Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios
Tesis doctoral
- Autores:
-
Fernández Acosta, Nicolás
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/64730
- Acceso en línea:
- http://hdl.handle.net/1992/64730
- Palabra clave:
- Water quality
Hydrology
Headwater catchments
Modeling
Environmental assessment
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_ec479a6d69b025d82e8e915f68c55098 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/64730 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
title |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
spellingShingle |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios Water quality Hydrology Headwater catchments Modeling Environmental assessment Ingeniería |
title_short |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
title_full |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
title_fullStr |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
title_full_unstemmed |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
title_sort |
Water quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenarios |
dc.creator.fl_str_mv |
Fernández Acosta, Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Camacho Botero, Luis Alejandro |
dc.contributor.author.none.fl_str_mv |
Fernández Acosta, Nicolás |
dc.contributor.jury.none.fl_str_mv |
Medaglia González, Andrés L Buytaert, Wouter Nejadhashemi, A. Pouyan Rodríguez Sandoval, Erasmo Alfredo |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Centro de Investigaciones en Ingenieria Ambiental |
dc.subject.keyword.none.fl_str_mv |
Water quality Hydrology Headwater catchments Modeling Environmental assessment |
topic |
Water quality Hydrology Headwater catchments Modeling Environmental assessment Ingeniería |
dc.subject.themes.es_CO.fl_str_mv |
Ingeniería |
description |
Tesis doctoral |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-02-06T21:50:32Z |
dc.date.available.none.fl_str_mv |
2023-02-06T21:50:32Z |
dc.date.issued.none.fl_str_mv |
2023-02-03 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/64730 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/64730 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/64730 |
identifier_str_mv |
10.57784/1992/64730 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Abbaspour, K. (2015). SWAT-CUP: SWAT Calibration and Uncertainty¿Programs - A user manual. https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf Ala-aho, P., Soulsby, C., Wang, H., & Tetzlaff, D. (2017). Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parametrisation. Journal of Hydrology, 547, 664¿677. https://doi.org/10.1016/j.jhydrol.2017.02.023 Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. (2007). The Role of Headwater Streams in Downstream Water Quality. JAWRA Journal of the American Water Resources Association, 43(1), 41¿59. https://doi.org/10.1111/j.1752-1688.2007.00005.x Alilou, H., Nia, A.M., Saravi, M.M., Salajegheh, A., Han, D., Enayat, B.B. (2019). A novel approach for selecting sampling points locations to river water quality monitoring in data-scarce regions. Journal of Hydrology, 573, 109-122, https://doi.org/10.1016/j.jhydrol.2019.03.068. ALOS. (2022). Advanced Land Observing Satellite. https://www.eorc.jaxa.jp/ALOS/en/index_e.htm Anderson, E. (2002). Calibration of Conceptual Hydrologic Models for Use in River Forecasting. https://www.weather.gov/media/owp/oh/hrl/docs/1_Anderson_CalbManual.pdf Arenas-Faura, G. A. (2004). Modelación de la calidad del agua en un río de montaña colombiano (Quebrada La Legía). In instname:Universidad de los Andes. http://hdl.handle.net/1992/21262 Arnold, J. G., & Allen, P. M. (1999). Automated methods for estimating baseflow and ground water recharge from streamflow records. Journal of the American Water Resources Association, 35(2), 411¿424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x Arnold, J.G., Kiniry, J., Srinivasan, R., Williams, J., Haney, E., & Neitsch, S. (2012). Soil & Water Assessment Tool: Input/Output Documentation Version 2012. Texas Water Resources Institute. https://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Liew, M.W. van, Kannan, N., Jha, M.K., Harmel, D., Member, A., Liew, M.W. van, Arnold, J.-F.G., (2012). Swat: model use, calibration, and validation. Trans. ASABE 55 (4), 1491¿1508. http://swatmodel.tamu.edu. Baird, R. B., Eaton, A. D., Rice, E. W., & Bridgewater, L. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association Barrera, S., Diaz-Granados, M., Ramos, J. P., Camacho, L. A., Rosales, R., Escalante, N., & Torres, M. (2002). Modelo Computacional del Impacto de las Aguas Residuales Municipales sobre la Red Hídrica Colombiana. XX CONGRESO LATINOAMERICANO DE HIDRÁULICA Bathurst, J. C. (1985). Flow Resistance Estimation in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 625¿643. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:4(625) Beckman, N. D., & Wohl, E. (2014). Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams. Water Resources Research, 50(3), 2376¿2393. https://doi.org/10.1002/2013WR014167 Beer, T., & Young, P. C. (1983). Longitudinal Dispersion in Natural Streams. Journal of Environmental Engineering, 109(5), 1049¿1067. https://doi.org/10.1061/(ASCE)0733-9372(1983)109:5(1049) Bertuzzo, E., Hotchkiss, E. R., Argerich, A., Kominoski, J. S., Oviedo¿Vargas, D., Savoy, P., Scarlett, R., von Schiller, D., & Heffernan, J. B. (2022). Respiration regimes in rivers: Partitioning source¿specific respiration from metabolism time series. Limnology and Oceanography. https://doi.org/10.1002/lno.12207 Beven, K. (2019). How to make advances in hydrological modelling. Hydrology Research, 50(6), 1481¿1494. https://doi.org/10.2166/nh.2019.134 Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 34(16), 3608¿3613. https://doi.org/10.1002/hyp.13805 Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279¿298. https://doi.org/10.1002/hyp.3360060305 Bogotá-A, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., van der Linden, M., & Berrio, J. C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: Implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30(23¿24), 3321¿3337. https://doi.org/10.1016/j.quascirev.2011.08.003 Bui, H.H., Ha, N.H., Nguyen, T.N.D, Nguyen, A.T., Pham, T.T.H, Kandasamy, J., Nguyen, T.V., (2019). Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam, Ecohydrology & Hydrobiology,19(2),210-223, https://doi.org/10.1016/j.ecohyd.2019.03.005 Burboa, A., Vargas, J., & Meier, C. I. (2020). PluvioReader: A software for digitizing weekly siphoning-type pluviograph strip charts. Computers and Geosciences, 139. https://doi.org/10.1016/j.cageo.2020.104463 Buytaert, W., & de Bièvre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research, 48(8). https://doi.org/10.1029/2011WR011755 Camacho, L. A., & Díaz-Granados, M. (2003). Metodología para la obtención de un modelo predictivo de transporte de solutos y de calidad del agua en ríos-Caso Río Bogotá. Seminario Internacional La Hidroinformática En La Gestión Integrada de Los Recursos Hídricos, 0, 73¿82. Camacho, L. A., Diaz-Granados, M., Giraldo, E., Saenz, J., & Herrera, M. (2002). Instrumentación y análisis ambiental de una cuenca urbana en Bogotá: Investigación y desarrollo de modelos simplificados lluvia escorrentía. XX Congreso Latinoamericano de Hidráulica Camacho, L. A., & Gonzalez, R. A. (2008). Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environmental Fluid Mechanics, 8(5¿6), 597¿604. https://doi.org/10.1007/s10652-008-9109-0 Camacho, L. A., & Lees, M. J. (1999). Multilinear discrete lag-cascade model for channel routing. Journal of Hydrology, 226(1¿2), 30¿47. https://doi.org/10.1016/S0022-1694(99)00162-6 Camacho, L. A., & Lees, M. J. (2000). Modelación del transporte de solutos en ríos bajo condiciones de flujo no permanente: un modelo conceptual integrado. XIX Congreso Latinoamericano de Hidráulica. Camacho, L. A., Rodríguez, E. A., Gelvez, R., González, R., Medina, M., & Torres, J. (2007). Metodología para la caracterización de la capacidad de autopurificación de ríos de montaña. I Congreso internacional del agua y el ambiente. http://www.ing.unal.edu.co/gireh/docs/prios.htm Camacho, R. A., Martin, J. L., Watson, B., Paul, M. J., Zheng, L., & Stribling, J. B. (2015). Modeling the Factors Controlling Phytoplankton in the St. Louis Bay Estuary, Mississippi and Evaluating Estuarine Responses to Nutrient Load Modifications. Journal of Environmental Engineering, 141(3), 04014067. https://doi.org/10.1061/(asce)ee.1943-7870.0000892 Cañon, J. Determinacion del coeficiente de degradación de materia orgánica carbonacea en ríos de montaña [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9187/u275509.pdf?sequence=1 Cantor, M. M. (2010). Modelación del transporte de solutos en condiciones de flujo no permanente con alta dispersión y zonas muertas en canales de baja pendiente: aplicación al caso del Río Bogotá en el tramo de Puente Vargas ¿ Puente la Virgen [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/70501 CAR. (2020). CAR Hydrometeorological Stations. https://www.car.gov.co/vercontenido/2524 CAR, & Corpoboyaca. (2017). Plan de ordenación y manejo de la cuenca del río alto Suarez. https://www.car.gov.co/vercontenido/86 Chapra, S. C. (2019). Advances in River Water Quality Modelling and Management: Where We Come from, Where We Are, and Where We¿re Going? In New Trends in Urban Drainage Modelling (Vol. 2, pp. 295¿301). Springer International Publishing. https://doi.org/10.1007/978-3-319-99867-1_49 Chapra, S. C., Camacho, L. A., & Mcbride, G. B. (2021). Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World¿s Rivers: Modeling Analysis. 13, 2408. https://doi.org/10.3390/w13172408 Charbonneau, P. (1995). Genetic Algorithms in Astronomy and Astrophysics. The Astrophysical Journal Supplement Series, 101, 309. https://doi.org/10.1086/192242 Chen, L., Zhou, S., Shi, Y., Wang, C., Li, B., Li, Y., & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of the Total Environment, 615(163), 141¿149. https://doi.org/10.1016/j.scitotenv.2017.09.230 Chow, V., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. McGraw-Hill. Cope, B., Shaikh, T., Parmar, R., Chapra, S., & Martin, J. (2019). Literature Review on Nutrient-Related Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=348267&Lab=CEMM CORMAGDALENA, & UNAL. (2007). Estudios e investigaciones de las obras de restauración ambiental y de la navegación del Canal del Dique. 45. http://web01eja.cormagdalena.com.co/aplicaciones/CanalDique/informes UNacional.htm Creech, C.T., Siqueira, R. B., Selegean, J. P., & Miller, C. (2015). Anthropogenic impacts to the sediment budget of São Francisco River navigation channel using SWAT. International Journal of Agricultural and Biological Engineering, 8(3), 1¿20. https://doi.org/10.3965/j.ijabe.20150803.1372 Daus, A. D., Frind, E. O., & Sudicky, E. A. (1985). Comparative error analysis in finite element formulations of the advection-dispersion equation. Advances in Water Resources, 8(2), 86¿95. https://doi.org/10.1016/0309-1708(85)90005-3 Debele, B., Srinivasan, R., & Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling and Assessment, 13(1), 135¿153. https://doi.org/10.1007/s10666-006-9075-1 Diaz-Granados, M., Barrera, S., Ramos, J. P., Camacho, L. A., Rosales, R., Escalante, N., & Torres, M. (2002). Metodología Multicriterio para la Priorización de Inversión en Aguas Residuales Municipales en Colombia. XX Congreso Latinoamericano de Hidráulica. Duque-Méndez, N. D., Orozco-Alzate, M., & Julián Vélez, J. (2014). Hydro-meteorological analysis using OLAP techniques Análisis de datos hidroclimatológicos usando técnicas OLAP. DYNA, 81(185), 160¿167. http://dyna.medellin.unal.edu.co/ EAAB, & Universidad Nacional de Colombia. (2010). Modelación dinámica de la calidad del agua del río Bogotá. http://orarbo.gov.co/apc-aa-files/57c59a889ca266ee6533c26a/dinamica-de-calidad-del-agua-del-rio-bogota.pdf Eckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), 507¿515. https://doi.org/10.1002/hyp.5675 Elshorbagy, A., Teegavarapu, R. S. V., & Ormsbee, L. (2005). Total maximum daily load (TMDL) approach to surface water quality management: Concepts, issues, and applications. Canadian Journal of Civil Engineering, 32(2), 442¿448. https://doi.org/10.1139/l04-107 Engel, B., Storm, D., White, M., Arnold, J., & Arabi, M. (2007). A Hydrologic/Water Quality Model Applicati1. Journal of the American Water Resources Association, 43(5), 1223¿1236. https://doi.org/10.1111/j.1752-1688.2007.00105.x Engineering, W., & EPA. (2020). WRDB 6.1. http://www.wrdb.com/ Fadil, A., Malaainine, M.E.I., Kharchaf, Y. (2021). Implementing an Environmental Information System in Data-Scarce Countries: Issues and Guidelines. In: Abu-hashim, M., Khebour Allouche, F., Negm, A. (eds) Agro-Environmental Sustainability in MENA Regions. Springer Water. Springer, Cham. https://doi-org/10.1007/978-3-030-78574-1_7. Feng, D., Liu, J., Lawson, K., & Shen, C. (2022). Differentiable, Learnable, Regionalized Process¿Based Models With Multiphysical Outputs can Approach State¿Of¿The¿Art Hydrologic Prediction Accuracy. Water Resources Research, 58(10). https://doi.org/10.1029/2022WR032404 Fernandez, N. (2018). Modelación del transporte y destino de contaminantes de la minería de carbón en el río Lenguazaque [MSc, Universidad de los Andes]. http://hdl.handle.net/1992/34081 Fernandez, N. (2022). Repository of Rainfall-Streamflow Datasets and Models for the Lenguazaque River Basin (Cundinamarca, Colombia). In Mendeley Data, V1. Mendeley Data, V1. Fernandez, N. (2022). Repository of Water Quality Datasets & Models for the Lenguazaque River Basin (Cundinamarca, Colombia)¿, Mendeley Data, V1, doi: 10.17632/4xkc5jtjj5. Fernandez, N., & Camacho, L. A. (2019). Coupling hydrological and water quality models for assessing coal mining impacts on surface water resources. Proceedings of the 38th IAHR World Congress (Panama), 5145¿5154. https://doi.org/10.3850/38WC092019-1700 Fernandez, N., Camacho, L. A., & McIntyre, N. (2018). Impacto de minería de carbón en corrientes superficiales de páramo. AGUA 2018 Agua, Justicia Ambiental y Paz. Cali, Noviembre 13 al 16, November, 1¿11. Fernandez, N., Camacho, L. A., McIntyre, N., Huguet, C., & Pearse, J. (2018). Propuesta Metodológica para Modelación del Impacto de la Minería de Carbón en los Recursos Hídricos de Cuencas de Montaña. XXVIII Congreso Latinoamericano De Hidráulica, 1343¿1351. https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_422.pdf Fernandez, N., Camacho, L. A., & Nejadhashemi, A. P. (2022). Modeling streamflow in headwater catchments: A data-based mechanistic grounded framework. Journal of Hydrology: Regional Studies, 44, 101243. https://doi.org/10.1016/j.ejrh.2022.101243 Flores, A. N., Bledsoe, B. P., Cuhaciyan, C. O., & Wohl, E. E. (2006). Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Water Resources Research, 42(6). https://doi.org/10.1029/2005WR004226 Forghanparast, F., & Mohammadi, G. (2022). Using Deep Learning Algorithms for Intermittent Streamflow Prediction in the Headwaters of the Colorado River, Texas. Water, 14(19), 2972. https://doi.org/10.3390/w14192972 Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S. P., & Quintero, M. (2016). Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology, 535, 625¿636. https://doi.org/10.1016/j.jhydrol.2016.01.034 Fuentes, C., Rodríguez, E., & Villareal, E. (2018). HIDFUN una herramienta para la extracción y análisis de pluviogramas. XXVIII Congreso Latinoamericano De Hidráulica, Abs. 193. https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_193.pdf Gatica, E. A., Almeida, C. A., Mallea, M. A., del Corigliano, M. C., & González, P. (2012). Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava River (Río Cuarto), Córdoba, Argentina. Environmental Monitoring and Assessment, 184(12), 7257¿7274. https://doi.org/10.1007/s10661-011-2495-7 Gelvez, R. (2008). Determinación del comportamiento de la tasa de reaireación de dos ríos de montaña colombianos por medio de trazadores volátiles. Universidad Nacional de Colombia Gomez A.C. (2022). Propuesta metodológica para la estimación y análisis del impacto de escenarios de cambio climático en la calidad del agua de ríos tropicales de montaña [MSc.]. Universidad de los Andes. González-Martínez, M. D., Huguet, C., Pearse, J., McIntyre, N., & Camacho, L. A. (2019). Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Applied Geochemistry, 108(December 2018), 104382. https://doi.org/10.1016/j.apgeochem.2019.104382 Government of Colombia. (1984). Decreto 1594 de 1984. Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455¿474. https://doi.org/10.1007/s10040-002-0196-6 Harden, C. P. (2006). Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology, 79(3¿4), 249¿263. https://doi.org/10.1016/j.geomorph.2006.06.021 Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A. S., Johnson, R. K., Moe, J., Pont, D., Solheim, A. L., & de Bund, W. van. (2010). The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment, 408(19), 4007¿4019. https://doi.org/10.1016/j.scitotenv.2010.05.031 Hernandez-Suarez, J. S., & Camacho, L. A. (2014). Revisiting the relationship of transient-storage and aggregated dead zone models of longitudinal solute transport in streams. ICHE 2014. https://hdl.handle.net/20.500.11970/99509 Hobson, A. J., Neilson, B. T., von Stackelberg, N., Shupryt, M., Ostermiller, J., Pelletier, G., & Chapra, S. C. (2015). Development of a Minimalistic Data Collection Strategy for QUAL2Kw. Journal of Water Resources Planning and Management, 141(8), 04014096. https://doi.org/10.1061/(asce)wr.1943-5452.0000488 Holguin-Gonzalez, J. E. (2003). Determinación de la tasa de reaireación en un río de montaña colombiano, mediante el uso de trazadores [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9089/u234868.pdf?sequence=1&isAllowed=y Hu, X. C., Ge, B., Ruyle, B. J., Sun, J., & Sunderland, E. M. (2021). A Statistical Approach for Identifying Private Wells Susceptible to Perfluoroalkyl Substances (PFAS) Contamination. Environmental Science & Technology Letters, 8(7), 596¿602. https://doi.org/10.1021/acs.estlett.1c00264 IGAC. (2022). Datos abiertos Cartografía y Geografía. https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia Inaoka, J., Kosugi, K., Masaoka, N., Itokazu, T., & Nakamura, K. (2020). Effects of geological structures on rainfall-runoff responses in headwater catchments in a sedimentary rock mountain. Hydrological Processes, 34(26), 5567¿5579. https://doi.org/10.1002/hyp.13972 J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel, A. van Griensven, M. W. Van Liew, N. Kannan, & M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491¿1508. https://doi.org/10.13031/2013.42256 Jarrett, R. D. (1984). Hydraulics of High¿Gradient Streams. Journal of Hydraulic Engineering, 110(11), 1519¿1539. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1519) Jafarzadegan, K., Merwade, V., Moradkhani, H. (2020). Combining clustering and classification for the regionalization of environmental model parameters: Application to floodplain mapping in data-scarce regions. Environmental Modelling & Software, 125,104613. https://doi.org/10.1016/j.envsoft.2019.104613. Jimenez, M. A., Camacho, L. A., & Vélez, J. I. (2019). Distributed Solute Transport Modeling Based on the Morphological Conceptualization of Drainage Networks [PhD, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52172 Jimenez, M. A., & Wohl, E. (2013). Solute transport modeling using morphological parameters of step-pool reaches. Water Resources Research, 49(3), 1345¿1359. https://doi.org/10.1002/wrcr.20102 Kannel, P. R., Lee, S., Lee, Y.-S., Kanel, S. R., & Pelletier, G. J. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Ecological Modelling, 202(3¿4), 503¿517. https://doi.org/10.1016/j.ecolmodel.2006.12.033 Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301¿309. https://doi.org/10.1016/j.ecoenv.2008.02.024 Kelleher, C., McGlynn, B., & Wagener, T. (2017). Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences, 21(7), 3325¿3352. https://doi.org/10.5194/hess-21-3325-2017 Kelleher, C., Wagener, T., & McGlynn, B. (2015). Model-based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments. Water Resources Research, 51(6), 4109¿4136. https://doi.org/10.1002/2014WR016147 Kiptala, J. K., Mul, M. L., Mohamed, Y. A., and van der Zaag, P. (2014): Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa, Hydrol. Earth Syst. Sci., 18, 2287¿2303, https://doi.org/10.5194/hess-18-2287-2014 Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912 Klemes, V. (1986). Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31(1), 13¿24. https://doi.org/10.1080/02626668609491024 Kosugi, K., Fujimoto, M., Katsura, S., Kato, H., Sando, Y., & Mizuyama, T. (2011). Localized bedrock aquifer distribution explains discharge from a headwater catchment. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009884 Kottegoda, N., & Rosso, R. (2008). Applied statistics for civil and environmental engineers (2nd ed.). Wiley-Blackwell. Kottegoda, N. (1980). Stochastic Water Resources Technology. Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-03467-3 Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall¿runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005¿6022. https://doi.org/10.5194/hess-22-6005-2018 Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S. (2019). Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research, 55(12), 11344¿11354. https://doi.org/10.1029/2019WR026065 Lee, A., Cho, S., Park, M. J., & Kim, S. (2013). Determination of standard target water quality in the Nakdong River basin for the total maximum daily load management system in Korea. KSCE Journal of Civil Engineering, 17(2), 309¿319. https://doi.org/10.1007/s12205-013-1893-5 Lees, M. J., Camacho, L. A., & Chapra, S. (2000). On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resources Research, 36(1), 213¿224. https://doi.org/10.1029/1999WR900265 Lees, M. J., Camacho, L. A., & Whitehead, P. (1998). Extension of the QUASAR river water quality model to incorporate dead-zone mixing. Hydrology and Earth System Sciences, 2(2/3), 353¿365. https://doi.org/10.5194/hess-2-353-1998 Leopold, L. B., & Maddock, T. Jr. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. 10.3133/pp252 Lin, Y., Larssen, T., Vogt, R. D., Feng, X., & Zhang, H. (2011). Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Science of the Total Environment, 409(21), 4596¿4605. https://doi.org/10.1016/j.scitotenv.2011.07.033 Liu, Q., Zhang, Y., Liu, L., Wang, Z., Nie, Y., & Rai, M. (2021). A novel Landsat-based automated mapping of marsh wetland in the headwaters of the Brahmaputra, Ganges and Indus Rivers, southwestern Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation, 103, 102481. https://doi.org/10.1016/j.jag.2021.102481 Machiwal, D., & Jha, M. K. (2012). Hydrologic Time Series Analysis: Theory and Practice. Springer Netherlands. https://doi.org/10.1007/978-94-007-1861-6 Mankiewicz-Boczek, J., Na¿ecz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M., & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71(3), 830¿836. https://doi.org/10.1016/j.ecoenv.2008.02.023 Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, XX, 161¿207. Martin, J. L., Borah, D. K., Martinez-Guerra, E., & Pérez-Gutiérrez, J. D. (2015). TMDL Modeling Approaches, Model Surveys, and Advances. Watershed Management 2015, 131¿148. https://doi.org/10.1061/9780784479322.013 Martin, J. L., & McCutcheon, S. C. (1999). Measurement and Analysis of Flow. In Hydrodynamics and Transport for Water Quality Modeling (Vol. 3, pp. 93¿198). CRC Press Martínez-Nieto, P., García-Gómez, G., Mora-Ortiz, L., & Robles-Camargo, G. (2014). Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus. World Journal of Microbiology and Biotechnology, 30(1), 225¿236. https://doi.org/10.1007/s11274-013-1443-9 Mateus, S. I. (2011). Determinación de la influencia de los factores hidrodinámicos y de calidad del agua en la demanda béntica de la Cuenca alta del río Bogotá [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/10235 McIntyre, N., Angarita, M., Fernandez, N., Camacho, L., Pearse, J., Huguet, C., Restrepo Baena, O., & Ossa-Moreno, J. (2018). A Framework for Assessing the Impacts of Mining Development on Regional Water Resources in Colombia. Water, 10(3), 268. https://doi.org/10.3390/w10030268 McIntyre, N., Young, P. C., Orellana, B., Marshall, M., Reynolds, B., & Wheater, H. (2011). Identification of nonlinearity in rainfall-flow response using data-based mechanistic modeling. Water Resources Research, 47(3), 1¿14. https://doi.org/10.1029/2010WR009851 Medina, M. P. (2009). Propuesta metodológica para la estimación de la capacidad de nitrificación de los ríos de montaña. Casos de estudio Río Teusacá y Río Subachoque [MSc.]. Universidad Nacional de Colombia. Merlo, C., Abril, A., Amé, M. v., Argüello, G. A., Carreras, H. A., Chiappero, M. S., Hued, A. C., Wannaz, E., Galanti, L. N., Monferrán, M. v., González, C. M., & Solís, V. M. (2011). Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Science of the Total Environment, 409(23), 5034¿5045. https://doi.org/10.1016/j.scitotenv.2011.08.037 Messerli, B., Viviroli, D., & Weingartner, R. (2004). Mountains of the world: Vulnerable water towers for the 21 st century. Ambio, 33(SPEC. ISS. 13), 29¿34. https://doi.org/10.1007/0044-7447-33.sp13.29 Minambiente. (2018). Guia nacional de modelación del recurso hídrico para aguas superficiales continentales. https://www.minambiente.gov.co/wp-content/uploads/2021/10/15.-Anexo-15-Guia-Nacional-de-Modelacion-del-Recurso-Hidrico.pdf Ministry of Environment, J. (2011). Guidance for Introducing the Total Pollutant Load Control System (TPLCS) (Issue April). https://www.env.go.jp/en/water/ecs/pdf/english.pdf Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885¿900. https://doi.org/10.13031/2013.23153 NASA, & METI. (2012). ASTER Global Digital Elevation Map. Http://Asterweb.Jpl.Nasa.Gov/GDEM.ASP. https://asterweb.jpl.nasa.gov/gdem.asp Nathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), 1465¿1473. https://doi.org/10.1029/WR026i007p01465 Nauditt, A., Soulsby, C., Birkel, C., Rusman, A., Schüth, C., Ribbe, L., Álvarez, P., & Kretschmer, N. (2017). Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile. Environmental Monitoring and Assessment, 189(9). https://doi.org/10.1007/s10661-017-6149-2 Navas, A. (2016). Factores de asimilación de carga contaminante en ríos: una herramienta para la identificación de estrategias de saneamiento hídrico en países en desarrollo [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/13945 Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., & Gupta, H. v. (2021). What Role Does Hydrological Science Play in the Age of Machine Learning? In Water Resources Research (Vol. 57, Issue 3). Blackwell Publishing Ltd. https://doi.org/10.1029/2020WR028091 Nejadhashemi, A. P., Shirmohammadi, A., Sheridan, J. M., & Montas, H. J. (2004). Evaluation of Analytical Methods for Streamflow Partitioning Introduction : The Society for Engineering in Agricultural, Food and Biological System, 42151(03), 1¿20. Niño, C. A., & Camacho, L. A. (2004). Modelo de transporte de solutos V3.0. Uniandes Oki, T., & Kanae, S. (2006). Global Hydrological Cycles and World Water Resources. Science, 313(5790), 1068¿1072. https://doi.org/10.1126/science.1128845 Ordoñez, J. I., Camacho, L. A., Vega, L., & Pinilla, G. (2015). Environmental management of a tropical delta. E-Proceedings of the 36th IAHR World Congress, 1, 6883¿6894 Pelletier, G. J., Chapra, S. C., & Tao, H. (2006). QUAL2Kw - A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling and Software, 21(3), 419¿425. https://doi.org/10.1016/j.envsoft.2005.07.002 Petersson L., ten Veldhuis, M.C., Verhoeven, G., Kapelan, Z., Maholi, I., Winsemius, H.C. (2020). Community Mapping Supports Comprehensive Urban Flood Modeling for Flood Risk Management in a Data-Scarce Environment. Frontiers in Earth Science., 8, 304, https://doi.org/10.3389/feart.2020.00304 Pinto, C. C., Calazans, G. M., & Oliveira, S. C. (2019). Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environmental Monitoring and Assessment, 191(3). https://doi.org/10.1007/s10661-019-7281-y Pinto, L. C., de Mello, C. R., Norton, L. D., & Curi, N. (2019). Land-use influence on the soil hydrology: An approach in upper Grande river basin, southeast Brazil. Ciencia e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943015619 Pizarro-Tapia, R., González-Leiva, F., Valdés-Pineda, R., Ingram, B., Sangüesa, C., & Vallejos, C. (2020). A rainfall intensity data rescue initiative for central chile utilizing a pluviograph strip charts reader (PSCR). Water (Switzerland), 12(7). https://doi.org/10.3390/W12071887 Portland State University. (2022). CE-QUAL-W2. Portland State University. http://www.ce.pdx.edu/w2/ Ratto, M., Young, P. C., Romanowicz, R., Pappenberger, F., Saltelli, A., & Pagano, A. (2007). Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology. Hydrology and Earth System Sciences, 11(4), 1249¿1266. https://doi.org/10.5194/hess-11-1249-2007 Roa-García, M. C., Brown, S., Schreier, H., & Lavkulich, L. M. (2011). The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resources Research, 47(5). https://doi.org/10.1029/2010WR009582 Robles, E. J. (2005). Estimacion experimental de tasas de nitrificación en rios de montaña - Quebrada Lejía [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/8997/u270904.pdf?sequence=1 Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin ¿ Colombia. Water Resources Management, 34(7), 2179¿2199. https://doi.org/10.1007/s11269-019-02236-5 Rodriguez-Miranda, J. P., García Ubaque, C. A., & Pardo Pinzón, J. (2015). Selección de tecnologías para el tratamiento de aguas residuales municipales. Revista Tecnura, 19(46), 149. https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a12 Rodríguez-Jeangros, N., Camacho, L. A., Rodríguez, J. P., & McCray, J. E. (2018). Integrated Urban Water Resources Model to Improve Water Quality Management in Data-Limited Cities with Application to Bogotá, Colombia. Journal of Sustainable Water in the Built Environment, 4(2), 04017019. https://doi.org/10.1061/jswbay.0000846 Rohatgi, A. (2020). WebPlotDigitizer (4.4). https://automeris.io/WebPlotDigitizer/index.html Rojas, A. F. (2011). Aplicación de factores de asimilación para la priorización de la inversión en sistemas de saneamiento hídrico en Colombia [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/7652 Rubiano, J., Quintero, M., Estrada, R. D., & Moreno, A. (2006). Multiscale analysis for promoting integrated watershed management. Water International, 31(3), 398¿411. https://doi.org/10.1080/02508060608691941 Sanchez, N. (2017). Estimación del coeficiente de partición y modelación de organismos indicadores de patógenos en ríos [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/34317 Santos Santos, T. F., & Camacho, L. A. (2022). An Integrated Water Quality Model to Support Multiscale Decisions in a Highly Altered Catchment. Water, 14(3), 374. https://doi.org/10.3390/w14030374 Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109¿136. https://doi.org/10.1146/annurev-environ-100809-125342 Searcy, J. K., & Hardison, C. H. (1960). Double-Mass Curves. WaterSupply Paper 1541B, 66. http://dspace.udel.edu:8080/dspace/handle/19716/1592 ¿erban, R. D., Jin, H., ¿erban, M., Luo, D., Wang, Q., Jin, X., & Ma, Q. (2020). Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau. International Journal of Remote Sensing, 41(18), 7042¿7067. https://doi.org/10.1080/01431161.2020.1752954 Shanahan, P., Henze, M., Koncsos, L., Rauch, W., Reichert, P., SomlyoDy, L., & Vanrolleghem, P. (1998). River water quality modelling: II. Problems of the art. Water Science and Technology, 38(11). https://doi.org/10.1016/S0273-1223(98)00661-1 Shaw, E. M., Beven, K. J., Chappell, N. A., & Lamb, R. (2010). Hydrology in Practice, Fourth Edition (4th ed.). CRC Press. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464¿475. https://doi.org/10.1016/j.envsoft.2006.02.001 Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - A case study. Water Research, 38(18), 3980¿3992. https://doi.org/10.1016/j.watres.2004.06.011 Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques - A case study. Analytica Chimica Acta, 538(1¿2), 355¿374. https://doi.org/10.1016/j.aca.2005.02.006 Sivapalan, M., & Young, P. C. (2005). Downward Approach to Hydrological Model Development. Encyclopedia of Hydrological Sciences, 1¿18. https://doi.org/10.1002/0470848944.hsa141 Slaughter, A.R. (2017) Simulating Microbial Water Quality in Data-Scarce Catchments: an Update of the WQSAM Model to Simulate the Fate of Escherichia coli. Water Resour Manage 31, 4239¿4252. https://doi.org/10.1007/s11269-017-1743-1 Slaughter, A.R., Hughes, D.A., Retief, D.C.H., Mantel, S.K. (2017). A management-oriented water quality model for data scarce catchments, Environmental Modelling & Software, 97, 93-111, https://doi.org/10.1016/j.envsoft.2017.07.015. Solano-Guzman, C. J. (2016). Estimación preliminar de cargas de nutrientes y sedimentos debido a cambios en el uso del suelo, considerando la implementación de un modelo SWAT - caso de estudio Rio Teusacá [MSc., Universidad de los Andes]. In instname:Universidad de los Andes. http://hdl.handle.net/1992/18184 Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., & Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523(225), 739¿757. https://doi.org/10.1016/j.jhydrol.2015.02.013 Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 29, 131¿147. https://doi.org/10.1038/s41370-018-0094-1 Su¿in, N., & Peer, P. (2018). Open-source tool for interactive digitisation of pluviograph strip charts (Vol. 73, Issue 7). https://github. Taylor, C., Pedregal, D., Young, P. C., & Tych, W. (2007). Environmental time series analysis and forecasting with the Captain toolbox. Environmental Modelling & Software, 22(6), 797¿814. https://doi.org/10.1016/j.envsoft.2006.03.002 Taylor, C., Young, P. C., Tych, W., & Wilson, E. D. (2018). New developments in the CAPTAIN Toolbox for Matlab with case study examples¿. IFAC-PapersOnLine, 51(15), 694¿699. https://doi.org/10.1016/j.ifacol.2018.09.202 Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1155), 446¿468. https://doi.org/10.1098/rspa.1954.0130 Tetzlaff, D., Soulsby, C., Hrachowitz, M., & Speed, M. (2011). Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. Journal of Hydrology, 400(3¿4), 438¿447. https://doi.org/10.1016/j.jhydrol.2011.01.053 Texas A&M & USDA. (2022). Soil and Water Assessment Tool SWAT+. https://swat.tamu.edu/software/plus/ Thome, C. R., & Zevenbergen, L. W. (1985). Estimating Mean Velocity in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 612¿624. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:4(612) Torres, J. A. (2009). Estudio de los procesos de transporte y decaimiento de organismos patógenos en ríos de montaña colombianos - Río Teusacá, Río Subachoque [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59115 Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley. Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209(February), 62¿72. https://doi.org/10.1016/j.agwat.2018.07.006 US Army Corps of Engineers. (2022). HEC-HMS. US Army Corps of Engineers. https://www.hec.usace.army.mil/software/hec-hms/ USEPA. (2014). HSPF. USEPA. https://www.epa.gov/ceam/hydrological-simulation-program-fortran-hspf USEPA. (2021). WASP8 Download. https://www.epa.gov/ceam/wasp8-download USGS. (2013). USGS Water Resources Applications Software: LOADEST. https://water.usgs.gov/software/loadest USGS. (2022). USGS Earth Explorer. https://earthexplorer.usgs.gov Valderrama, M., Pinilla-Vargas, M., Andrade, G. I., Valderrama-Escallón, E., & Hernández, S. (2018). Lake Fuquene (Colombia). The Wetland Book II: Distribution, Description, and Conservation, 2, 773¿783. https://doi.org/10.1007/978-94-007-4001-3_282 Vanegas, F. (2019). Una aproximacion a la determinación de relaciones paramétricas de transporte de solutos en la cuenca del río Teusacá [MSc., Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/44281 Vélez, M. I., Hooghiemstra, H., Metcalfe, S., Martínez, I., & Mommersteeg, H. (2003). Pollen-and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, Colombia. Journal of Quaternary Science, 18(1), 17¿30. https://doi.org/10.1002/jqs.730 Vieira, J., Fonseca, A., Vilar, V. J. P., Boaventura, R. A. R., & Botelho, C. M. S. (2013). Water quality modelling of Lis River, Portugal. Environmental Science and Pollution Research, 20(1), 508¿524. https://doi.org/10.1007/s11356-012-1124-5 Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research, 43(7), 1¿13. https://doi.org/10.1029/2006WR005653 Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555¿561. https://doi.org/10.1038/nature09440 Wagener, T., & Kollat, J. (2007). Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environmental Modelling and Software, 22(7), 1021¿1033. https://doi.org/10.1016/j.envsoft.2006.06.017 Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. v., Kumar, P., Rao, P. S. C., Basu, N. B., & Wilson, J. S. (2010). The future of hydrology: An evolving science for a changing world. Water Resources Research, 46(5), 1¿10. https://doi.org/10.1029/2009WR008906 Washington Department of Ecology (2021). Models and tools for water quality improvement. https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLs Wenninger, J., Uhlenbrook, S., Lorentz, S., & Leibundgut, C. (2008). Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa. In Hydrological Sciences-Journal-des Sciences Hydrologiques (Vol. 53, Issue 1). Wohl, E. (2017). The significance of small streams. Frontiers of Earth Science, 11(3), 447¿456. https://doi.org/10.1007/s11707-017-0647-y Wool, T., Ambrose, R. B., Martin, J. L., & Comer, A. (2020). WASP 8: The next generation in the 50-year evolution of USEPA¿s water quality model. Water (Switzerland), 12(5), 1¿33. https://doi.org/10.3390/W12051398 Young, P. C. (1992). Parallel Processes in Hydrology and Water Quality: A Unified Time¿Series Approach. Water and Environment Journal, 6(6), 598¿612. https://doi.org/10.1111/j.1747-6593.1992.tb00796.x Young, P. C. (1998). Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environmental Modelling and Software, 13(2), 105¿122. https://doi.org/10.1016/S1364-8152(98)00011-5 Young, P. C. (2005). Rainfall-Runoff Modeling: Transfer Function Models. Encyclopedia of Hydrological Sciences. https://doi.org/10.1002/0470848944.hsa141a Young, P. C. (2013). Hypothetico-inductive data-based mechanistic modeling of hydrological systems. Water Resources Research, 49(2), 915¿935. https://doi.org/10.1002/wrcr.20068 Young, P. C., & Beven, K. J. (1994). Data¿based mechanistic modelling and the rainfall¿flow non¿linearity. Environmetrics, 5(3), 335¿363. https://doi.org/10.1002/env.3170050311 Young, P. C., Parkinson, S., & Lees, M. (1996). Simplicity out of complexity in environmental modelling: Occam¿s razor revisited. In Journal of Applied Statistics (Vol. 23, Issues 2¿3). https://doi.org/10.1080/02664769624206 |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
128 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Civil y Ambiental |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/7022db05-677e-4909-8277-ed64b79a770b/download https://repositorio.uniandes.edu.co/bitstreams/5831a293-33b2-4d0c-b60b-5236f9e6debf/download https://repositorio.uniandes.edu.co/bitstreams/31536bd2-2c03-4682-b209-386e7e2d2735/download https://repositorio.uniandes.edu.co/bitstreams/8d838da5-1fd5-44bb-9a62-718a29ba5eb8/download https://repositorio.uniandes.edu.co/bitstreams/d07f0c8c-3b3e-4b27-bf89-7163d44b009e/download https://repositorio.uniandes.edu.co/bitstreams/eb7c2093-dc24-4f93-b6b8-04ead0245866/download https://repositorio.uniandes.edu.co/bitstreams/52638828-b3e4-4d65-a7ff-1065bb5b5257/download https://repositorio.uniandes.edu.co/bitstreams/a6509429-6138-40ff-8c79-f8bc4d0f3bfa/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 e5e14c32424ff2f7302d665e6cd69bb2 4491fe1afb58beaaef41a73cf7ff2e27 4460e5956bc1d1639be9ae6146a50347 adba5f593195e4aacdede8f031e1eb44 876b4f2da8bd913b26af141f2b028e81 f14821073ceca06676f3a6a211ec8feb 772d06d5066ab1a5efa200c283edfc64 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133880638996480 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camacho Botero, Luis Alejandrovirtual::5319-1Fernández Acosta, Nicolás4235df00-b43a-47dc-a722-ab8da8719a49600Medaglia González, Andrés LBuytaert, WouterNejadhashemi, A. PouyanRodríguez Sandoval, Erasmo AlfredoCentro de Investigaciones en Ingenieria Ambiental2023-02-06T21:50:32Z2023-02-06T21:50:32Z2023-02-03http://hdl.handle.net/1992/6473010.57784/1992/64730instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Tesis doctoralPhD thesisWater availability is a major concern globally and relies highly on the quantity and quality of water. In headwater catchments of developing countries, managing said availability is additionally restricted by several factors. Among them, having scarce yet heterogeneous information regarding water quantity and quality is significant. This is because such combination impedes performing appropriate assessments, of both quantity and quality, and implementing predictive models to support decisions in these catchments. To address this issue, a framework comprising three stages and several activities is proposed. Such framework allows for: i) conducting a comprehensive assessment of water quantity and quality; ii) developing a predictive models supported on such assessment; and iii) simulating scenarios to resolve conflicts between uses and quality of water. In the case of water quantity, the three stages focus on assessing hydrological data, preparing datasets for modeling, and developing models in daily and sub-daily resolutions. The last stage is grounded on a data-based mechanistic modeling approach and includes a novel combination of baseflow separation with digital filters and multi-objective optimization principles. The sequence of stages allows for the development of reliable yet mathematically simple models, requiring fewer inputs than data-intensive alternatives. Besides, having a hydrophysical meaning, the models are suitable for simulating alternative scenarios. In the case of quality, the three stages center in assessing water quality data, developing water quality models in headwater catchments, and simulating scenarios to resolve conflicts between uses and quality of water. These stages involve multivariate statistic techniques (i.e., Analyses of Principal Components and Clusters), and follow a modeling protocol mainly designed for mountain rivers in developing countries. The framework is applied to the Lenguazaque River Basin, a 290 km2 headwater catchment in the Andean Fuquene Lake Watershed. Here, stakeholders are now optimizing water allocations for all users, given numerous issues such as severe pollution, and conflicts for the use of water for conservation, agriculture, and coal mining. The framework led to obtaining daily hydrological models with an acceptable performance, significantly better than a semi-distributed model. The performance of sub-daily models was however sub-optimal, yet it can be improved by enhancing the quality of sub-daily datasets and the efficiency of computational algorithms. In addition, the framework disclosed pathogens, nutrients, organic matter, and several metals, including the highly toxic Cr and Pb, among the most significant water quality constituents. It also showed that the driest season in the catchment is the one with highest pollution levels (i.e., January to March). Meanwhile, the water quality model reproduced the concentrations of pathogens, organic matter, and most nutrients, and showed a predictive capacity. This capacity was measured with an objective function to be minimized based on a normalized Root Mean Square Error. It increased only 14% when verified with a different dataset. Finally, the simulation of alternative scenarios showed that centralized treatment is not sufficient to make water safe for potabilization and agriculture in the catchment. For this reason, improving water quality in the sub-basins at the highest altitudes is required. Given these results in the case study, the proposed framework can be useful for similar purposes in other headwater catchments with similar restrictions of information, and where an improved management of water availability is needed.Doctor en IngenieríaDoctoradoCaracterización, modelación, análisis y sostenibilidad de hidrosistemas y ecosistemasHidrología, meteorología y variabilidad climática128 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalWater quantity and quality in headwater catchments: Comprehensive data assessment, modeling, and simulation of scenariosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDWater qualityHydrologyHeadwater catchmentsModelingEnvironmental assessmentIngenieríaAbbaspour, K. (2015). SWAT-CUP: SWAT Calibration and Uncertainty¿Programs - A user manual. https://swat.tamu.edu/media/114860/usermanual_swatcup.pdfAla-aho, P., Soulsby, C., Wang, H., & Tetzlaff, D. (2017). Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parametrisation. Journal of Hydrology, 547, 664¿677. https://doi.org/10.1016/j.jhydrol.2017.02.023Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. (2007). The Role of Headwater Streams in Downstream Water Quality. JAWRA Journal of the American Water Resources Association, 43(1), 41¿59. https://doi.org/10.1111/j.1752-1688.2007.00005.xAlilou, H., Nia, A.M., Saravi, M.M., Salajegheh, A., Han, D., Enayat, B.B. (2019). A novel approach for selecting sampling points locations to river water quality monitoring in data-scarce regions. Journal of Hydrology, 573, 109-122, https://doi.org/10.1016/j.jhydrol.2019.03.068.ALOS. (2022). Advanced Land Observing Satellite. https://www.eorc.jaxa.jp/ALOS/en/index_e.htmAnderson, E. (2002). Calibration of Conceptual Hydrologic Models for Use in River Forecasting. https://www.weather.gov/media/owp/oh/hrl/docs/1_Anderson_CalbManual.pdfArenas-Faura, G. A. (2004). Modelación de la calidad del agua en un río de montaña colombiano (Quebrada La Legía). In instname:Universidad de los Andes. http://hdl.handle.net/1992/21262Arnold, J. G., & Allen, P. M. (1999). Automated methods for estimating baseflow and ground water recharge from streamflow records. Journal of the American Water Resources Association, 35(2), 411¿424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.xArnold, J.G., Kiniry, J., Srinivasan, R., Williams, J., Haney, E., & Neitsch, S. (2012). Soil & Water Assessment Tool: Input/Output Documentation Version 2012. Texas Water Resources Institute. https://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf.Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Liew, M.W. van, Kannan, N., Jha, M.K., Harmel, D., Member, A., Liew, M.W. van, Arnold, J.-F.G., (2012). Swat: model use, calibration, and validation. Trans. ASABE 55 (4), 1491¿1508. http://swatmodel.tamu.edu.Baird, R. B., Eaton, A. D., Rice, E. W., & Bridgewater, L. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health AssociationBarrera, S., Diaz-Granados, M., Ramos, J. P., Camacho, L. A., Rosales, R., Escalante, N., & Torres, M. (2002). Modelo Computacional del Impacto de las Aguas Residuales Municipales sobre la Red Hídrica Colombiana. XX CONGRESO LATINOAMERICANO DE HIDRÁULICABathurst, J. C. (1985). Flow Resistance Estimation in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 625¿643. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:4(625)Beckman, N. D., & Wohl, E. (2014). Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams. Water Resources Research, 50(3), 2376¿2393. https://doi.org/10.1002/2013WR014167Beer, T., & Young, P. C. (1983). Longitudinal Dispersion in Natural Streams. Journal of Environmental Engineering, 109(5), 1049¿1067. https://doi.org/10.1061/(ASCE)0733-9372(1983)109:5(1049)Bertuzzo, E., Hotchkiss, E. R., Argerich, A., Kominoski, J. S., Oviedo¿Vargas, D., Savoy, P., Scarlett, R., von Schiller, D., & Heffernan, J. B. (2022). Respiration regimes in rivers: Partitioning source¿specific respiration from metabolism time series. Limnology and Oceanography. https://doi.org/10.1002/lno.12207Beven, K. (2019). How to make advances in hydrological modelling. Hydrology Research, 50(6), 1481¿1494. https://doi.org/10.2166/nh.2019.134Beven, K. (2020). Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 34(16), 3608¿3613. https://doi.org/10.1002/hyp.13805Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279¿298. https://doi.org/10.1002/hyp.3360060305Bogotá-A, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., van der Linden, M., & Berrio, J. C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: Implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30(23¿24), 3321¿3337. https://doi.org/10.1016/j.quascirev.2011.08.003Bui, H.H., Ha, N.H., Nguyen, T.N.D, Nguyen, A.T., Pham, T.T.H, Kandasamy, J., Nguyen, T.V., (2019). Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam, Ecohydrology & Hydrobiology,19(2),210-223, https://doi.org/10.1016/j.ecohyd.2019.03.005Burboa, A., Vargas, J., & Meier, C. I. (2020). PluvioReader: A software for digitizing weekly siphoning-type pluviograph strip charts. Computers and Geosciences, 139. https://doi.org/10.1016/j.cageo.2020.104463Buytaert, W., & de Bièvre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research, 48(8). https://doi.org/10.1029/2011WR011755Camacho, L. A., & Díaz-Granados, M. (2003). Metodología para la obtención de un modelo predictivo de transporte de solutos y de calidad del agua en ríos-Caso Río Bogotá. Seminario Internacional La Hidroinformática En La Gestión Integrada de Los Recursos Hídricos, 0, 73¿82.Camacho, L. A., Diaz-Granados, M., Giraldo, E., Saenz, J., & Herrera, M. (2002). Instrumentación y análisis ambiental de una cuenca urbana en Bogotá: Investigación y desarrollo de modelos simplificados lluvia escorrentía. XX Congreso Latinoamericano de HidráulicaCamacho, L. A., & Gonzalez, R. A. (2008). Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environmental Fluid Mechanics, 8(5¿6), 597¿604. https://doi.org/10.1007/s10652-008-9109-0Camacho, L. A., & Lees, M. J. (1999). Multilinear discrete lag-cascade model for channel routing. Journal of Hydrology, 226(1¿2), 30¿47. https://doi.org/10.1016/S0022-1694(99)00162-6Camacho, L. A., & Lees, M. J. (2000). Modelación del transporte de solutos en ríos bajo condiciones de flujo no permanente: un modelo conceptual integrado. XIX Congreso Latinoamericano de Hidráulica.Camacho, L. A., Rodríguez, E. A., Gelvez, R., González, R., Medina, M., & Torres, J. (2007). Metodología para la caracterización de la capacidad de autopurificación de ríos de montaña. I Congreso internacional del agua y el ambiente. http://www.ing.unal.edu.co/gireh/docs/prios.htmCamacho, R. A., Martin, J. L., Watson, B., Paul, M. J., Zheng, L., & Stribling, J. B. (2015). Modeling the Factors Controlling Phytoplankton in the St. Louis Bay Estuary, Mississippi and Evaluating Estuarine Responses to Nutrient Load Modifications. Journal of Environmental Engineering, 141(3), 04014067. https://doi.org/10.1061/(asce)ee.1943-7870.0000892Cañon, J. Determinacion del coeficiente de degradación de materia orgánica carbonacea en ríos de montaña [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9187/u275509.pdf?sequence=1Cantor, M. M. (2010). Modelación del transporte de solutos en condiciones de flujo no permanente con alta dispersión y zonas muertas en canales de baja pendiente: aplicación al caso del Río Bogotá en el tramo de Puente Vargas ¿ Puente la Virgen [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/70501CAR. (2020). CAR Hydrometeorological Stations. https://www.car.gov.co/vercontenido/2524CAR, & Corpoboyaca. (2017). Plan de ordenación y manejo de la cuenca del río alto Suarez. https://www.car.gov.co/vercontenido/86Chapra, S. C. (2019). Advances in River Water Quality Modelling and Management: Where We Come from, Where We Are, and Where We¿re Going? In New Trends in Urban Drainage Modelling (Vol. 2, pp. 295¿301). Springer International Publishing. https://doi.org/10.1007/978-3-319-99867-1_49Chapra, S. C., Camacho, L. A., & Mcbride, G. B. (2021). Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World¿s Rivers: Modeling Analysis. 13, 2408. https://doi.org/10.3390/w13172408Charbonneau, P. (1995). Genetic Algorithms in Astronomy and Astrophysics. The Astrophysical Journal Supplement Series, 101, 309. https://doi.org/10.1086/192242Chen, L., Zhou, S., Shi, Y., Wang, C., Li, B., Li, Y., & Wu, S. (2018). Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of the Total Environment, 615(163), 141¿149. https://doi.org/10.1016/j.scitotenv.2017.09.230Chow, V., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. McGraw-Hill.Cope, B., Shaikh, T., Parmar, R., Chapra, S., & Martin, J. (2019). Literature Review on Nutrient-Related Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=348267&Lab=CEMMCORMAGDALENA, & UNAL. (2007). Estudios e investigaciones de las obras de restauración ambiental y de la navegación del Canal del Dique. 45. http://web01eja.cormagdalena.com.co/aplicaciones/CanalDique/informes UNacional.htmCreech, C.T., Siqueira, R. B., Selegean, J. P., & Miller, C. (2015). Anthropogenic impacts to the sediment budget of São Francisco River navigation channel using SWAT. International Journal of Agricultural and Biological Engineering, 8(3), 1¿20. https://doi.org/10.3965/j.ijabe.20150803.1372Daus, A. D., Frind, E. O., & Sudicky, E. A. (1985). Comparative error analysis in finite element formulations of the advection-dispersion equation. Advances in Water Resources, 8(2), 86¿95. https://doi.org/10.1016/0309-1708(85)90005-3Debele, B., Srinivasan, R., & Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling and Assessment, 13(1), 135¿153. https://doi.org/10.1007/s10666-006-9075-1Diaz-Granados, M., Barrera, S., Ramos, J. P., Camacho, L. A., Rosales, R., Escalante, N., & Torres, M. (2002). Metodología Multicriterio para la Priorización de Inversión en Aguas Residuales Municipales en Colombia. XX Congreso Latinoamericano de Hidráulica.Duque-Méndez, N. D., Orozco-Alzate, M., & Julián Vélez, J. (2014). Hydro-meteorological analysis using OLAP techniques Análisis de datos hidroclimatológicos usando técnicas OLAP. DYNA, 81(185), 160¿167. http://dyna.medellin.unal.edu.co/EAAB, & Universidad Nacional de Colombia. (2010). Modelación dinámica de la calidad del agua del río Bogotá. http://orarbo.gov.co/apc-aa-files/57c59a889ca266ee6533c26a/dinamica-de-calidad-del-agua-del-rio-bogota.pdfEckhardt, K. (2005). How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19(2), 507¿515. https://doi.org/10.1002/hyp.5675Elshorbagy, A., Teegavarapu, R. S. V., & Ormsbee, L. (2005). Total maximum daily load (TMDL) approach to surface water quality management: Concepts, issues, and applications. Canadian Journal of Civil Engineering, 32(2), 442¿448. https://doi.org/10.1139/l04-107Engel, B., Storm, D., White, M., Arnold, J., & Arabi, M. (2007). A Hydrologic/Water Quality Model Applicati1. Journal of the American Water Resources Association, 43(5), 1223¿1236. https://doi.org/10.1111/j.1752-1688.2007.00105.xEngineering, W., & EPA. (2020). WRDB 6.1. http://www.wrdb.com/Fadil, A., Malaainine, M.E.I., Kharchaf, Y. (2021). Implementing an Environmental Information System in Data-Scarce Countries: Issues and Guidelines. In: Abu-hashim, M., Khebour Allouche, F., Negm, A. (eds) Agro-Environmental Sustainability in MENA Regions. Springer Water. Springer, Cham. https://doi-org/10.1007/978-3-030-78574-1_7.Feng, D., Liu, J., Lawson, K., & Shen, C. (2022). Differentiable, Learnable, Regionalized Process¿Based Models With Multiphysical Outputs can Approach State¿Of¿The¿Art Hydrologic Prediction Accuracy. Water Resources Research, 58(10). https://doi.org/10.1029/2022WR032404Fernandez, N. (2018). Modelación del transporte y destino de contaminantes de la minería de carbón en el río Lenguazaque [MSc, Universidad de los Andes]. http://hdl.handle.net/1992/34081Fernandez, N. (2022). Repository of Rainfall-Streamflow Datasets and Models for the Lenguazaque River Basin (Cundinamarca, Colombia). In Mendeley Data, V1. Mendeley Data, V1.Fernandez, N. (2022). Repository of Water Quality Datasets & Models for the Lenguazaque River Basin (Cundinamarca, Colombia)¿, Mendeley Data, V1, doi: 10.17632/4xkc5jtjj5.Fernandez, N., & Camacho, L. A. (2019). Coupling hydrological and water quality models for assessing coal mining impacts on surface water resources. Proceedings of the 38th IAHR World Congress (Panama), 5145¿5154. https://doi.org/10.3850/38WC092019-1700Fernandez, N., Camacho, L. A., & McIntyre, N. (2018). Impacto de minería de carbón en corrientes superficiales de páramo. AGUA 2018 Agua, Justicia Ambiental y Paz. Cali, Noviembre 13 al 16, November, 1¿11.Fernandez, N., Camacho, L. A., McIntyre, N., Huguet, C., & Pearse, J. (2018). Propuesta Metodológica para Modelación del Impacto de la Minería de Carbón en los Recursos Hídricos de Cuencas de Montaña. XXVIII Congreso Latinoamericano De Hidráulica, 1343¿1351. https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_422.pdfFernandez, N., Camacho, L. A., & Nejadhashemi, A. P. (2022). Modeling streamflow in headwater catchments: A data-based mechanistic grounded framework. Journal of Hydrology: Regional Studies, 44, 101243. https://doi.org/10.1016/j.ejrh.2022.101243Flores, A. N., Bledsoe, B. P., Cuhaciyan, C. O., & Wohl, E. E. (2006). Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Water Resources Research, 42(6). https://doi.org/10.1029/2005WR004226Forghanparast, F., & Mohammadi, G. (2022). Using Deep Learning Algorithms for Intermittent Streamflow Prediction in the Headwaters of the Colorado River, Texas. Water, 14(19), 2972. https://doi.org/10.3390/w14192972Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S. P., & Quintero, M. (2016). Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology, 535, 625¿636. https://doi.org/10.1016/j.jhydrol.2016.01.034Fuentes, C., Rodríguez, E., & Villareal, E. (2018). HIDFUN una herramienta para la extracción y análisis de pluviogramas. XXVIII Congreso Latinoamericano De Hidráulica, Abs. 193. https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_193.pdfGatica, E. A., Almeida, C. A., Mallea, M. A., del Corigliano, M. C., & González, P. (2012). Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava River (Río Cuarto), Córdoba, Argentina. Environmental Monitoring and Assessment, 184(12), 7257¿7274. https://doi.org/10.1007/s10661-011-2495-7Gelvez, R. (2008). Determinación del comportamiento de la tasa de reaireación de dos ríos de montaña colombianos por medio de trazadores volátiles. Universidad Nacional de ColombiaGomez A.C. (2022). Propuesta metodológica para la estimación y análisis del impacto de escenarios de cambio climático en la calidad del agua de ríos tropicales de montaña [MSc.]. Universidad de los Andes.González-Martínez, M. D., Huguet, C., Pearse, J., McIntyre, N., & Camacho, L. A. (2019). Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Applied Geochemistry, 108(December 2018), 104382. https://doi.org/10.1016/j.apgeochem.2019.104382Government of Colombia. (1984). Decreto 1594 de 1984.Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455¿474. https://doi.org/10.1007/s10040-002-0196-6Harden, C. P. (2006). Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology, 79(3¿4), 249¿263. https://doi.org/10.1016/j.geomorph.2006.06.021Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A. S., Johnson, R. K., Moe, J., Pont, D., Solheim, A. L., & de Bund, W. van. (2010). The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment, 408(19), 4007¿4019. https://doi.org/10.1016/j.scitotenv.2010.05.031Hernandez-Suarez, J. S., & Camacho, L. A. (2014). Revisiting the relationship of transient-storage and aggregated dead zone models of longitudinal solute transport in streams. ICHE 2014. https://hdl.handle.net/20.500.11970/99509Hobson, A. J., Neilson, B. T., von Stackelberg, N., Shupryt, M., Ostermiller, J., Pelletier, G., & Chapra, S. C. (2015). Development of a Minimalistic Data Collection Strategy for QUAL2Kw. Journal of Water Resources Planning and Management, 141(8), 04014096. https://doi.org/10.1061/(asce)wr.1943-5452.0000488Holguin-Gonzalez, J. E. (2003). Determinación de la tasa de reaireación en un río de montaña colombiano, mediante el uso de trazadores [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9089/u234868.pdf?sequence=1&isAllowed=yHu, X. C., Ge, B., Ruyle, B. J., Sun, J., & Sunderland, E. M. (2021). A Statistical Approach for Identifying Private Wells Susceptible to Perfluoroalkyl Substances (PFAS) Contamination. Environmental Science & Technology Letters, 8(7), 596¿602. https://doi.org/10.1021/acs.estlett.1c00264IGAC. (2022). Datos abiertos Cartografía y Geografía. https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografiaInaoka, J., Kosugi, K., Masaoka, N., Itokazu, T., & Nakamura, K. (2020). Effects of geological structures on rainfall-runoff responses in headwater catchments in a sedimentary rock mountain. Hydrological Processes, 34(26), 5567¿5579. https://doi.org/10.1002/hyp.13972J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel, A. van Griensven, M. W. Van Liew, N. Kannan, & M. K. Jha. (2012). SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491¿1508. https://doi.org/10.13031/2013.42256Jarrett, R. D. (1984). Hydraulics of High¿Gradient Streams. Journal of Hydraulic Engineering, 110(11), 1519¿1539. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1519)Jafarzadegan, K., Merwade, V., Moradkhani, H. (2020). Combining clustering and classification for the regionalization of environmental model parameters: Application to floodplain mapping in data-scarce regions. Environmental Modelling & Software, 125,104613. https://doi.org/10.1016/j.envsoft.2019.104613.Jimenez, M. A., Camacho, L. A., & Vélez, J. I. (2019). Distributed Solute Transport Modeling Based on the Morphological Conceptualization of Drainage Networks [PhD, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/52172Jimenez, M. A., & Wohl, E. (2013). Solute transport modeling using morphological parameters of step-pool reaches. Water Resources Research, 49(3), 1345¿1359. https://doi.org/10.1002/wrcr.20102Kannel, P. R., Lee, S., Lee, Y.-S., Kanel, S. R., & Pelletier, G. J. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Ecological Modelling, 202(3¿4), 503¿517. https://doi.org/10.1016/j.ecolmodel.2006.12.033Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72(2), 301¿309. https://doi.org/10.1016/j.ecoenv.2008.02.024Kelleher, C., McGlynn, B., & Wagener, T. (2017). Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences, 21(7), 3325¿3352. https://doi.org/10.5194/hess-21-3325-2017Kelleher, C., Wagener, T., & McGlynn, B. (2015). Model-based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments. Water Resources Research, 51(6), 4109¿4136. https://doi.org/10.1002/2014WR016147Kiptala, J. K., Mul, M. L., Mohamed, Y. A., and van der Zaag, P. (2014): Modelling stream flow and quantifying blue water using a modified STREAM model for a heterogeneous, highly utilized and data-scarce river basin in Africa, Hydrol. Earth Syst. Sci., 18, 2287¿2303, https://doi.org/10.5194/hess-18-2287-2014Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912Klemes, V. (1986). Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31(1), 13¿24. https://doi.org/10.1080/02626668609491024Kosugi, K., Fujimoto, M., Katsura, S., Kato, H., Sando, Y., & Mizuyama, T. (2011). Localized bedrock aquifer distribution explains discharge from a headwater catchment. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009884Kottegoda, N., & Rosso, R. (2008). Applied statistics for civil and environmental engineers (2nd ed.). Wiley-Blackwell.Kottegoda, N. (1980). Stochastic Water Resources Technology. Palgrave Macmillan UK. https://doi.org/10.1007/978-1-349-03467-3Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall¿runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005¿6022. https://doi.org/10.5194/hess-22-6005-2018Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S. (2019). Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research, 55(12), 11344¿11354. https://doi.org/10.1029/2019WR026065Lee, A., Cho, S., Park, M. J., & Kim, S. (2013). Determination of standard target water quality in the Nakdong River basin for the total maximum daily load management system in Korea. KSCE Journal of Civil Engineering, 17(2), 309¿319. https://doi.org/10.1007/s12205-013-1893-5Lees, M. J., Camacho, L. A., & Chapra, S. (2000). On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resources Research, 36(1), 213¿224. https://doi.org/10.1029/1999WR900265Lees, M. J., Camacho, L. A., & Whitehead, P. (1998). Extension of the QUASAR river water quality model to incorporate dead-zone mixing. Hydrology and Earth System Sciences, 2(2/3), 353¿365. https://doi.org/10.5194/hess-2-353-1998Leopold, L. B., & Maddock, T. Jr. (1953). The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS Numbered Series No. 252). Professional Paper. U. S. Government Printing Office, Washington, D.C, 57. 10.3133/pp252Lin, Y., Larssen, T., Vogt, R. D., Feng, X., & Zhang, H. (2011). Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Science of the Total Environment, 409(21), 4596¿4605. https://doi.org/10.1016/j.scitotenv.2011.07.033Liu, Q., Zhang, Y., Liu, L., Wang, Z., Nie, Y., & Rai, M. (2021). A novel Landsat-based automated mapping of marsh wetland in the headwaters of the Brahmaputra, Ganges and Indus Rivers, southwestern Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation, 103, 102481. https://doi.org/10.1016/j.jag.2021.102481Machiwal, D., & Jha, M. K. (2012). Hydrologic Time Series Analysis: Theory and Practice. Springer Netherlands. https://doi.org/10.1007/978-94-007-1861-6Mankiewicz-Boczek, J., Na¿ecz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M., & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71(3), 830¿836. https://doi.org/10.1016/j.ecoenv.2008.02.023Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, XX, 161¿207.Martin, J. L., Borah, D. K., Martinez-Guerra, E., & Pérez-Gutiérrez, J. D. (2015). TMDL Modeling Approaches, Model Surveys, and Advances. Watershed Management 2015, 131¿148. https://doi.org/10.1061/9780784479322.013Martin, J. L., & McCutcheon, S. C. (1999). Measurement and Analysis of Flow. In Hydrodynamics and Transport for Water Quality Modeling (Vol. 3, pp. 93¿198). CRC PressMartínez-Nieto, P., García-Gómez, G., Mora-Ortiz, L., & Robles-Camargo, G. (2014). Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus. World Journal of Microbiology and Biotechnology, 30(1), 225¿236. https://doi.org/10.1007/s11274-013-1443-9Mateus, S. I. (2011). Determinación de la influencia de los factores hidrodinámicos y de calidad del agua en la demanda béntica de la Cuenca alta del río Bogotá [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/10235McIntyre, N., Angarita, M., Fernandez, N., Camacho, L., Pearse, J., Huguet, C., Restrepo Baena, O., & Ossa-Moreno, J. (2018). A Framework for Assessing the Impacts of Mining Development on Regional Water Resources in Colombia. Water, 10(3), 268. https://doi.org/10.3390/w10030268McIntyre, N., Young, P. C., Orellana, B., Marshall, M., Reynolds, B., & Wheater, H. (2011). Identification of nonlinearity in rainfall-flow response using data-based mechanistic modeling. Water Resources Research, 47(3), 1¿14. https://doi.org/10.1029/2010WR009851Medina, M. P. (2009). Propuesta metodológica para la estimación de la capacidad de nitrificación de los ríos de montaña. Casos de estudio Río Teusacá y Río Subachoque [MSc.]. Universidad Nacional de Colombia.Merlo, C., Abril, A., Amé, M. v., Argüello, G. A., Carreras, H. A., Chiappero, M. S., Hued, A. C., Wannaz, E., Galanti, L. N., Monferrán, M. v., González, C. M., & Solís, V. M. (2011). Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Science of the Total Environment, 409(23), 5034¿5045. https://doi.org/10.1016/j.scitotenv.2011.08.037Messerli, B., Viviroli, D., & Weingartner, R. (2004). Mountains of the world: Vulnerable water towers for the 21 st century. Ambio, 33(SPEC. ISS. 13), 29¿34. https://doi.org/10.1007/0044-7447-33.sp13.29Minambiente. (2018). Guia nacional de modelación del recurso hídrico para aguas superficiales continentales. https://www.minambiente.gov.co/wp-content/uploads/2021/10/15.-Anexo-15-Guia-Nacional-de-Modelacion-del-Recurso-Hidrico.pdfMinistry of Environment, J. (2011). Guidance for Introducing the Total Pollutant Load Control System (TPLCS) (Issue April). https://www.env.go.jp/en/water/ecs/pdf/english.pdfMoriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885¿900. https://doi.org/10.13031/2013.23153NASA, & METI. (2012). ASTER Global Digital Elevation Map. Http://Asterweb.Jpl.Nasa.Gov/GDEM.ASP. https://asterweb.jpl.nasa.gov/gdem.aspNathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7), 1465¿1473. https://doi.org/10.1029/WR026i007p01465Nauditt, A., Soulsby, C., Birkel, C., Rusman, A., Schüth, C., Ribbe, L., Álvarez, P., & Kretschmer, N. (2017). Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile. Environmental Monitoring and Assessment, 189(9). https://doi.org/10.1007/s10661-017-6149-2Navas, A. (2016). Factores de asimilación de carga contaminante en ríos: una herramienta para la identificación de estrategias de saneamiento hídrico en países en desarrollo [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/13945Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., & Gupta, H. v. (2021). What Role Does Hydrological Science Play in the Age of Machine Learning? In Water Resources Research (Vol. 57, Issue 3). Blackwell Publishing Ltd. https://doi.org/10.1029/2020WR028091Nejadhashemi, A. P., Shirmohammadi, A., Sheridan, J. M., & Montas, H. J. (2004). Evaluation of Analytical Methods for Streamflow Partitioning Introduction : The Society for Engineering in Agricultural, Food and Biological System, 42151(03), 1¿20.Niño, C. A., & Camacho, L. A. (2004). Modelo de transporte de solutos V3.0. UniandesOki, T., & Kanae, S. (2006). Global Hydrological Cycles and World Water Resources. Science, 313(5790), 1068¿1072. https://doi.org/10.1126/science.1128845Ordoñez, J. I., Camacho, L. A., Vega, L., & Pinilla, G. (2015). Environmental management of a tropical delta. E-Proceedings of the 36th IAHR World Congress, 1, 6883¿6894Pelletier, G. J., Chapra, S. C., & Tao, H. (2006). QUAL2Kw - A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling and Software, 21(3), 419¿425. https://doi.org/10.1016/j.envsoft.2005.07.002Petersson L., ten Veldhuis, M.C., Verhoeven, G., Kapelan, Z., Maholi, I., Winsemius, H.C. (2020). Community Mapping Supports Comprehensive Urban Flood Modeling for Flood Risk Management in a Data-Scarce Environment. Frontiers in Earth Science., 8, 304, https://doi.org/10.3389/feart.2020.00304Pinto, C. C., Calazans, G. M., & Oliveira, S. C. (2019). Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environmental Monitoring and Assessment, 191(3). https://doi.org/10.1007/s10661-019-7281-yPinto, L. C., de Mello, C. R., Norton, L. D., & Curi, N. (2019). Land-use influence on the soil hydrology: An approach in upper Grande river basin, southeast Brazil. Ciencia e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943015619Pizarro-Tapia, R., González-Leiva, F., Valdés-Pineda, R., Ingram, B., Sangüesa, C., & Vallejos, C. (2020). A rainfall intensity data rescue initiative for central chile utilizing a pluviograph strip charts reader (PSCR). Water (Switzerland), 12(7). https://doi.org/10.3390/W12071887Portland State University. (2022). CE-QUAL-W2. Portland State University. http://www.ce.pdx.edu/w2/Ratto, M., Young, P. C., Romanowicz, R., Pappenberger, F., Saltelli, A., & Pagano, A. (2007). Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology. Hydrology and Earth System Sciences, 11(4), 1249¿1266. https://doi.org/10.5194/hess-11-1249-2007Roa-García, M. C., Brown, S., Schreier, H., & Lavkulich, L. M. (2011). The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resources Research, 47(5). https://doi.org/10.1029/2010WR009582Robles, E. J. (2005). Estimacion experimental de tasas de nitrificación en rios de montaña - Quebrada Lejía [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/8997/u270904.pdf?sequence=1Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin ¿ Colombia. Water Resources Management, 34(7), 2179¿2199. https://doi.org/10.1007/s11269-019-02236-5Rodriguez-Miranda, J. P., García Ubaque, C. A., & Pardo Pinzón, J. (2015). Selección de tecnologías para el tratamiento de aguas residuales municipales. Revista Tecnura, 19(46), 149. https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a12Rodríguez-Jeangros, N., Camacho, L. A., Rodríguez, J. P., & McCray, J. E. (2018). Integrated Urban Water Resources Model to Improve Water Quality Management in Data-Limited Cities with Application to Bogotá, Colombia. Journal of Sustainable Water in the Built Environment, 4(2), 04017019. https://doi.org/10.1061/jswbay.0000846Rohatgi, A. (2020). WebPlotDigitizer (4.4). https://automeris.io/WebPlotDigitizer/index.htmlRojas, A. F. (2011). Aplicación de factores de asimilación para la priorización de la inversión en sistemas de saneamiento hídrico en Colombia [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/7652Rubiano, J., Quintero, M., Estrada, R. D., & Moreno, A. (2006). Multiscale analysis for promoting integrated watershed management. Water International, 31(3), 398¿411. https://doi.org/10.1080/02508060608691941Sanchez, N. (2017). Estimación del coeficiente de partición y modelación de organismos indicadores de patógenos en ríos [MSc Thesis, Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/34317Santos Santos, T. F., & Camacho, L. A. (2022). An Integrated Water Quality Model to Support Multiscale Decisions in a Highly Altered Catchment. Water, 14(3), 374. https://doi.org/10.3390/w14030374Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109¿136. https://doi.org/10.1146/annurev-environ-100809-125342Searcy, J. K., & Hardison, C. H. (1960). Double-Mass Curves. WaterSupply Paper 1541B, 66. http://dspace.udel.edu:8080/dspace/handle/19716/1592¿erban, R. D., Jin, H., ¿erban, M., Luo, D., Wang, Q., Jin, X., & Ma, Q. (2020). Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau. International Journal of Remote Sensing, 41(18), 7042¿7067. https://doi.org/10.1080/01431161.2020.1752954Shanahan, P., Henze, M., Koncsos, L., Rauch, W., Reichert, P., SomlyoDy, L., & Vanrolleghem, P. (1998). River water quality modelling: II. Problems of the art. Water Science and Technology, 38(11). https://doi.org/10.1016/S0273-1223(98)00661-1Shaw, E. M., Beven, K. J., Chappell, N. A., & Lamb, R. (2010). Hydrology in Practice, Fourth Edition (4th ed.). CRC Press.Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464¿475. https://doi.org/10.1016/j.envsoft.2006.02.001Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - A case study. Water Research, 38(18), 3980¿3992. https://doi.org/10.1016/j.watres.2004.06.011Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques - A case study. Analytica Chimica Acta, 538(1¿2), 355¿374. https://doi.org/10.1016/j.aca.2005.02.006Sivapalan, M., & Young, P. C. (2005). Downward Approach to Hydrological Model Development. Encyclopedia of Hydrological Sciences, 1¿18. https://doi.org/10.1002/0470848944.hsa141Slaughter, A.R. (2017) Simulating Microbial Water Quality in Data-Scarce Catchments: an Update of the WQSAM Model to Simulate the Fate of Escherichia coli. Water Resour Manage 31, 4239¿4252. https://doi.org/10.1007/s11269-017-1743-1Slaughter, A.R., Hughes, D.A., Retief, D.C.H., Mantel, S.K. (2017). A management-oriented water quality model for data scarce catchments, Environmental Modelling & Software, 97, 93-111, https://doi.org/10.1016/j.envsoft.2017.07.015.Solano-Guzman, C. J. (2016). Estimación preliminar de cargas de nutrientes y sedimentos debido a cambios en el uso del suelo, considerando la implementación de un modelo SWAT - caso de estudio Rio Teusacá [MSc., Universidad de los Andes]. In instname:Universidad de los Andes. http://hdl.handle.net/1992/18184Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., & Xu, C. (2015). Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology, 523(225), 739¿757. https://doi.org/10.1016/j.jhydrol.2015.02.013Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 29, 131¿147. https://doi.org/10.1038/s41370-018-0094-1Su¿in, N., & Peer, P. (2018). Open-source tool for interactive digitisation of pluviograph strip charts (Vol. 73, Issue 7). https://github.Taylor, C., Pedregal, D., Young, P. C., & Tych, W. (2007). Environmental time series analysis and forecasting with the Captain toolbox. Environmental Modelling & Software, 22(6), 797¿814. https://doi.org/10.1016/j.envsoft.2006.03.002Taylor, C., Young, P. C., Tych, W., & Wilson, E. D. (2018). New developments in the CAPTAIN Toolbox for Matlab with case study examples¿. IFAC-PapersOnLine, 51(15), 694¿699. https://doi.org/10.1016/j.ifacol.2018.09.202Taylor, G. I. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 223(1155), 446¿468. https://doi.org/10.1098/rspa.1954.0130Tetzlaff, D., Soulsby, C., Hrachowitz, M., & Speed, M. (2011). Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. Journal of Hydrology, 400(3¿4), 438¿447. https://doi.org/10.1016/j.jhydrol.2011.01.053Texas A&M & USDA. (2022). Soil and Water Assessment Tool SWAT+. https://swat.tamu.edu/software/plus/Thome, C. R., & Zevenbergen, L. W. (1985). Estimating Mean Velocity in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 612¿624. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:4(612)Torres, J. A. (2009). Estudio de los procesos de transporte y decaimiento de organismos patógenos en ríos de montaña colombianos - Río Teusacá, Río Subachoque [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59115Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209(February), 62¿72. https://doi.org/10.1016/j.agwat.2018.07.006US Army Corps of Engineers. (2022). HEC-HMS. US Army Corps of Engineers. https://www.hec.usace.army.mil/software/hec-hms/USEPA. (2014). HSPF. USEPA. https://www.epa.gov/ceam/hydrological-simulation-program-fortran-hspfUSEPA. (2021). WASP8 Download. https://www.epa.gov/ceam/wasp8-downloadUSGS. (2013). USGS Water Resources Applications Software: LOADEST. https://water.usgs.gov/software/loadestUSGS. (2022). USGS Earth Explorer. https://earthexplorer.usgs.govValderrama, M., Pinilla-Vargas, M., Andrade, G. I., Valderrama-Escallón, E., & Hernández, S. (2018). Lake Fuquene (Colombia). The Wetland Book II: Distribution, Description, and Conservation, 2, 773¿783. https://doi.org/10.1007/978-94-007-4001-3_282Vanegas, F. (2019). Una aproximacion a la determinación de relaciones paramétricas de transporte de solutos en la cuenca del río Teusacá [MSc., Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/44281Vélez, M. I., Hooghiemstra, H., Metcalfe, S., Martínez, I., & Mommersteeg, H. (2003). Pollen-and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, Colombia. Journal of Quaternary Science, 18(1), 17¿30. https://doi.org/10.1002/jqs.730Vieira, J., Fonseca, A., Vilar, V. J. P., Boaventura, R. A. R., & Botelho, C. M. S. (2013). Water quality modelling of Lis River, Portugal. Environmental Science and Pollution Research, 20(1), 508¿524. https://doi.org/10.1007/s11356-012-1124-5Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research, 43(7), 1¿13. https://doi.org/10.1029/2006WR005653Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555¿561. https://doi.org/10.1038/nature09440Wagener, T., & Kollat, J. (2007). Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environmental Modelling and Software, 22(7), 1021¿1033. https://doi.org/10.1016/j.envsoft.2006.06.017Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. v., Kumar, P., Rao, P. S. C., Basu, N. B., & Wilson, J. S. (2010). The future of hydrology: An evolving science for a changing world. Water Resources Research, 46(5), 1¿10. https://doi.org/10.1029/2009WR008906Washington Department of Ecology (2021). Models and tools for water quality improvement. https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLsWenninger, J., Uhlenbrook, S., Lorentz, S., & Leibundgut, C. (2008). Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa. In Hydrological Sciences-Journal-des Sciences Hydrologiques (Vol. 53, Issue 1).Wohl, E. (2017). The significance of small streams. Frontiers of Earth Science, 11(3), 447¿456. https://doi.org/10.1007/s11707-017-0647-yWool, T., Ambrose, R. B., Martin, J. L., & Comer, A. (2020). WASP 8: The next generation in the 50-year evolution of USEPA¿s water quality model. Water (Switzerland), 12(5), 1¿33. https://doi.org/10.3390/W12051398Young, P. C. (1992). Parallel Processes in Hydrology and Water Quality: A Unified Time¿Series Approach. Water and Environment Journal, 6(6), 598¿612. https://doi.org/10.1111/j.1747-6593.1992.tb00796.xYoung, P. C. (1998). Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environmental Modelling and Software, 13(2), 105¿122. https://doi.org/10.1016/S1364-8152(98)00011-5Young, P. C. (2005). Rainfall-Runoff Modeling: Transfer Function Models. Encyclopedia of Hydrological Sciences. https://doi.org/10.1002/0470848944.hsa141aYoung, P. C. (2013). Hypothetico-inductive data-based mechanistic modeling of hydrological systems. Water Resources Research, 49(2), 915¿935. https://doi.org/10.1002/wrcr.20068Young, P. C., & Beven, K. J. (1994). Data¿based mechanistic modelling and the rainfall¿flow non¿linearity. Environmetrics, 5(3), 335¿363. https://doi.org/10.1002/env.3170050311Young, P. C., Parkinson, S., & Lees, M. (1996). Simplicity out of complexity in environmental modelling: Occam¿s razor revisited. In Journal of Applied Statistics (Vol. 23, Issues 2¿3). https://doi.org/10.1080/02664769624206200412261Publicationhttps://scholar.google.es/citations?user=cbW7giMAAAAJvirtual::5319-10000-0001-6066-7673virtual::5319-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000189391virtual::5319-1f23c0812-c75e-4f5a-a9d2-40321b1f1a16virtual::5319-1f23c0812-c75e-4f5a-a9d2-40321b1f1a16virtual::5319-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/7022db05-677e-4909-8277-ed64b79a770b/download5aa5c691a1ffe97abd12c2966efcb8d6MD54TEXTPhDThesisNFAVfinal.pdf.txtPhDThesisNFAVfinal.pdf.txtExtracted texttext/plain335938https://repositorio.uniandes.edu.co/bitstreams/5831a293-33b2-4d0c-b60b-5236f9e6debf/downloade5e14c32424ff2f7302d665e6cd69bb2MD56Formato autorización Tesis Doctoral NFA.pdf.txtFormato autorización Tesis Doctoral NFA.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/31536bd2-2c03-4682-b209-386e7e2d2735/download4491fe1afb58beaaef41a73cf7ff2e27MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8d838da5-1fd5-44bb-9a62-718a29ba5eb8/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILPhDThesisNFAVfinal.pdf.jpgPhDThesisNFAVfinal.pdf.jpgIM Thumbnailimage/jpeg11330https://repositorio.uniandes.edu.co/bitstreams/d07f0c8c-3b3e-4b27-bf89-7163d44b009e/downloadadba5f593195e4aacdede8f031e1eb44MD57Formato autorización Tesis Doctoral NFA.pdf.jpgFormato autorización Tesis Doctoral NFA.pdf.jpgIM Thumbnailimage/jpeg16229https://repositorio.uniandes.edu.co/bitstreams/eb7c2093-dc24-4f93-b6b8-04ead0245866/download876b4f2da8bd913b26af141f2b028e81MD59ORIGINALPhDThesisNFAVfinal.pdfPhDThesisNFAVfinal.pdfDocumento completo de tesis doctoral Nicolas Fernandez Acostaapplication/pdf11123735https://repositorio.uniandes.edu.co/bitstreams/52638828-b3e4-4d65-a7ff-1065bb5b5257/downloadf14821073ceca06676f3a6a211ec8febMD53Formato autorización Tesis Doctoral NFA.pdfFormato autorización Tesis Doctoral NFA.pdfHIDEapplication/pdf233442https://repositorio.uniandes.edu.co/bitstreams/a6509429-6138-40ff-8c79-f8bc4d0f3bfa/download772d06d5066ab1a5efa200c283edfc64MD551992/64730oai:repositorio.uniandes.edu.co:1992/647302024-08-26 15:21:42.823http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |