Vinayagam, S., Nirmolia, T., Chetry, S., Kumar, N. P., Saini, P., Bhattacharyya, D. R., Bhowmick, I. P., Sattu, K., & Patgiri, S. J. (2023). Molecular Evidence of Wolbachia Species in Wild-Caught Aedes albopictus and Aedes aegypti Mosquitoes in Four States of Northeast India. Journal of Tropical Medicine, 2023, 6678627. https://doi.org/10.1155/2023/6678627
Waltmann, A., Willcox, A. C., Balasubramanian, S., Borrini Mayori, K., Mendoza Guerrero, S., Salazar Sanchez, R. S., Roach, J., Condori Pino, C., Gilman, R. H., Bern, C., Juliano, J. J., Levy, M. Z., Meshnick, S. R., & Bowman, N. M. (2019). Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLOS Neglected Tropical Diseases, 13(5), 1–26. https://doi.org/10.1371/journal.pntd.0007383
Weinert, L. A., Araujo-Jnr, E. V, Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 20150249. https://doi.org/10.1098/rspb.2015.0249
Werren, J., Windsor, D., & Guo, L. (1995). Distribution of Wolbachia among Neotropical Arthropods. Proceedings of The Royal Society B: Biological Sciences, 262, 197–204. https://doi.org/10.1098/rspb.1995.0196
Zimorski, V., Ku, C., Martin, W. F., & Gould, S. B. (2014). Endosymbiotic theory for organelle origins. Current Opinion in Microbiology, 22, 38–48. https://doi.org/10.1016/j.mib.2014.09.008
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Microbiología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/73eb769f-23dc-4981-a97b-c1a2adae9493/download
https://repositorio.uniandes.edu.co/bitstreams/a089e644-de7c-4133-9d57-f3ee7adb7b96/download
https://repositorio.uniandes.edu.co/bitstreams/086cf243-9f25-4739-a59e-61bc3287372f/download
https://repositorio.uniandes.edu.co/bitstreams/8157b744-a99d-4a4a-844b-d8055f9aa6d2/download
https://repositorio.uniandes.edu.co/bitstreams/1db1cc4f-19b8-448f-975f-f78732979270/download
https://repositorio.uniandes.edu.co/bitstreams/e1f3c6b8-8955-4a16-9916-2558ba8aa316/download
https://repositorio.uniandes.edu.co/bitstreams/80849a63-de5e-46fc-822b-1504add83839/download
https://repositorio.uniandes.edu.co/bitstreams/524b41fe-14fd-49bb-ba87-61e5d59ffcc0/download
bitstream.checksum.fl_str_mv 295be4cd43459ed3cc67259843b9fedf
5b6ca73366fc4c6cd7c6ee8facfca30b
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
5cc6c02b341e60a7a0634865c86162b3
170ca5652dd7e8406dfc4bff52331a5d
21aa93dc6524dede668a2ddd374f770b
3cbd7156dc25eda96f7a3ec911419752
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111926523133952
spelling Guhl Nannetti, FelipeCarrasquilla Ferro, María CristinaPalma Escobar, Andrea CarolinaFacultad de Ciencias::Cimpat. Centro de Investigaciones en Microbiología y Parasitologia Tropical2024-01-24T15:32:19Z2024-01-24T15:32:19Z2024-01-23https://hdl.handle.net/1992/73427instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Wolbachia es un endosimbionte intracelular obligado que se encuentra ampliamente distribuido entre los insectos. Las relaciones simbióticas que mantiene con sus hospederos pueden ir desde mutualismo obligado hasta parasitismo reproductivo. Debido a las interacciones del simbionte con el hospedero, se ha utilizado extensamente como estrategia de control en varias partes de Asia, Australia y América. Principalmente se emplea como control del mosquito Aedes aegypti y de la transmisión del virus del dengue. Teniendo en cuenta las estrategias aplicadas en insectos como A. aegypti, lo que se propone es detectar Wolbachia en triatominos y evaluar la posibilidad de que esta bacteria pueda usarse como control de los triatominos en un futuro. En este estudio, se utilizaron Rhodnius prolixus provenientes de campo y de insectario, y Triatoma infestans provenientes de insectario. En todos los casos fue negativa la presencia de Wolbachia, lo cual hace pertinente continuar con estudios sobre el efecto de la bacteria en el insecto para determinar su uso potencial como control de los vectores de la enfermedad de Chagas.Wolbachia is an obligate intracellular endosymbiont that is widely distributed among insects. The symbiotic relationships it maintains with its hosts can range from obligate mutualism to reproductive parasitism. Because of the symbiont's interactions with the host, it has been used extensively as a control strategy in various parts of Asia, Australia and America. It is mainly used to control the Aedes aegypti mosquito and the transmission of the dengue virus. Considering the strategies applied on insects such as A. aegypti, it has been proposed to detect Wolbachia in triatomines and evaluate the possibility that this bacterium could be used as control for triatomines in the future. In this study, Rhodnius prolixus from field and insectary, and Triatoma infestans from insectary were used. In all cases, the presence of Wolbachia was negative, which makes it pertinent to continue with research on the effect of the bacterium on the insect in order to determine its potential use as control of the vectors of Chagas disease.MicrobiólogoPregrado22 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma provenientes de ambientes silvestres y de insectarioDetection of Wolbachia in triatomines of the genus Rhodnius and Triatoma from wild and insectary environmentsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPWolbachiaRhodnius prolixusTriatoma infestansMicrobiologíaAliota, M. T., Peinado, S. A., Velez, I. D., & Osorio, J. E. (2016). The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Scientific Reports, 6, 28792. https://doi.org/10.1038/srep28792Arias-Giraldo, L. M., Muñoz, M., Hernández, C., Herrera, G., Velásquez-Ortiz, N., Cantillo-Barraza, O., Urbano, P., & Ramírez, J. D. (2020). Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLOS ONE, 15(11), 1–16. https://doi.org/10.1371/journal.pone.0240916Cantillo-Barraza, O., Solis, C., Zamora, A., Herazo, R., Osorio, M. I., Garcés, E., Xavier, S., Mejía-Jaramillo, A. M., & Triana-Chávez, O. (2022). Enzootic Trypanosoma cruzi infection by Rhodnius prolixus shows transmission to humans and dogs in Vichada, Colombia. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.999082da Mota, F. F., Marinho, L. P., Moreira, C. J. de C., Lima, M. M., Mello, C. B., Garcia, E. S., Carels, N., & Azambuja, P. (2012). Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease. PLOS Neglected Tropical Diseases, 6(5), 1–13. https://doi.org/10.1371/journal.pntd.0001631Depickère, S., Villacís, A. G., Santillán-Guayasamín, S., Callapa Rafael, J. E., Brenière, S. F., & Revollo Zepita, S. (2022). Rhodnius (Stål, 1859) (Hemiptera, Triatominae) genus in Bolivian Amazonia: a risk for human populations?. Parasites & Vectors, 15(1), 307. https://doi.org/10.1186/s13071-022-05423-3Dobson, S. L., Rattanadechakul, W., & Marsland, E. J. (2004). Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus. Heredity, 93(2), 135–142. https://doi.org/10.1038/sj.hdy.6800458Eichler, S., & Schaub, G. A. (2002). Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Experimental Parasitology, 100(1), 17–27. https://doi.org/10.1006/expr.2001.4653Espino, C. I., Gómez, T., González, G., do Santos, M. F. B., Solano, J., Sousa, O., Moreno, N., Windsor, D., Ying, A., Vilchez, S., & Osuna, A. (2009). Detection of Wolbachia Bacteria in Multiple Organs and Feces of the Triatomine Insect Rhodnius pallescens (Hemiptera, Reduviidae). Applied and Environmental Microbiology, 75(2), 547–550. https://doi.org/10.1128/AEM.01665-08Filée, J., Agésilas-Lequeux, K., Lacquehay, L., Bérenger, J. M., Dupont, L., Mendonça, V., Rosa, J. A. da, & Harry, M. (2023). Wolbachia genomics reveals a potential for a nutrition-based symbiosis in blood-sucking Triatomine bugs. BioRxiv, 2022.09.06.506778. https://doi.org/10.1101/2022.09.06.506778Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S., Posfai, J., Vincze, T., Ingram, J., Moran, L., Lapidus, A., Omelchenko, M., Kyrpides, N., Ghedin, E., Wang, S., Goltsman, E., … Slatko, B. (2005). The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode. PLOS Biology, 3(4), null. https://doi.org/10.1371/journal.pbio.0030121Gayen, P., Maitra, S., Datta, S., & Sinha Babu, S. P. (2010). Evidence for Wolbachia symbiosis in microfilariae of Wuchereria bancrofti from West Bengal, India. Journal of Biosciences, 35(1), 73–77. https://doi.org/10.1007/s12038-010-0009-3Gil, R., Latorre, A., & Moya, A. (2004). Bacterial endosymbionts of insects: insights from comparative genomics. Environmental Microbiology, 6(11), 1109–1122. https://doi.org/10.1111/j.1462-2920.2004.00691.xGomes, T. M. F. F., Wallau, G. L., & Loreto, E. L. S. (2022). Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Scientific Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-12299-xGómez Zafra, M. J., & González Rosas, C. (2017). Valoración del riesgo de transmisión oral de Trypanosoma cruzi por ingestión de triatominos en mamíferos silvestres (disertación). Uniandes.Hernández, C., da Rosa, J., Vallejo, G. A., Guhl, F., & Ramírez, J. D. (2020). Taxonomy, Evolution, and Biogeography of the Rhodniini Tribe (Hemiptera: Reduviidae). Diversity, 12(3). https://doi.org/10.3390/d12030097Hertig, M., & Wolbach, S. B. (1924). Studies on Rickettsia-Like Micro-Organisms in Insects. The Journal of medical research, 44(3), 329–374.7.Hertig, M. (1936). The Rickettsia, Wolbachia pipientis (gen. et sp.n.) and Associated Inclusions of the Mosquito, Culex pipiens. Parasitology, 28(4), 453–486. https://doi.org/10.1017/S0031182000022666Hise, A. G., Gillette-Ferguson, I., & Pearlman, E. (2004). The role of endosymbiotic Wolbachia bacteria in filarial disease. Cellular Microbiology, 6(2), 97–104. https://doi.org/10.1046/j.1462-5822.2003.00350.xHussain, M., Zhang, G., Leitner, M., Hedges, L. M., & Asgari, S. (2023). Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti. IScience, 26(1). https://doi.org/10.1016/j.isci.2022.105836Jiménez-Cortés, J. G., García-Contreras, R., Bucio-Torres, M. I., Cabrera-Bravo, M., Córdoba-Aguilar, A., Benelli, G., & Salazar-Schettino, P. M. (2018). Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Tropica, 186, 69–101. https://doi.org/https://doi.org/10.1016/j.actatropica.2018.07.005Kaur, R., Shropshire, J. D., Cross, K. L., Leigh, B., Mansueto, A. J., Stewart, V., Bordenstein, S. R., & Bordenstein, S. R. (2021). Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host & Microbe, 29(6), 879–893. https://doi.org/10.1016/j.chom.2021.03.006Kieran, T. J., Arnold, K. M. H., Thomas, J. C., Varian, C. P., Saldaña, A., Calzada, J. E., Glenn, T. C., & Gottdenker, N. L. (2019). Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasites & Vectors, 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8Landmann, F. (2019). The Wolbachia Endosymbionts. Microbiology Spectrum, 7(2), 10.1128/microbiolspec.bai-0018–2019. https://doi.org/10.1128/microbiolspec.bai-0018-2019Lefoulon, E., Clark, T., Guerrero, R., Cañizales, I., Cardenas-Callirgos, J. M., Junker, K., Vallarino-Lhermitte, N., Makepeace, B. L., Darby, A. C., Foster, J. M., Martin, C., & Slatko, B. E. (2020). Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microbial Genomics, 6(12), mgen000487. https://doi.org/10.1099/mgen.0.000487Lu, P., Sun, Q., Fu, P., Li, K., Liang, X., & Xi, Z. (2020). Wolbachia Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01750Manoj, R. R. S., Latrofa, M. S., Epis, S., & Otranto, D. (2021). Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasites & Vectors, 14(1), 245. https://doi.org/10.1186/s13071-021-04742-1Margulis, L., & Fester, R. (Eds.). (1991). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT press.Méndez-Cardona, S., Ortiz, M. I., Carrasquilla, M. C., Fuya, P., Guhl, F., & González, C. (2022). Altitudinal distribution and species richness of triatomines (Hemiptera:Reduviidae) in Colombia. Parasites & Vectors, 15(1), 450. https://doi.org/10.1186/s13071-022-05574-3Mesquita, R. D., Vionette-Amaral, R. J., Lowenberger, C., Rivera-Pomar, R., Monteiro, F. A., Minx, P., Spieth, J., Carvalho, A. B., Panzera, F., Lawson, D., Torres, A. Q., Ribeiro, J. M. C., Sorgine, M. H. F., Waterhouse, R. M., Montague, M. J., Abad-Franch, F., Alves-Bezerra, M., Amaral, L. R., Araujo, H. M., … Oliveira, P. L. (2015). Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proceedings of the National Academy of Sciences, 112(48), 14936–14941. https://doi.org/10.1073/pnas.1506226112Murillo-Solano, C., López-Domínguez, J., Gongora, R. et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Scientific Reports 11, 12306 (2021). https://doi.org/10.1038/s41598-021-91783-2Nikoh, N., Hosokawa, T., Moriyama, M., Oshima, K., Hattori, M., & Fukatsu, T. (2014). Evolutionary origin of insect-Wolbachia nutritional mutualism. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10257–10262. https://doi.org/10.1073/pnas.1409284111Nowack, E. C. M., & Melkonian, M. (2010). Endosymbiotic associations within protists. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1541), 699–712. https://doi.org/10.1098/rstb.2009.0188ONeill S. L. (2018). The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses. Advances in Experimental Medicine and Biology, 1062, 355–360. https://doi.org/10.1007/978-981-10-8727-1_24OPS. (2023). Enfermedad de Chagas en las Américas: Análisis de la Situación Actual y Revisión Estratégica de la Agenda Regional. Informe Final,, 14-16 de marzo del 2023, Medellín (Colombia).Perlmutter, J. I., Bordenstein, S. R., Unckless, R. L., LePage, D. P., Metcalf, J. A., Hill, T., Martinez, J., Jiggins, F. M., & Bordenstein, S. R. (2019). The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathogens, 15(9), 1–29. https://doi.org/10.1371/journal.ppat.1007936Ramírez, M., Ortiz, M. I., Guerenstein, P., & Molina, J. (2020). Novel repellents for the blood-sucking insects Rhodnius prolixus and Triatoma infestans, vectors of Chagas disease. Parasites & Vectors, 13(1), 142. https://doi.org/10.1186/s13071-020-04013-5Roberts L. S. Janovy J. & Nadler S. (2013). Gerald D. Schmidt & Larry S. Roberts Foundations of Parasitology (Ninth). McGraw Hill.Rolandi, C., Iglesias, M. S., & Schilman, P. E. (2014). Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature. The Journal of Experimental Biology, 217(Pt 24), 4414–4422. https://doi.org/10.1242/jeb.109298Ross, P. A., Turelli, M., & Hoffmann, A. A. (2019). Evolutionary Ecology of Wolbachia Releases for Disease Control. Annual Review of Genetics, 53(1), 93–116. https://doi.org/10.1146/annurev-genet-112618-043609Salcedo-Porras, N., Umaña-Diaz, C., Bitencourt, R. O. B., & Lowenberger, C. (2020). The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms, 8(9), 1438. https://doi.org/10.3390/microorganisms8091438Sanaei, E., Charlat, S., & Engelstädter, J. (2021). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. https://doi.org/https://doi.org/10.1111/brv.12663Stouthamer, R., Breeuwer, J. A. J., & Hurst, G. D. D. (1999). Wolbachia pipientis: Microbial Manipulator of Arthropod Reproduction. Annual Review of Microbiology, 53(1), 71–102. https://doi.org/10.1146/annurev.micro.53.1.71Torres, R., Hernandez, E., Flores, V., Ramirez, J. L., & Joyce, A. L. (2020). Wolbachia in mosquitoes from the Central Valley of California, USA. Parasites & Vectors, 13(1), 558. https://doi.org/10.1186/s13071-020-04429-zVelez, I. D., Tanamas, S. K., Arbelaez, M. P., Kutcher, S. C., Duque, S. L., Uribe, A., Zuluaga, L., Martínez, L., Patiño, A. C., Barajas, J., Muñoz, E., Mejia Torres, M. C., Uribe, S., Porras, S., Almanza, R., Pulido, H., O’Neill, S. L., Santacruz-Sanmartin, E., Gonzalez, S., … Anders, K. L. (2023). Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: Interrupted time series analysis and a prospective case-control study. PLOS Neglected Tropical Diseases, 17(11), 1–20. https://doi.org/10.1371/journal.pntd.0011713Velez, I. D., Uribe, A., Barajas, J., Uribe, S., Ángel, S., Suaza-Vasco, J. D., Mejia Torres, M. C., Arbeláez, M. P., Santacruz-Sanmartin, E., Duque, L., Martínez, L., Posada, T., Patiño, A. C., Gonzalez, S. M., Velez, A. L., Ramírez, J., Salazar, M., Gómez, S., Osorio, J. E., … O’Neill, S. L. (2023). Large-scale releases and establishment of wMel Wolbachia in Aedes aegypti mosquitoes throughout the Cities of Bello, Medellín and Itagüí, Colombia. PLOS Neglected Tropical Diseases, 17(11), 1–27. https://doi.org/10.1371/journal.pntd.0011642Vinayagam, S., Nirmolia, T., Chetry, S., Kumar, N. P., Saini, P., Bhattacharyya, D. R., Bhowmick, I. P., Sattu, K., & Patgiri, S. J. (2023). Molecular Evidence of Wolbachia Species in Wild-Caught Aedes albopictus and Aedes aegypti Mosquitoes in Four States of Northeast India. Journal of Tropical Medicine, 2023, 6678627. https://doi.org/10.1155/2023/6678627Waltmann, A., Willcox, A. C., Balasubramanian, S., Borrini Mayori, K., Mendoza Guerrero, S., Salazar Sanchez, R. S., Roach, J., Condori Pino, C., Gilman, R. H., Bern, C., Juliano, J. J., Levy, M. Z., Meshnick, S. R., & Bowman, N. M. (2019). Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLOS Neglected Tropical Diseases, 13(5), 1–26. https://doi.org/10.1371/journal.pntd.0007383Weinert, L. A., Araujo-Jnr, E. V, Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 20150249. https://doi.org/10.1098/rspb.2015.0249Werren, J., Windsor, D., & Guo, L. (1995). Distribution of Wolbachia among Neotropical Arthropods. Proceedings of The Royal Society B: Biological Sciences, 262, 197–204. https://doi.org/10.1098/rspb.1995.0196Zimorski, V., Ku, C., Martin, W. F., & Gould, S. B. (2014). Endosymbiotic theory for organelle origins. Current Opinion in Microbiology, 22, 38–48. https://doi.org/10.1016/j.mib.2014.09.008201922836PublicationORIGINALAutorización tesis.pdfAutorización tesis.pdfHIDEapplication/pdf4672021https://repositorio.uniandes.edu.co/bitstreams/73eb769f-23dc-4981-a97b-c1a2adae9493/download295be4cd43459ed3cc67259843b9fedfMD51Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdfDetección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdfapplication/pdf777235https://repositorio.uniandes.edu.co/bitstreams/a089e644-de7c-4133-9d57-f3ee7adb7b96/download5b6ca73366fc4c6cd7c6ee8facfca30bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/086cf243-9f25-4739-a59e-61bc3287372f/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8157b744-a99d-4a4a-844b-d8055f9aa6d2/download4460e5956bc1d1639be9ae6146a50347MD54TEXTAutorización tesis.pdf.txtAutorización tesis.pdf.txtExtracted texttext/plain196https://repositorio.uniandes.edu.co/bitstreams/1db1cc4f-19b8-448f-975f-f78732979270/download5cc6c02b341e60a7a0634865c86162b3MD55Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdf.txtDetección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdf.txtExtracted texttext/plain53119https://repositorio.uniandes.edu.co/bitstreams/e1f3c6b8-8955-4a16-9916-2558ba8aa316/download170ca5652dd7e8406dfc4bff52331a5dMD57THUMBNAILAutorización tesis.pdf.jpgAutorización tesis.pdf.jpgGenerated Thumbnailimage/jpeg11611https://repositorio.uniandes.edu.co/bitstreams/80849a63-de5e-46fc-822b-1504add83839/download21aa93dc6524dede668a2ddd374f770bMD56Detección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdf.jpgDetección de Wolbachia en triatominos de los géneros Rhodnius y Triatoma.pdf.jpgGenerated Thumbnailimage/jpeg5026https://repositorio.uniandes.edu.co/bitstreams/524b41fe-14fd-49bb-ba87-61e5d59ffcc0/download3cbd7156dc25eda96f7a3ec911419752MD581992/73427oai:repositorio.uniandes.edu.co:1992/734272024-11-14 14:50:54.135http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K