Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks

Una botnet es un conjunto de dispositivos que están bajo el control de un atacante y se utilizan para llevar a cabo actividades maliciosas contra una víctima. En este contexto, comprender el comportamiento de este tipo de malware es crucial para proteger las redes. Por ello, se propone un enfoque de...

Full description

Autores:
Pinto Morato, Lindsay Vanessa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74522
Acceso en línea:
https://hdl.handle.net/1992/74522
Palabra clave:
Botnet
SEIRS-NIMFA
Modelo epidemiológico
Topologías
Epidemiological modeling
Topologies
Ingeniería
Rights
embargoedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_ec3a28f5a3f7045fca9b51cd5a2b689f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74522
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
title Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
spellingShingle Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
Botnet
SEIRS-NIMFA
Modelo epidemiológico
Topologías
Epidemiological modeling
Topologies
Ingeniería
title_short Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
title_full Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
title_fullStr Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
title_full_unstemmed Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
title_sort Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks
dc.creator.fl_str_mv Pinto Morato, Lindsay Vanessa
dc.contributor.advisor.none.fl_str_mv Lozano Garzón, Carlos Andrés
Montoya Orozco, Germán Adolfo
dc.contributor.author.none.fl_str_mv Pinto Morato, Lindsay Vanessa
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::COMIT - Comunicaciones y Tecnología de Información
dc.subject.keyword.none.fl_str_mv Botnet
SEIRS-NIMFA
topic Botnet
SEIRS-NIMFA
Modelo epidemiológico
Topologías
Epidemiological modeling
Topologies
Ingeniería
dc.subject.keyword.spa.fl_str_mv Modelo epidemiológico
Topologías
dc.subject.keyword.eng.fl_str_mv Epidemiological modeling
Topologies
dc.subject.themes.none.fl_str_mv Ingeniería
description Una botnet es un conjunto de dispositivos que están bajo el control de un atacante y se utilizan para llevar a cabo actividades maliciosas contra una víctima. En este contexto, comprender el comportamiento de este tipo de malware es crucial para proteger las redes. Por ello, se propone un enfoque de modelado epidemiológico para explicar el comportamiento de las botnets, centrándose especialmente en el Botnet MIRAI. El modelo seleccionado, SEIRS-NIMFA, fue adaptado para incluir tasas relacionadas con el ciclo de vida de la botnet, como tasas de actualización, escaneo e inyección. Estas modificaciones se basaron en datos recopilados del botnet MIRAI, y también se probaron variaciones utilizando tasas del modelo SEIRS ajustadas específicamente para esta botnet. La implementación del modelo se llevó a cabo mediante un programa en Python que utiliza el método de Runge-Kutta para resolver el sistema de ecuaciones diferenciales. El análisis proporcionó conocimientos significativos sobre los nodos críticos y el comportamiento de la red en diferentes topologías. En las topologías de estrella y bus, los nodos centrales surgieron como los más críticos, mientras que en las topologías de malla, el comportamiento de la red resultó ser dependiente de la densidad del grafo en lugar del número de nodos. Estos hallazgos ofrecen una valiosa orientación para los administradores de redes, ayudándoles a identificar topologías críticas y nodos vulnerables susceptibles a tales ataques.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-12T21:01:10Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.date.accepted.none.fl_str_mv 2024-07-12
dc.date.available.none.fl_str_mv 2025-07-29
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74522
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74522
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv M. A. Masriah, "Battling Botnets with AI: A New Era in Cybersecurity," September 2023. [Online]. Available: https://www.linkedin.com/pulse/battling-botnets-ai-new-era-cybersecurity-majd-aldeen-masriah/.
M. D. Galvan, "NIMFA Epidemiological model for studying malware behavior in IoT Networks," Bogota, Colombia, 2021.
S. Delgado, "Una nueva botnet deja en jaque a miles de usuarios de WordPress," Bitlifemedia, March 2024. [Online]. Available: https://bitlifemedia.com/2024/03/nueva-botnet-usuarios-wordpress/.
I. Belcic, "Qué es una botnet," Avast, October 2021. [Online]. Available: https://www.avast.com/es-es/c-botnet#:~:text=Las%20tres%20etapas%20de%20la,%3A%20infecci%C3%B3n%2C%20expansi%C3%B3n%20y%20ataque..
F. Hussain et al., "A Two-Fold Machine Learning Approach to Prevent and Detect IoT Botnet Attacks," IEEE Access, vol. 9, no. doi: 10.1109/ACCESS.2021.3131014, pp. 163412-163430, 2021.
G. Barakat, B. Al-Duwairi, M. Jarrah and M. Jaradat, "Modeling and Simulation of IoT Botnet Behaviors Using DEVS," 2022 13th International Conference on Information and Communication Systems (ICICS), no. doi: 10.1109/ICICS55353.2022.9811164, pp. 42-47, 2022.
L. Gordis, "Chapter 1," in Epidemiology, Fifth Edition, Canada, Elsevier, 2014, pp. 2-3.
Wikipedia, "Compartmental models in epidemiology," Wikipedia, s.f. [Online]. Available: https://en.m.wikipedia.org/wiki/Compartmental_models_in_epidemiology#.
J. F. Balarezo, S. Wang, K. Gomez Chavez, A. Al-Hourani and S. Kandeepan,, "Dynamics of Botnet Propagation in Software Defined Networks Using Epidemic Models," IEEE Access, vol. 9, no. doi: 10.1109/ACCESS.2021.3108181, pp. 119406-119417, 2021.
I. Martínez Martínez, A. Florián Quitián, D. Díaz-López, P. Nespoli y F. Gómez Mármol, "Modeling and Propagation Dynamics Analysis of Complex Networks," Complexity, vol. 2021, no. doi.org/10.1155/2021/5415724, pp. 1-19, 2021.
D. Keliger and I. Horváth, "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, vol. 609, no. https://doi.org/10.1016/j.physa.2022.128370., pp. 1-3, 2023.
P. Van Mieghem, "The N-intertwined SIS epidemic network model," Computing, vol. 93, no. https://doi.org/10.1007/s00607-011-0155-y, 2011.
L. Quiroga, "SEIRS-NIMFA Epidemiological Model for Analyzing Malware Propagation in IoT Networks," Bogotá, Colombia, 2023.
M. A. Fatihcan , K. Pavel B. and D. Mugnolo, Discrete and Continuous Models in the Theory of Networks, Switzerland: Birkhäuser,, 2020.
Cloudflare, "Cloudflare," Inside the infamous Mirai IoT Botnet: A Retrospective Analysis, December 2017. [Online]. Available: https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis.
European Union Agency for Cybersecurity, "Botnet ENISA Threat Landscape," Eninsa, 2020.
M. Estan, "TOPOLOGÍAS," Universidad de Huelva, May 2012. [Online]. Available: https://uhu.es/antonio.barragan/content/5topologias.
L. Quiroga, "Github," SEIRSModel, [Online]. Available: https://github.com/Lauraquiroga/SEIRSModel.
Manos, A et al. , "Understanding the Mirai Botnet," Proceedings of the 26th USENIX Security Symposium, vol. 26, 2017.
PingIdentity, "What Is a Botnet Attack and How to Prevent It.," PingIdentity, [Online]. Available: https://www.pingidentity.com/en/resources/cybersecurity-fundamentals/threats/botnet-attack.html.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 75 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/2da1fafc-7c1e-4a4b-8bbe-6a1f9fcec882/download
https://repositorio.uniandes.edu.co/bitstreams/844ba7aa-a0c6-47ec-8411-005e77c32a92/download
https://repositorio.uniandes.edu.co/bitstreams/d1b74100-5fb3-41aa-b254-abf75d0dae41/download
https://repositorio.uniandes.edu.co/bitstreams/05d97b02-2bf5-4da5-8bd3-ed26c2879d90/download
https://repositorio.uniandes.edu.co/bitstreams/ebf4360d-12fc-4559-ad1c-a13f6ae645b7/download
https://repositorio.uniandes.edu.co/bitstreams/1ac91fa6-412d-46fc-a6f1-f81b57c139dc/download
https://repositorio.uniandes.edu.co/bitstreams/fd52ff60-025f-40b6-b514-c643b7eb294a/download
https://repositorio.uniandes.edu.co/bitstreams/336ed484-f7a2-4e24-bab5-23c8cf3f121a/download
bitstream.checksum.fl_str_mv ca8a952254ec5d388989786dcb305f99
f3b9667c5d485c58f3ee2c12939198a8
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
29fc08031d749a37c246ad3afc4994fa
9b5b88676fdfd719063a45aedf843ca4
efecb315ce88827be98fb9ee4051320f
8d55a14893910c11ad60abc076f4f763
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133906557698048
spelling Lozano Garzón, Carlos Andrésvirtual::18784-1Montoya Orozco, Germán Adolfovirtual::18785-1Pinto Morato, Lindsay VanessaFacultad de Ingeniería::COMIT - Comunicaciones y Tecnología de Información2024-07-12T21:01:10Z2025-07-292024-07-122024-07-12https://hdl.handle.net/1992/74522instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Una botnet es un conjunto de dispositivos que están bajo el control de un atacante y se utilizan para llevar a cabo actividades maliciosas contra una víctima. En este contexto, comprender el comportamiento de este tipo de malware es crucial para proteger las redes. Por ello, se propone un enfoque de modelado epidemiológico para explicar el comportamiento de las botnets, centrándose especialmente en el Botnet MIRAI. El modelo seleccionado, SEIRS-NIMFA, fue adaptado para incluir tasas relacionadas con el ciclo de vida de la botnet, como tasas de actualización, escaneo e inyección. Estas modificaciones se basaron en datos recopilados del botnet MIRAI, y también se probaron variaciones utilizando tasas del modelo SEIRS ajustadas específicamente para esta botnet. La implementación del modelo se llevó a cabo mediante un programa en Python que utiliza el método de Runge-Kutta para resolver el sistema de ecuaciones diferenciales. El análisis proporcionó conocimientos significativos sobre los nodos críticos y el comportamiento de la red en diferentes topologías. En las topologías de estrella y bus, los nodos centrales surgieron como los más críticos, mientras que en las topologías de malla, el comportamiento de la red resultó ser dependiente de la densidad del grafo en lugar del número de nodos. Estos hallazgos ofrecen una valiosa orientación para los administradores de redes, ayudándoles a identificar topologías críticas y nodos vulnerables susceptibles a tales ataques.A botnet is a set of devices under an attacker's control and used to carry out malicious activities against a victim. In this context, understanding the behavior of this type of malware is crucial to protect networks. Therefore, an epidemiological modeling approach is proposed to explain the behavior of botnets, focusing especially on the MIRAI Botnet. The selected model, SEIRS-NIMFA, was adapted to include rates related to the botnet's lifecycle, such as update rates, scanning, and injection rates. These modifications were based on data collected from the MIRAI botnet, and variations were also tested using rates from the SEIRS model specifically adjusted for this botnet. The model implementation was carried out through a Python program that uses the Runge-Kutta method to solve the system of differential equations. The analysis provided insights into critical nodes and network behavior in different topologies. In star and bus topologies, central nodes emerged as the most critical. In contrast, in mesh topologies, network behavior was found to be dependent on graph density rather than the number of nodes. These findings offer valuable guidance for network administrators, helping them identify critical topologies and vulnerable nodes susceptible to such attacks.Pregrado75 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEpidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT NetworksTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBotnetSEIRS-NIMFAModelo epidemiológicoTopologíasEpidemiological modelingTopologiesIngenieríaM. A. Masriah, "Battling Botnets with AI: A New Era in Cybersecurity," September 2023. [Online]. Available: https://www.linkedin.com/pulse/battling-botnets-ai-new-era-cybersecurity-majd-aldeen-masriah/.M. D. Galvan, "NIMFA Epidemiological model for studying malware behavior in IoT Networks," Bogota, Colombia, 2021.S. Delgado, "Una nueva botnet deja en jaque a miles de usuarios de WordPress," Bitlifemedia, March 2024. [Online]. Available: https://bitlifemedia.com/2024/03/nueva-botnet-usuarios-wordpress/.I. Belcic, "Qué es una botnet," Avast, October 2021. [Online]. Available: https://www.avast.com/es-es/c-botnet#:~:text=Las%20tres%20etapas%20de%20la,%3A%20infecci%C3%B3n%2C%20expansi%C3%B3n%20y%20ataque..F. Hussain et al., "A Two-Fold Machine Learning Approach to Prevent and Detect IoT Botnet Attacks," IEEE Access, vol. 9, no. doi: 10.1109/ACCESS.2021.3131014, pp. 163412-163430, 2021.G. Barakat, B. Al-Duwairi, M. Jarrah and M. Jaradat, "Modeling and Simulation of IoT Botnet Behaviors Using DEVS," 2022 13th International Conference on Information and Communication Systems (ICICS), no. doi: 10.1109/ICICS55353.2022.9811164, pp. 42-47, 2022.L. Gordis, "Chapter 1," in Epidemiology, Fifth Edition, Canada, Elsevier, 2014, pp. 2-3.Wikipedia, "Compartmental models in epidemiology," Wikipedia, s.f. [Online]. Available: https://en.m.wikipedia.org/wiki/Compartmental_models_in_epidemiology#.J. F. Balarezo, S. Wang, K. Gomez Chavez, A. Al-Hourani and S. Kandeepan,, "Dynamics of Botnet Propagation in Software Defined Networks Using Epidemic Models," IEEE Access, vol. 9, no. doi: 10.1109/ACCESS.2021.3108181, pp. 119406-119417, 2021.I. Martínez Martínez, A. Florián Quitián, D. Díaz-López, P. Nespoli y F. Gómez Mármol, "Modeling and Propagation Dynamics Analysis of Complex Networks," Complexity, vol. 2021, no. doi.org/10.1155/2021/5415724, pp. 1-19, 2021.D. Keliger and I. Horváth, "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, vol. 609, no. https://doi.org/10.1016/j.physa.2022.128370., pp. 1-3, 2023.P. Van Mieghem, "The N-intertwined SIS epidemic network model," Computing, vol. 93, no. https://doi.org/10.1007/s00607-011-0155-y, 2011.L. Quiroga, "SEIRS-NIMFA Epidemiological Model for Analyzing Malware Propagation in IoT Networks," Bogotá, Colombia, 2023.M. A. Fatihcan , K. Pavel B. and D. Mugnolo, Discrete and Continuous Models in the Theory of Networks, Switzerland: Birkhäuser,, 2020.Cloudflare, "Cloudflare," Inside the infamous Mirai IoT Botnet: A Retrospective Analysis, December 2017. [Online]. Available: https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis.European Union Agency for Cybersecurity, "Botnet ENISA Threat Landscape," Eninsa, 2020.M. Estan, "TOPOLOGÍAS," Universidad de Huelva, May 2012. [Online]. Available: https://uhu.es/antonio.barragan/content/5topologias.L. Quiroga, "Github," SEIRSModel, [Online]. Available: https://github.com/Lauraquiroga/SEIRSModel.Manos, A et al. , "Understanding the Mirai Botnet," Proceedings of the 26th USENIX Security Symposium, vol. 26, 2017.PingIdentity, "What Is a Botnet Attack and How to Prevent It.," PingIdentity, [Online]. Available: https://www.pingidentity.com/en/resources/cybersecurity-fundamentals/threats/botnet-attack.html.202023138Publication9a0ca46c-ed4d-4da2-af46-db6aa9454a0dvirtual::18784-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::18785-19a0ca46c-ed4d-4da2-af46-db6aa9454a0dvirtual::18784-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::18785-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000219541virtual::18784-1ORIGINALAutorizacion tesis Lindsay Pinto.pdfAutorizacion tesis Lindsay Pinto.pdfHIDEapplication/pdf280124https://repositorio.uniandes.edu.co/bitstreams/2da1fafc-7c1e-4a4b-8bbe-6a1f9fcec882/downloadca8a952254ec5d388989786dcb305f99MD51Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdfEpidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdfContiene información que se va a utilizar para una publicación en revista y requiere confidencialidad.application/pdf3892945https://repositorio.uniandes.edu.co/bitstreams/844ba7aa-a0c6-47ec-8411-005e77c32a92/downloadf3b9667c5d485c58f3ee2c12939198a8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d1b74100-5fb3-41aa-b254-abf75d0dae41/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/05d97b02-2bf5-4da5-8bd3-ed26c2879d90/download4460e5956bc1d1639be9ae6146a50347MD54TEXTAutorizacion tesis Lindsay Pinto.pdf.txtAutorizacion tesis Lindsay Pinto.pdf.txtExtracted texttext/plain1473https://repositorio.uniandes.edu.co/bitstreams/ebf4360d-12fc-4559-ad1c-a13f6ae645b7/download29fc08031d749a37c246ad3afc4994faMD55Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdf.txtEpidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdf.txtExtracted texttext/plain93470https://repositorio.uniandes.edu.co/bitstreams/1ac91fa6-412d-46fc-a6f1-f81b57c139dc/download9b5b88676fdfd719063a45aedf843ca4MD57THUMBNAILAutorizacion tesis Lindsay Pinto.pdf.jpgAutorizacion tesis Lindsay Pinto.pdf.jpgGenerated Thumbnailimage/jpeg11445https://repositorio.uniandes.edu.co/bitstreams/fd52ff60-025f-40b6-b514-c643b7eb294a/downloadefecb315ce88827be98fb9ee4051320fMD56Epidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdf.jpgEpidemiological SEIRS-NIMFA Model for Analyzing Botnet Spread in IoT Networks.pdf.jpgGenerated Thumbnailimage/jpeg8519https://repositorio.uniandes.edu.co/bitstreams/336ed484-f7a2-4e24-bab5-23c8cf3f121a/download8d55a14893910c11ad60abc076f4f763MD581992/74522oai:repositorio.uniandes.edu.co:1992/745222024-07-16 03:05:19.817http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K