Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines
Bankruptcy describes the condition in which a business cannot repay their outstanding debts, which forces them to follow legal and financial liquidation processes where many of the companyþs assets are used to repay a portion of their liabilities. Bankruptcies incur severe consequences to shareholde...
- Autores:
-
Arango Giraldo, Jacobo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45270
- Acceso en línea:
- http://hdl.handle.net/1992/45270
- Palabra clave:
- Quiebra
Análisis de regresión
Aprendizaje automático (Inteligencia artificial)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_eabdac92e58cb6f99b771db97931f792 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45270 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caro Rincón, Carlos Andrésvirtual::10096-1Arango Giraldo, Jacobo3f9a56bc-874c-4346-bf95-b822a55ba7035002020-09-03T15:55:14Z2020-09-03T15:55:14Z2019http://hdl.handle.net/1992/45270u827234.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Bankruptcy describes the condition in which a business cannot repay their outstanding debts, which forces them to follow legal and financial liquidation processes where many of the companyþs assets are used to repay a portion of their liabilities. Bankruptcies incur severe consequences to shareholders, creditors, and employees. Advanced statistics and machine learning techniques have been used in the past years to predict many business failure cases. Such models have been of great use for investors, creditors, auditors, banks and government policymakers. In this study, logistic regression and support vector machine models have been carried out with the aim of predicting the financial distress risk of firms belonging to the construction industry in Colombia, one-year prior of its occurrence."Bancarrota se refiere a la condición en la cual las empresas no puede pagar sus deudas, lo que las obliga a seguir procesos de liquidación legales y financieros en los que muchos de sus activos se utilizan para pagar una parte de sus pasivos. Los efectos de bancarrota pueden llegar a afectar a accionistas, acreedores y empleados. Estadísticas avanzadas y técnicas de aprendizaje automático se han ido utilizado en los últimos años para predecir casos de fracaso empresarial. Dichos modelos han sido de gran utilidad para inversionistas, acreedores, auditores, bancos y legisladores gubernamentales. En este estudio, se implementaron modelos de regresión logística y máquinas de soporte vectorial con el objetivo de predecir el riesgo de caer en fragilidad financiera para empresas pertenecientes al sector de infraestructura en Colombia."--Tomado del Formato de Documento de Grado.Ingeniero IndustrialPregrado12 hojasapplication/pdfengUniversidad de los AndesIngeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaFinancial distress prediction in colombian infrastructure firms using logistic regression and support vector machinesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPQuiebraAnálisis de regresiónAprendizaje automático (Inteligencia artificial)IngenieríaPublication5afcfb52-e7bd-4bf9-8dae-754ce35e391evirtual::10096-15afcfb52-e7bd-4bf9-8dae-754ce35e391evirtual::10096-1TEXTu827234.pdf.txtu827234.pdf.txtExtracted texttext/plain33714https://repositorio.uniandes.edu.co/bitstreams/df287185-fdde-4347-b7c2-681548efb821/download4f2fc6f91cb89756fbc841d9ff81dc60MD54THUMBNAILu827234.pdf.jpgu827234.pdf.jpgIM Thumbnailimage/jpeg9860https://repositorio.uniandes.edu.co/bitstreams/4162f56e-a19d-4d4e-9265-1a9b360802e7/download5c97128ba6eca866f61683748b01789cMD55ORIGINALu827234.pdfapplication/pdf371215https://repositorio.uniandes.edu.co/bitstreams/be2edf31-6e25-4d71-b78c-73758c65fc32/download1dead8efb4d15ddc28d1330bb841e4a3MD511992/45270oai:repositorio.uniandes.edu.co:1992/452702024-03-13 14:06:02.33https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
title |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
spellingShingle |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines Quiebra Análisis de regresión Aprendizaje automático (Inteligencia artificial) Ingeniería |
title_short |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
title_full |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
title_fullStr |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
title_full_unstemmed |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
title_sort |
Financial distress prediction in colombian infrastructure firms using logistic regression and support vector machines |
dc.creator.fl_str_mv |
Arango Giraldo, Jacobo |
dc.contributor.advisor.none.fl_str_mv |
Caro Rincón, Carlos Andrés |
dc.contributor.author.none.fl_str_mv |
Arango Giraldo, Jacobo |
dc.subject.armarc.es_CO.fl_str_mv |
Quiebra Análisis de regresión Aprendizaje automático (Inteligencia artificial) |
topic |
Quiebra Análisis de regresión Aprendizaje automático (Inteligencia artificial) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Bankruptcy describes the condition in which a business cannot repay their outstanding debts, which forces them to follow legal and financial liquidation processes where many of the companyþs assets are used to repay a portion of their liabilities. Bankruptcies incur severe consequences to shareholders, creditors, and employees. Advanced statistics and machine learning techniques have been used in the past years to predict many business failure cases. Such models have been of great use for investors, creditors, auditors, banks and government policymakers. In this study, logistic regression and support vector machine models have been carried out with the aim of predicting the financial distress risk of firms belonging to the construction industry in Colombia, one-year prior of its occurrence. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T15:55:14Z |
dc.date.available.none.fl_str_mv |
2020-09-03T15:55:14Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45270 |
dc.identifier.pdf.none.fl_str_mv |
u827234.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45270 |
identifier_str_mv |
u827234.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
12 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Industrial |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Industrial |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/df287185-fdde-4347-b7c2-681548efb821/download https://repositorio.uniandes.edu.co/bitstreams/4162f56e-a19d-4d4e-9265-1a9b360802e7/download https://repositorio.uniandes.edu.co/bitstreams/be2edf31-6e25-4d71-b78c-73758c65fc32/download |
bitstream.checksum.fl_str_mv |
4f2fc6f91cb89756fbc841d9ff81dc60 5c97128ba6eca866f61683748b01789c 1dead8efb4d15ddc28d1330bb841e4a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133958111985664 |