Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur
Malassezia spp. es un género de levaduras comensales que habitan normalmente en la piel de animales de sangre caliente. Estos microorganismos pueden ser patógenos en hospederos con factores de predispoción dando como resultado la inducción de la respuesta inmune. Malassezia furfur es una especie rep...
- Autores:
-
Sarmiento Boada, Max Isaac
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/58105
- Acceso en línea:
- http://hdl.handle.net/1992/58105
- Palabra clave:
- Levadura
Malassezia
in vitro
PMN-N
NETs
Inflamosoma
Respuesta inmune innata
Malassezia furfur
Levaduras
Enzimas
Inmunorrespuesta
Microbiología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_eb40d478373caed6da922ad331313897 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/58105 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
title |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
spellingShingle |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur Levadura Malassezia in vitro PMN-N NETs Inflamosoma Respuesta inmune innata Malassezia furfur Levaduras Enzimas Inmunorrespuesta Microbiología |
title_short |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
title_full |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
title_fullStr |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
title_full_unstemmed |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
title_sort |
Diseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfur |
dc.creator.fl_str_mv |
Sarmiento Boada, Max Isaac |
dc.contributor.advisor.none.fl_str_mv |
Celis Ramírez, Adriana Marcela Celis Ramírez, Adriana Marcela Valderrama Aguirre, Augusto Elias |
dc.contributor.author.none.fl_str_mv |
Sarmiento Boada, Max Isaac |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Instituto de Investigaciones Biomédicas Grupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP) |
dc.subject.keyword.none.fl_str_mv |
Levadura Malassezia in vitro PMN-N NETs Inflamosoma Respuesta inmune innata |
topic |
Levadura Malassezia in vitro PMN-N NETs Inflamosoma Respuesta inmune innata Malassezia furfur Levaduras Enzimas Inmunorrespuesta Microbiología |
dc.subject.armarc.none.fl_str_mv |
Malassezia furfur Levaduras Enzimas Inmunorrespuesta |
dc.subject.themes.es_CO.fl_str_mv |
Microbiología |
description |
Malassezia spp. es un género de levaduras comensales que habitan normalmente en la piel de animales de sangre caliente. Estos microorganismos pueden ser patógenos en hospederos con factores de predispoción dando como resultado la inducción de la respuesta inmune. Malassezia furfur es una especie representativa del género que afecta principalmente a humanos y ha mostrado infectar a niños y adultos inmunocomprometidos. Aunque el conocimiento de respuesta inmune hacia M. furfur por parte de células mononucleares ha aumentado en los últimos años, es limitada la literatura disponible acerca de respuesta inmune por parte de PMN-N polimorfonucleares. En este trabajo de grado, se implementó un ejercicio tipo revisión de alcance, con el fin de construir un protocolo experimental, ejecutable en un ambiente de investigación in vitro, que permita la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N a través de la producción de NETs y la activación del inflamosoma en presencia de hifas y levaduras de M. furfur. El protocolo logrado puede ser ejecutado en laboratorios de investigación básica y con una inversión mínima de recursos. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T17:03:09Z |
dc.date.available.none.fl_str_mv |
2022-06-21T17:03:09Z |
dc.date.issued.none.fl_str_mv |
2022-06-16 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/58105 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/58105 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
1. Theelen, B. et al. Malassezia ecology, pathophysiology, and treatment. Medical Mycology vol. 56 S10¿S25 (2018). 2. Prohic, A., Jovovic Sadikovic, T., Krupalija-Fazlic, M. & Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatological conditions. International Journal of Dermatology 55, 494¿504 (2016). 3. Havlickova, B., Czaika, V. A. & Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses vol. 51 (2008). 4. Iatta, R. et al. Bloodstream infections by Malassezia and Candida species in critical care patients. Medical Mycology 52, 264¿269 (2014). 5. Alonso, R., Fernández-Fernández, A. M., Pisa, D. & Carrasco, L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease 117, (2018). 6. Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer¿s disease. Frontiers in Aging Neuroscience 10, (2018). 7. Laurence, M., Benito-León, J. & Calon, F. Malassezia and Parkinson¿s disease. Frontiers in Neurology (2019) doi:10.3389/fneur.2019.00758. 8. Cabañes, F. J. Malassezia Yeasts: How Many Species Infect Humans and Animals? PLoS Pathogens 10, (2014). 9. Gaitanis, G., Magiatis, P., Hantschke, M., Bassukas, I. D. & Velegraki, A. The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews 25, (2012). 10. Kaneko, T., Murotani, M., Ohkusu, K., Sugita, T. & Makimura, K. Genetic and biological features of catheter-associated Malassezia furfur from hospitalized adults. Medical Mycology 50, (2012). 11. Iatta, R. et al. Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: Strength and weakness. Medical Mycology 56, (2018). 12. Sparber, F., Ruchti, F. & LeibundGut-Landmann, S. Host Immunity to Malassezia in Health and Disease. Frontiers in Cellular and Infection Microbiology vol. 10 198 (2020). 13. Blanco, J. L. & Garcia, M. E. Immune response to fungal infections. Veterinary Immunology and Immunopathology 125, (2008). 14. Kistowska, M. et al. Malassezia yeasts activate the NLRP3 inflammasome in antigenpresenting cells via Syk-kinase signalling. Experimental Dermatology 23, 884¿889 (2014). 15. Wolf, A. J. et al. Malassezia spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. Journal of Leukocyte Biology 109, (2021). 16. Park, H. R. et al. Inflammasome-mediated Inflammation by Malassezia in human keratinocytes: A comparative analysis with different strains. Mycoses 64, (2021). 17. Li, W. et al. Malassezia globosa Activates NLRP3 Inflammasome in Human Sebocytes. Journal of Investigative Dermatology (2022) doi:10.1016/j.jid.2021.11.038. 18. Afonso, M. et al. Candida Extracellular Nucleotide Metabolism Promotes Neutrophils Extracellular Traps Escape. Frontiers in Cellular and Infection Microbiology 11, (2021). 19. Ruiz Camps, I. & Jarque, I. Enfermedades invasoras por hongos levaduriformes en pacientes neutropénicos. Revista Iberoamericana de Micologia vol. 33 (2016). . 20. Salamanca-Córdoba, M. A. et al. Seborrheic dermatitis and its relationship with Malassezia spp. Infectio 25, 120 (2020). 21. Rastogi, S., Ellinwood, S., Augenstreich, J., Mayer-Barber, K. D. & Briken, V. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathogens 17, (2021). 22. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: Guardians of the body. Annual Review of Immunology vol. 27 (2009). 23. Rathinam, V. A. K., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nature Immunology vol. 13 (2012). 24. Broz, P. & Monack, D. M. Molecular mechanisms of inflammasome activation during microbial infections. Immunological Reviews vol. 243 (2011). 25. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, (2015). 26. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1¿ secretion. Cell Research 25, (2015). 27. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology vol. 18 (2018). 28. Brinkmann, V. et al. Neutrophil Extracellular Traps Kill Bacteria. Science (1979) 303, (2004). 29. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. Journal of Cell Biology 176, (2007). 30. Tatsiy, O. & McDonald, P. P. Physiological stimuli induce PAD4-Dependent, ROSIndependent NETosis, with early and late events controlled by discrete signaling pathways. Frontiers in Immunology 9, (2018). 31. de Farias Moreira, R. T. et al. Dichotomous response of Malassezia-infected macrophages to Malassezia pachydermatis and Malassezia furfur. Medical Mycology (2019) doi:10.1093/mmy/myy104. 32. Krämer, H. J. et al. Pityriarubins, novel highly selective inhibitors of respiratory burst from cultures of the yeast Malassezia furfur: Comparison with the bisindolylmaleimide arcyriarubin A. ChemBioChem (2005) doi:10.1002/cbic.200500163. 33. Richardson, M. D. & Shankland, G. S. Enhanced phagocytosis and intracellular killing of Pityrosporum ovale by human neutrophils after exposure to ketoconazole is correlated to changes of the yeast cell surface. Mycoses (2009) doi:10.1111/j.1439-0507.1991.tb00615.x. 34. Mittag, H. Fine structural investigation of Malassezia furfur . II. The envelope of the yeast cells . Mycoses (1995) doi:10.1111/j.1439-0507.1995.tb00003.x. 35. Li, J. et al. Presence of Malassezia Hyphae Is Correlated with Pathogenesis of Seborrheic Dermatitis . Microbiology Spectrum 10, (2022). 36. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans and hyphal forms. Cellular Microbiology 8, (2006). 37. Chen, K. W. et al. The Neutrophil NLRC4 Inflammasome Selectively Promotes IL-1¿ Maturation without Pyroptosis during Acute Salmonella Challenge. Cell Reports 8, (2014). 38. Juntachai, W. & Kajiwara, S. Differential Expression of Extracellular Lipase and Protease Activities of Mycelial and Yeast Forms in Malassezia furfur. Mycopathologia 180, (2015). 39. Luo, Q. et al. [Dextran sedimentation for study of neutrophil polarization]. Nan Fang Yi Ke Da Xue Xue Bao 30, (2010). 40. Niemiec, M. J. et al. Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics 18, (2017). 41. Springer, D. J. et al. Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions. PLoS ONE 5, (2010). 42. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nature Immunology 15, (2014). 43. Campos-Garcia, L. et al. Candida albicans and non-albicans Isolates from bloodstream have different capacities to induce neutrophil extracellular traps. Journal of Fungi 5, (2019). 44. Johnson, C. J., Kernien, J. F., Hoyer, A. R. & Nett, J. E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Scientific Reports 7, (2017). 45. Park, M., Cho, Y. J., Lee, Y. W. & Jung, W. H. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Frontiers in Cellular and Infection Microbiology (2020) doi:10.3389/fcimb.2020.00191. 46. Rhimi, W., Theelen, B., Boekhout, T., Otranto, D. & Cafarchia, C. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Frontiers in Cellular and Infection Microbiology (2020) doi:10.3389/fcimb.2020.00370. 47. Kenno, S., Perito, S., Mosci, P., Vecchiarelli, A. & Monari, C. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Frontiers in Microbiology 7, (2016). |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
25 |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Microbiología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/a5750e73-a351-40ce-8a41-81703261053b/download https://repositorio.uniandes.edu.co/bitstreams/ca69f79a-bfe5-4ddf-9111-82b25c692710/download https://repositorio.uniandes.edu.co/bitstreams/b62c5a6d-cdcd-4311-9377-beb27437bdd4/download https://repositorio.uniandes.edu.co/bitstreams/a046c0dc-18a5-4313-8eb5-a23f0481b1c6/download https://repositorio.uniandes.edu.co/bitstreams/731ad45a-bb99-443c-b19b-58ade07967af/download https://repositorio.uniandes.edu.co/bitstreams/a81b83fb-5455-4692-99f3-fda946a2772f/download https://repositorio.uniandes.edu.co/bitstreams/4dc618ba-1cdb-4c14-9377-a2306d9480fb/download |
bitstream.checksum.fl_str_mv |
926da4e4aabbf771f2df886f91d2177b 35a66912a3c800cc3c9e94439b261e0f 5aa5c691a1ffe97abd12c2966efcb8d6 59a4989686ec12ae68411fdd3ce11b85 31872e841072752011b4b436104d8517 6bdd8039c73c7ed1afafa5a4f2d4cd31 916cf29c5884d35c61a85d4e06ff798c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111870493523968 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Celis Ramírez, Adriana MarcelaCelis Ramírez, Adriana Marcelavirtual::21636-1Valderrama Aguirre, Augusto Eliasvirtual::21637-1Sarmiento Boada, Max Isaac09117bdc-3a38-4aae-b59b-61b9aed9c020600Instituto de Investigaciones BiomédicasGrupo de investigación Celular y Molecular de Microorganismos Patógenos (CeMoP)2022-06-21T17:03:09Z2022-06-21T17:03:09Z2022-06-16http://hdl.handle.net/1992/58105instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Malassezia spp. es un género de levaduras comensales que habitan normalmente en la piel de animales de sangre caliente. Estos microorganismos pueden ser patógenos en hospederos con factores de predispoción dando como resultado la inducción de la respuesta inmune. Malassezia furfur es una especie representativa del género que afecta principalmente a humanos y ha mostrado infectar a niños y adultos inmunocomprometidos. Aunque el conocimiento de respuesta inmune hacia M. furfur por parte de células mononucleares ha aumentado en los últimos años, es limitada la literatura disponible acerca de respuesta inmune por parte de PMN-N polimorfonucleares. En este trabajo de grado, se implementó un ejercicio tipo revisión de alcance, con el fin de construir un protocolo experimental, ejecutable en un ambiente de investigación in vitro, que permita la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N a través de la producción de NETs y la activación del inflamosoma en presencia de hifas y levaduras de M. furfur. El protocolo logrado puede ser ejecutado en laboratorios de investigación básica y con una inversión mínima de recursos.Malassezia spp. is a genus of commensal yeasts that normally habit the skin of warm-blooded animals. These microorganisms can be pathogenic in hosts. with predisposing factors resulting in the induction of the immune response. Malassezia furfur is a representative specie of the genus that mainly affects humans and has been shown to infect immunocompromised children and adults. Although the knowledge of immune response to M. furfur by mononuclear cells has increased in recent years, the available literature about immune response by polymorphonuclear cells PMN-N is limited. In this project, a scoping review exercise was implemented, in order to make an experimental protocol, performable in an in vitro research environment, which allows functional characterization and molecular of the innate immune response mediated by PMN-N through the production of NETs and inflammasome activation in the presence of M. furfur hyphae and yeast. The achieved protocol can be performed in basic research laboratories with a minimum investment of resourcesMicrobiólogoPregrado25application/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasDiseño de protocolo para la caracterización funcional y molecular de la respuesta inmune innata mediada por PMN-N contra Malassezia furfurTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLevaduraMalasseziain vitroPMN-NNETsInflamosomaRespuesta inmune innataMalassezia furfurLevadurasEnzimasInmunorrespuestaMicrobiología1. Theelen, B. et al. Malassezia ecology, pathophysiology, and treatment. Medical Mycology vol. 56 S10¿S25 (2018).2. Prohic, A., Jovovic Sadikovic, T., Krupalija-Fazlic, M. & Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatological conditions. International Journal of Dermatology 55, 494¿504 (2016).3. Havlickova, B., Czaika, V. A. & Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses vol. 51 (2008).4. Iatta, R. et al. Bloodstream infections by Malassezia and Candida species in critical care patients. Medical Mycology 52, 264¿269 (2014).5. Alonso, R., Fernández-Fernández, A. M., Pisa, D. & Carrasco, L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease 117, (2018).6. Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer¿s disease. Frontiers in Aging Neuroscience 10, (2018).7. Laurence, M., Benito-León, J. & Calon, F. Malassezia and Parkinson¿s disease. Frontiers in Neurology (2019) doi:10.3389/fneur.2019.00758.8. Cabañes, F. J. Malassezia Yeasts: How Many Species Infect Humans and Animals? PLoS Pathogens 10, (2014).9. Gaitanis, G., Magiatis, P., Hantschke, M., Bassukas, I. D. & Velegraki, A. The Malassezia genus in skin and systemic diseases. Clinical Microbiology Reviews 25, (2012).10. Kaneko, T., Murotani, M., Ohkusu, K., Sugita, T. & Makimura, K. Genetic and biological features of catheter-associated Malassezia furfur from hospitalized adults. Medical Mycology 50, (2012).11. Iatta, R. et al. Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: Strength and weakness. Medical Mycology 56, (2018).12. Sparber, F., Ruchti, F. & LeibundGut-Landmann, S. Host Immunity to Malassezia in Health and Disease. Frontiers in Cellular and Infection Microbiology vol. 10 198 (2020).13. Blanco, J. L. & Garcia, M. E. Immune response to fungal infections. Veterinary Immunology and Immunopathology 125, (2008).14. Kistowska, M. et al. Malassezia yeasts activate the NLRP3 inflammasome in antigenpresenting cells via Syk-kinase signalling. Experimental Dermatology 23, 884¿889 (2014).15. Wolf, A. J. et al. Malassezia spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. Journal of Leukocyte Biology 109, (2021).16. Park, H. R. et al. Inflammasome-mediated Inflammation by Malassezia in human keratinocytes: A comparative analysis with different strains. Mycoses 64, (2021).17. Li, W. et al. Malassezia globosa Activates NLRP3 Inflammasome in Human Sebocytes. Journal of Investigative Dermatology (2022) doi:10.1016/j.jid.2021.11.038.18. Afonso, M. et al. Candida Extracellular Nucleotide Metabolism Promotes Neutrophils Extracellular Traps Escape. Frontiers in Cellular and Infection Microbiology 11, (2021).19. Ruiz Camps, I. & Jarque, I. Enfermedades invasoras por hongos levaduriformes en pacientes neutropénicos. Revista Iberoamericana de Micologia vol. 33 (2016).. 20. Salamanca-Córdoba, M. A. et al. Seborrheic dermatitis and its relationship with Malassezia spp. Infectio 25, 120 (2020).21. Rastogi, S., Ellinwood, S., Augenstreich, J., Mayer-Barber, K. D. & Briken, V. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathogens 17, (2021).22. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: Guardians of the body. Annual Review of Immunology vol. 27 (2009).23. Rathinam, V. A. K., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nature Immunology vol. 13 (2012).24. Broz, P. & Monack, D. M. Molecular mechanisms of inflammasome activation during microbial infections. Immunological Reviews vol. 243 (2011).25. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, (2015).26. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1¿ secretion. Cell Research 25, (2015).27. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology vol. 18 (2018).28. Brinkmann, V. et al. Neutrophil Extracellular Traps Kill Bacteria. Science (1979) 303, (2004).29. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. Journal of Cell Biology 176, (2007).30. Tatsiy, O. & McDonald, P. P. Physiological stimuli induce PAD4-Dependent, ROSIndependent NETosis, with early and late events controlled by discrete signaling pathways. Frontiers in Immunology 9, (2018).31. de Farias Moreira, R. T. et al. Dichotomous response of Malassezia-infected macrophages to Malassezia pachydermatis and Malassezia furfur. Medical Mycology (2019) doi:10.1093/mmy/myy104.32. Krämer, H. J. et al. Pityriarubins, novel highly selective inhibitors of respiratory burst from cultures of the yeast Malassezia furfur: Comparison with the bisindolylmaleimide arcyriarubin A. ChemBioChem (2005) doi:10.1002/cbic.200500163.33. Richardson, M. D. & Shankland, G. S. Enhanced phagocytosis and intracellular killing of Pityrosporum ovale by human neutrophils after exposure to ketoconazole is correlated to changes of the yeast cell surface. Mycoses (2009) doi:10.1111/j.1439-0507.1991.tb00615.x.34. Mittag, H. Fine structural investigation of Malassezia furfur . II. The envelope of the yeast cells . Mycoses (1995) doi:10.1111/j.1439-0507.1995.tb00003.x.35. Li, J. et al. Presence of Malassezia Hyphae Is Correlated with Pathogenesis of Seborrheic Dermatitis . Microbiology Spectrum 10, (2022).36. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans and hyphal forms. Cellular Microbiology 8, (2006).37. Chen, K. W. et al. The Neutrophil NLRC4 Inflammasome Selectively Promotes IL-1¿ Maturation without Pyroptosis during Acute Salmonella Challenge. Cell Reports 8, (2014).38. Juntachai, W. & Kajiwara, S. Differential Expression of Extracellular Lipase and Protease Activities of Mycelial and Yeast Forms in Malassezia furfur. Mycopathologia 180, (2015).39. Luo, Q. et al. [Dextran sedimentation for study of neutrophil polarization]. Nan Fang Yi Ke Da Xue Xue Bao 30, (2010).40. Niemiec, M. J. et al. Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics 18, (2017).41. Springer, D. J. et al. Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions. PLoS ONE 5, (2010).42. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nature Immunology 15, (2014).43. Campos-Garcia, L. et al. Candida albicans and non-albicans Isolates from bloodstream have different capacities to induce neutrophil extracellular traps. Journal of Fungi 5, (2019).44. Johnson, C. J., Kernien, J. F., Hoyer, A. R. & Nett, J. E. Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Scientific Reports 7, (2017).45. Park, M., Cho, Y. J., Lee, Y. W. & Jung, W. H. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Frontiers in Cellular and Infection Microbiology (2020) doi:10.3389/fcimb.2020.00191.46. Rhimi, W., Theelen, B., Boekhout, T., Otranto, D. & Cafarchia, C. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Frontiers in Cellular and Infection Microbiology (2020) doi:10.3389/fcimb.2020.00370.47. Kenno, S., Perito, S., Mosci, P., Vecchiarelli, A. & Monari, C. Autophagy and reactive oxygen species are involved in neutrophil extracellular traps release induced by C. albicans morphotypes. Frontiers in Microbiology 7, (2016).201719269Publicationhttps://scholar.google.es/citations?user=sMRDr-wAAAAJvirtual::21637-10000-0003-3057-19660000-0003-3057-1966virtual::21636-10000-0002-5255-1440virtual::21637-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000178225virtual::21636-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253944virtual::21637-17ec7a7b4-b510-4816-b236-023aaa0754f07ec7a7b4-b510-4816-b236-023aaa0754f0virtual::21636-1d4e1348f-39c0-4961-8b1c-621c08f4fb2avirtual::21637-17ec7a7b4-b510-4816-b236-023aaa0754f0virtual::21636-1d4e1348f-39c0-4961-8b1c-621c08f4fb2avirtual::21637-1TEXTProtocoloMestrega7pdf.pdf.txtProtocoloMestrega7pdf.pdf.txtExtracted texttext/plain56427https://repositorio.uniandes.edu.co/bitstreams/a5750e73-a351-40ce-8a41-81703261053b/download926da4e4aabbf771f2df886f91d2177bMD55autorizacion (2).pdf.txtautorizacion (2).pdf.txtExtracted texttext/plain1510https://repositorio.uniandes.edu.co/bitstreams/ca69f79a-bfe5-4ddf-9111-82b25c692710/download35a66912a3c800cc3c9e94439b261e0fMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/b62c5a6d-cdcd-4311-9377-beb27437bdd4/download5aa5c691a1ffe97abd12c2966efcb8d6MD53THUMBNAILProtocoloMestrega7pdf.pdf.jpgProtocoloMestrega7pdf.pdf.jpgIM Thumbnailimage/jpeg20645https://repositorio.uniandes.edu.co/bitstreams/a046c0dc-18a5-4313-8eb5-a23f0481b1c6/download59a4989686ec12ae68411fdd3ce11b85MD56autorizacion (2).pdf.jpgautorizacion (2).pdf.jpgIM Thumbnailimage/jpeg16966https://repositorio.uniandes.edu.co/bitstreams/731ad45a-bb99-443c-b19b-58ade07967af/download31872e841072752011b4b436104d8517MD58ORIGINALProtocoloMestrega7pdf.pdfProtocoloMestrega7pdf.pdfDocumento de gradoapplication/pdf563756https://repositorio.uniandes.edu.co/bitstreams/a81b83fb-5455-4692-99f3-fda946a2772f/download6bdd8039c73c7ed1afafa5a4f2d4cd31MD52autorizacion (2).pdfautorizacion (2).pdfHIDEapplication/pdf453894https://repositorio.uniandes.edu.co/bitstreams/4dc618ba-1cdb-4c14-9377-a2306d9480fb/download916cf29c5884d35c61a85d4e06ff798cMD541992/58105oai:repositorio.uniandes.edu.co:1992/581052024-12-04 17:22:15.294http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |