Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)

Es un documento que aún se encuentra en proceso de publicación varios de sus capítulos.

Autores:
Palacios Rodríguez, Pablo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64426
Acceso en línea:
http://hdl.handle.net/1992/64426
Palabra clave:
Sexual dichromatism
Parental care
Tadpole transport
Dendrobatoidea
Colostethus imbricolus
Biología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_e9e2895bcaf7189c5636879a85eb00c2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64426
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
title Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
spellingShingle Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
Sexual dichromatism
Parental care
Tadpole transport
Dendrobatoidea
Colostethus imbricolus
Biología
title_short Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
title_full Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
title_fullStr Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
title_full_unstemmed Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
title_sort Origin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)
dc.creator.fl_str_mv Palacios Rodríguez, Pablo
dc.contributor.advisor.none.fl_str_mv Brunetti, Andrés Eduardo
Vives Flórez, Martha Josefina
dc.contributor.author.none.fl_str_mv Palacios Rodríguez, Pablo
dc.contributor.jury.none.fl_str_mv Rojas, Bibiana
Molina Escobar, Jorge Alberto
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de Ecofisiologia, Comportamiento y Herpetología
dc.subject.keyword.none.fl_str_mv Sexual dichromatism
Parental care
Tadpole transport
Dendrobatoidea
Colostethus imbricolus
topic Sexual dichromatism
Parental care
Tadpole transport
Dendrobatoidea
Colostethus imbricolus
Biología
dc.subject.themes.es_CO.fl_str_mv Biología
description Es un documento que aún se encuentra en proceso de publicación varios de sus capítulos.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-28
dc.date.accessioned.none.fl_str_mv 2023-01-31T22:10:22Z
dc.date.available.none.fl_str_mv 2023-01-31T22:10:22Z
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64426
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64426
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Amézquita A, Ramos, Oscar, González MC, Rodríguez Camilo, Medina I, Simões PI, Lima AP. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.
Agarwal A, Garg S, Rakesh PK, Singh I, Mishra BK. (2010). Tensile behavior of glass fiber reinforced plastics subjected to different environmental conditions. Indian Journal of Engineering & Material Sciences,17, 471-476.
Barnett JB, Michalis C, Scott-Samuel NE, Cuthill IC. (2018). Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proceedings of the National Academy of Sciences, 115, 6416-6421.
Behrens RR. (1999). The role of artists in ship camouflage during World War I. Leonardo, 32, 53- 59.
Caldwell JP. (1996). The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). Journal of Zoology, 240, 75-101
Caro T, Sherratt TN, Stevens M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809.
Caro T, Stoddard MC, Stuart-Fox D. (2017). Animal coloration research: why it matters. Philosophical Transactions of the Royal Society B, 372, 20160333.
Cott HB. (1940). Adaptive Colouration in Animals. Methuen, London.
Crump ML. (2015). Anuran reproductive modes: evolving perspectives. Journal of Herpetology, 49, 1-16.
Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72.
Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr. (1994). An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 32, 657-663.
Darst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. American Naturalist, 165, 56-69.
Duarte RC, Flores AA, Stevens M. (2017). Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160342.
Endler JA. (1978). A predator's view of animal colour patterns. Evolutionary Biology, 11, 319- 364.
Endler JA, Mappes J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372, 20160352.
Fraser S, Callahan A, Klassen D, Sherratt TN. (2007). Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society B, 274, 1325-1331.
Frost Darrel R. (2019). Amphibian Species of the World: an Online Reference. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
Gordon SP, Kokko H, Rojas B, Nokelainen O, Mappes J. (2015). Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space. Journal of Animal Ecology, 84, 1555-1564.
Grant T, Frost DR, Caldwell JP, Gagliardo R. Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel W. Wheeler WC. (2006) Phylogenetic systematics of dart poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262.
Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel M, Machado DJ. Rueda- Almonacid JV. (2017). Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South American Journal of Herpetology, 12, S1-S90.
Higginson AD, Delf J, Ruxton GD, Speed MP. (2011). Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology, 80, 384- 392.
Hödl W, Amézquita A. (2001). Visual signaling in anuran amphibians. Anuran communication, 121-141.
Honma A, Mappes J, Valkonen JK. (2015). Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecology and Evolution, 5, 4863-4874.
Hughes A, Liggins E, Stevens M. (2019). Imperfect camouflage: how to hide in a variable world?. Proceedings of the Royal Society B, 286, 20190646.
Leary CJ, Harris S. (2013). Steroid hormone levels in calling males and males practicing alternative non-calling mating tactics in the green treefrog, Hyla cinerea. Hormones and Behavior, 63, 20-24.
Maan ME, Cummings ME. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. Evolution, 62, 2334-2345.
Maan ME, Cummings ME. (2011). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, 1-14.
Marler CA, Ryan MJ. (1996). Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. Journal of Zoology, 240, 397-409.
Marples NM, Kelly DJ, Thomas RJ. (2005). Perspective: the evolution of warning coloration is not paradoxical. Evolution, 59, 933-940.
Mappes J, Marples NM, Endler JA. (2005). The complex business of survival by aposematism. Trends in Ecology and Evolution, 20, 598-603.
McMahon K, Marples N. (2017). Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. Journal of Avian Biology, 48, 448-454.
Merilaita S. (1998). Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London B, 26, 1059-1064.
Moore MC, Crews D. (1986). Sex steroid hormones in natural populations of a sexual whiptail lizard Cnemidophorus inornatus, a direct evolutionary ancestor of a unisexual parthenogen. General and Comparative Endocrinology, 63,424-430.
Nokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J. (2012). Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proceedings of the Royal Society B, 279, 257-265.
Nokelainen O, Valkonen J, Lindstedt C, Mappes J. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. Journal of Animal Ecology, 83, 598-605.
Ojala, K, Julkunen-Tiitto, R, Lindström, L, Mappes, J. (2005). Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evolutionary Ecology Research, 7, 1153-1170.
Poulton EB. (1890). The colours of animals: Their meaning and use. Kegan Paul, Trench, Trubner, London.
Rodríguez A, Poth D, Schulz S, Vences M. (2011). Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biology Letters, 7, 414-418.
Rodríguez A, Poth D, Schulz S, Gehara M, Vences M. (2013). Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541-554.
Roper TJ. (1994). Conspicuousness of prey retards reversal of learned avoidance. Oikos, 69, 115-118.
Rojas B, Valkonen J, Nokelainen O. (2015). Aposematism. Current Biology, 25, 350-351.
Rojas B. (2017). Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biological Reviews, 92, 1059-1080.
Rowe C, Guilford T. (1999). The evolution of multimodal warning displays. Evolutionary Ecology, 13, 655-671.
Ruxton GD. (2002). The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 32, 237-244.
Ruxton GD, Sherratt, T.N, Speed, M.P. (2004). Avoiding attack: The Evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.
Ruxton GD, Sherratt TN. (2006). Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B, 273, 2417-2424.
Ryan MJ. (2001). Anuran communication. Smithsonian Institution, Washington, DC.
Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology, 7, 1000056.
Savitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J. (2012). Sequestered defensive toxins in tetrapod vertebrates: principles, patterns and prospects for future studies. Chemoecology, 22, 141-158.
Silverstone PA. (1975). Two new species of Colostethus (Amphibia: Anura: Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County, 268, 1-10.
Sinervo B. (2000). Adaptation, natural selection and optimal life-history allocation in the face of genetically based trade-offs. 41-64. In Mousseau TA, Sinervo B, and Endler J, editors. Adaptive genetic variation in the wild. Oxford University Press, Oxford, UK.
Speed MP, Ruxton GD. (2005). Aposematism: what should our starting point be?. Proceedings of the Royal Society B, 272, 431-438.
Stevens M, Cuthill, IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B, 273, 2141-2147.
Stevens M, Cuthill IC, Windsor AM, Walker H J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society B, 273, 2433-2438.
Stevens M, Merilaita S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423-427.
Stevens M, Ruxton GD. (2011). Linking the evolution and form of warning coloration in nature. Proceedings Transactions of the Royal Society B, 279, 417-426.
Stevens M. (2016). Color change, phenotypic plasticity, and camouflage. Frontiers in Ecology and Evolution, 4, 51.
Stevens M, Ruxton GD. (2019). The key role of behaviour in animal camouflage. Biological Reviews, 94, 116-134.
Summers K, Clough ME. (2001). The evolution of coloration and toxicity in the poison frog familiy (Dendrobatidae) Proccedings of the Natural Academy of Science, 98, 6227-6232.
Thayer GH. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.
Thomas RJ, Marples NM, Cuthill IC, Takahashi M, Gibson EA. (2003). Dietary conservatism may facilitate the initial evolution of aposematism. Oikos, 101, 458-466.
Thomas RJ, Bartlett LA, Marples NM, Kelly DJ, Cuthill IC. (2004). Prey selection by wild birds can allow novel and conspicuous colour morphs to spread in prey populations. Oikos, 106, 285-294.
Tullberg BS, Gamberale-Stille G, Solbreck C. (2000). Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Ecological Entomology, 25, 220-225.
Tullberg BS, Merilaita S, Wiklund C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London B, 272, 1315-1321.
Wallace AR. (1867). Mimicry and other protective resemblances among animals. Westminster Foreign, 32, 1-43.
Wallace AR. (1877). The colours of animals and plants. American Naturalist, 11, 641-662.
Wells KD. (2007). The Ecology and behavior of amphibians. The University of Chicago Press, Chicago. USA
Zylinski S, Osorio D. (2013). Visual contrast and color in rapid learning of novel patterns by chicks. Journal of Experimental Biology, 216, 4184-4189.
Acosta-Galvis AR, Vargas-Ramírez M. (2018). A new species of Hyloxalus Jiménez De La Espada, 1871 "1870" (Anura: Dendrobatidae: Hyloxalinae) from a cloud forest near Bogotá, Colombia, with comments on the subpunctatus clade. Vertebrate Zoology, 68, 123-141.
Allen CE, Zwaan BJ, Brakefield PM. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56, 445-464.
Amundsen T, Forsgren E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences, 98, 13155-13160.
Andersson MB. (1994) Sexual selection: Princeton Univ Press.
Angelier F, Wingfield JC, Tartu S, Chastel O. (2016). Does prolactin mediate parental and life- history decisions in response to environmental conditions in birds? A review. Hormones and Behavior, 77, 18-29.
Aspengren S, Sköld HN, Wallin M. (2009). Different strategies for color change. Cellular and Molecular Life Sciences, 66, 187-191.
Bagnara JT, Taylor JD, Hadley ME. (1968). The dermal chromatophore unit. Journal of Cell Biology, 38, 67-79.
Bell RC, Webster GN, Whiting MJ. (2017). Breeding biology and the evolution of dynamic sexual dichromatism in frogs. Journal Evolutionary Biology, 30, 2104-2115.
Bell RC, Zamudio KR. (2012). Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proceedings of the Royal Society B, 279, 4687-4693.
Brown JL, Twomey E, Amezquita A, et al. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1-120.
Brown PS. (1976). The effect of prolactin on color and skin pteridines in the frog, Rana pipiens. General and Comparative Endocrinology, 28, 426-433.
Bush SL, Bell DJ. (1997). Courtship and female competition in the Majorcan midwife toad, Alytes muletensis. Ethology, 103, 292-303.
Caldwell JP. (2005). Amphibian faunas of two eastern Amazonian rainforest sites in Pará, Brazil. Sam Noble Oklahoma Museum of Natural History.
Camargo CR, Visconti MA, Castrucci AML. (1999). Physiological color change in the bullfrog, Rana catesbeiana. Journal Experimental Zoology, 283, 160-169.
Caro T, Stankowich T, Kiffner C, Hunter J. (2013). Are spotted skunks conspicuous or cryptic? Ethology Ecology & Evolution, 25, 144-160.
Carvajal-Castro JD, Vargas-Salinas F, Casas-Cardona S, et al. (2021). Aposematism facilitates the diversification of parental care strategies in poison frogs. Scientific Reports, 11, 1-15.
Cossio R. (2008). Oophaga pumilio (Strawberry Poison Frog) Parental Care. Herpetolical Review, 39, 462.
Crump ML. (1996). Parental care among the amphibia. In: Advances in the Study of Behavior. Elsevier, 25, 109-144.
Daly JW, Gusovsky F, Myers CW, et al. (1994). First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon, 32, 279-285.
Downie JR, Robinson E, Linklater-McLennan RJ. (2005). Are there costs to extended larval transport in the Trinidadian stream frog, Mannophryne trinitatis (Dendrobatidae)? Journal of Natural History, 39, 2023-2034.
Duellman WE, Trueb L. (1986). Biology of Amphibians New York McGraw-Hill.
Dugas MB, Richards-Zawacki CL. (2015). A captive breeding experiment reveals no evidence of reproductive isolation among lineages of a polytypic poison frog. Biological Journal of the Linnean Society, 116, 52-62.
Dunn PO, Armenta JK, Whittingham LA. (2015). Natural and sexual selection act on different axes of variation in avian plumage color. Science Advances, 1, e1400155.
Endler JA. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315-352.
Engelbrecht-Wiggans E, Tumulty JP. (2019). "Reverse" sexual dichromatism in a Neotropical frog. Ethology, 125, 957-964.
Galeano SP, Harms KE. (2016). Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behavioral Ecology and Sociobiology, 70, 83-97.
Grant T. (2004). On the identities of Colostethus inguinalis (Cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (Cope, 1863) (Anura: Dendrobatidae). American Museum Novitates, 2004, 1--24.
Grant T. (2007). A new, toxic species of Colostethus (Anura: Dendrobatidae: Colostethinae) from the Cordillera Central of Colombia. Zootaxa, 1555, 39-51.
Greener MS, Hutton E, Pollock CJ, et al. (2020). Sexual dichromatism in the neotropical genus Mannophryne (Anura: Aromobatidae). PLoS One 15, e0223080.
Kahn TR, La Marca E, Lötters S, Brown, JL, Twomey E, Amézquita A. (2016). Aposematic poison frogs (Dendrobatidae) of the Andean countries: Bolivia, Colombia, Ecuador, Peru.
Killius AM, Dugas MB. (2014). Tadpole transport by male Oophaga pumilio (Anura: Dendrobatidae): an observation and brief review. Herpetology Notes, 7, 747-749.
Kindermann C, Narayan EJ, Hero JM. (2014). The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One, 9, e114120.
Kodric-Brown A. (1998). Sexual dichromatism and temporary color changes in the reproduction of fishes. American Zoology, 38, 70-81.
La Marca E. (1994). Taxonomy of the frogs of the genus Mannophryne (Amphibia: Anura: Dendrobatida. Asociación de Amigos de Doñana.
Liao WB, Lu X. (2009a). Sex recognition by male Andrew's toad Bufo andrewsi in a subtropical montane region. Behavioral Processes, 82, 100-103.
Liao WB, Lu X. (2009b). Male mate choice in the Andrew's toad Bufo andrewsi: a preference for larger females. Journal of Ethology, 27, 413-417.
Lötters S, Jungfer KH, Henkel FW, Schmidt W. (2007). Poison frogs. Biology species Captive husbandry Ed Chimaira, Frankfurt am Main, Ger 668.
Luiz LF, Contrera FAL, Neckel-Oliveira S. (2015). Diet and tadpole transportation in the poison dart frog Ameerega trivittata (Anura, Dendrobatidae). Herpetological Journal, 25, 187-190.
Maan ME, Cummings ME. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences, 106, 19072-19077.
Maia R, Eliason CM, Bitton P, et al. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecology Evolution, 4, 906-913.
Maia R, Gruson H, Endler JA, White TE. (2019). pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecology Evolution, 10, 1097-1107.
Martin P. (1986) Recording methods. Measuring behaviour introductory, 48-69.
Meuche I, Linsenmair KE, Pröhl H. (2011). Female territoriality in the strawberry poison frog (Oophaga pumilio). Copeia, 2011, 351-356.
Myers CW, Daly JW. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin American Museum Natural History,157, 157-177.
Portik DM, Bell RC, Blackburn DC, et al. (2019). Sexual dichromatism drives diversification within a major radiation of African amphibians. Systematic Biology, 68, 859-875.
Pröhl H. (2005). Territorial behavior in dendrobatid frogs. Journal of Herpetology, 39, 354-365.
Ringler E, Pasukonis A, Hödl W, Ringler M. (2013). Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Frontiers in Zoology, 10, 1-10.
Rosenqvist G. (1990). Male mate choice and female-female competition for mates in the pipefish Nerophis ophidion. Animal Behavior, 39, 1110-1115.
Ruxton GD, Allen WL, Sherratt TN, Speed MP. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press.
Sage M. (1970). Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. Journal Experimental Zoology, 173, 121-127.
Silverstone PA. (1975a). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.
Silverstone PA. (1975b). Two New Species of Colostethus (Amphibia, Anura, Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County.
Silverstone PA. (1976). A revision of the poison-arrow frogs of the genus Phyllobates Bibron in Sagra (Family Dendrobatidae). Natural History, 27, 1-53.
Summers K, Tumulty J. (2014). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Sexual selection. Elsevier, 289-320.
Sztatecsny M, Preininger D, Freudmann A, et al. (2012). Don't get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behavioral Ecology and Sociobiology, 66, 1587-1593.
Team Rs (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020.
Twomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. (2020a). A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 29:2004-2015.
Wells KD. (1980). Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behavioral Ecology and Sociobiology, 6, 199-209.
Wells KD. (2010). The ecology and behavior of amphibians. University of Chicago Press.
Weygoldt P. (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behavioral Ecology and Sociobiology, 7, 329-332.
Zimmermann H, Zimmermann E. (1980) Durch Nachzucht erhalten: Der Baumsteiger Dendrobates leucomelas. Aquarium Magazine, 14, 211-217.
Zimmermann H, Zimmermann E. (1981) Sozialverhalten, Fortpflanzungsverhalten und Zucht der Färberfrösche Dendrobates histrionicus und D. lehmanni sowie einiger anderer Dendrobatiden. Zeitschrift des Kölner Zoo, 24, 83-99.
Abràmoff MD, Magalhães PJ, Ram SJ. (2004). Image processing with ImageJ. Biophotonics International, 11, 36-42.
Dell AI, Bender JA, Branson K, Couzin ID, Polavieja G, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U. (2014). Automated image-based tracking and its application in ecology, Trends in Ecology and Evolution, 29, 417-428.
Bolton Sarah, Dickerson Kelsie, Saporito Ralph. (2017). Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. Journal of Chemical Ecology, 43, 1-17.
Booth CL. (1990). Evolutionary significance of ontogenetic colour change in animals. Biological Journal of the Linnean Society, 40, 125-163.
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Caro T. (2017). The biology of color. Science, 357, 0221.
Dreher CE, Rodríguez A, Cummings ME, Pröhl H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7, 10503-10512.
Endler J, Mappes J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532-547.
Gonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. (2021). First characterization of toxic alkaloids and volatile organic compounds (V.O.C.s) in the cryptic dendrobatid Silverstoneia punctiventris.Frontiers in Zoology, 18, 1-15.
Hagman M, Forsman A. (2003). Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Evolution, 57, 2904-2910.
Hanlon R. (2007). Cephalopod dynamic camouflage. Current biology, 17, R400-R404.
Maan ME, Cummings ME. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, E1-E14.
Meuche I. (2009). Changes of individual colour patterns in the Central American strawberry poison frog, Oophaga pumilio (Amphibia: Dendrobatidae). Salamandra, 45, 177-179.
Palacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 1-10.
Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. (2014). idTracker: tracking individuals in a group by automatically identifying unmarked animals. Methods of Nature, 11, 743-748.
Richards-Zawacki CL, Yeager J, Bart HP. (2013). No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evolutionary Ecology, 27, 783- 795.
Rojas B, Endler, JA. (2013). Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evolutionary Ecology, 27, 739-753.
Rojas B, Devillechabrolle J, Endler JA. (2014). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. Biology letters, 10, 20140193.
Ruxton GD, Sherratt TN, Speed MP. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press, Oxford.
Santos JC, Cannatella DC. (2011). Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108, 6175-6180.
Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF. (2010). Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. Journal of Natural Products, 73, 317-321.
Wang IJ. (2011). Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution, 65, 1637-1649.
Wang IJ, Shaffer HB. (2008). Rapid color evolution in an aposematic species: A phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution. International Journal of Organic Evolution, 62, 2742-2759.
Yuan ML, Jung C, Bell RC, Nelson JL. (2022). Aposematic patterns shift continuously throughout the life of poison frogs. Journal of Zoology, 00, 1-8.
Bagnara JT, Fernandez PJ, Fujii R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20, 14-26.
Crothers L, Saporito RA, Yeager J, Lynch K, Friesen C, Richards-Zawacki CL, Cummings M. (2016). Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 30, 601-621.
Czeczuga B. (1980). Investigations on carotenoids in Amphibia-II. Carotenoids occurring in various parts of the body of certain species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 65, 623-630.
Daly, JW, Myers, CW, Whittaker, N. (1987). Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon, 25, 1023-1095.
Daly JW. (1998). The nature and origin of amphibian alkaloids. In The Alkaloids: Chemistry and Biology, 50, 141-169. Academic Press.
Daly JW, Spande TF, Garraffo HM. (2005). Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. Journal of Natural Products, 68, 1556-1575.
DuShane GP. (1935). An experimental study of the origin of pigment cells in Amphibia. Experimental Zoology, 72, 1-31.
Frost S, Robinson SJ. (1984). Pigment cell differentiation in the fire-bellied toad, Bombina orientalis. Journal of Morphology, 179, 229 -242.
Itoi S. (2013). Larval pufferfish protected by maternal tetrodotoxin. Toxicon, 78, 35-40.
Kanoh S. (1988). Distribution of tetrodotoxin in vertebrates. Recent Advances in Tetrodotoxin Research, 32-44.
Kikuchi DW, Pfennig DW. (2012). A Batesian mimic and its model share color production mechanisms. Current Zoology, 58, 658-667.
McGraw KJ. (2006). Mechanics of carotenoid-based coloration. Pages 177-242 in GE. Hill and KJ. McGraw, eds. Bird coloration: mechanisms and measurements. Harvard University Press, Cambridge, MA.
Mebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G. (2014). Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon, 80, 73-77.
Mills M, Patterson LB. (2008). Not just black and white: pigment pattern development and evolution in vertebrates. Seminars in Cell and Developmental Biology, 20, 72 - 81.
Miyazawa K, Noguchi T. (2001). Distribution and origin of tetrodotoxin. Journal of Toxicology: Toxin Reviews, 20, 11-33.
Neuwirth M, Daly JW, Myers CW, Tice LW. (1979). Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue and Cell, 11, 755-771.
Noldus LP, Spink AJ, Tegelenbosch RA. (2001). EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, and Computers, 33, 398-414.
Obika M, Bagnara JT. (1964). Pteridines as pigments in amphibians. Science, 143, 485-487.
Posso-Terranova A, Andrés JÁ. (2017). Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution, 71, 2677-2692.
Prum RO, Torres R. (2003). Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409-2429.
Saenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC. (2013). Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biology, 11, 1-12.
Santos, JC, Baquero, M, Barrio-Amorós, C, Coloma, LA, Erdtmann, LK, Lima, AP, Cannatella, DC. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B, 281, 20141761.
Santos JC, Tarvin RD, O'Connell LA. (2016). A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, editors. Chemical signals in vertebrates 13. Cham: Springer International Publishing; 2016. 305-37.
Saporito RA, Donnelly MA, Spande TF, Garraffo HM. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159-168.
Saporito RA, Spande TF, Garraffo HM, Donnelly MA. (2009). Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles, 79, 277-297.
Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. (2007). Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences, 104, 8885-8890.
Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia, 2007, 1006-1011.
Segami MJ, Rudh A, Rogell B, Odeen A, Lovlie H, Rosher C, Qvarnstrom A. (2017). Cryptic female Strawberry poison frogs experience elevated predation risk when associating with an aposematic partner. Ecology and Evolution, 7, 744-750.
Shawkey M, d'Alba L. (2017). Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philosopical Transactions of the Royal Society B, 372, 20160536.
Silverstone PA. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.
Shawkey M, Hill G. (2005). Carotenoids need structural colours to shine. Biology Letters, 1, 121- 124.
Stokes AN, Ducey PK, Neuman-Lee L, Hanifin CT, French SS, Pfrender ME, Brodie Jr ED. (2014). Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS One, 9, e100718.
Tarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. (2016). Convergent substitutions in a sodium channel suggest multiple origins of toxin resistance in poison frogs. Molecular Biology and Evolution, 33, 1068-1080.
Twomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Bocxlaer IV. (2020). Mechanisms for color convergence in a mimetic radiation of poison frogs. The American Naturalist, 195, E132-E149.
Vaelli P M, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. (2020). The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. Elife, 9, e53898.
Williams BL, Hanifin CT, Brodie ED. (2012). Predators usurp prey defenses? Toxicokinetics of tetrodotoxin in common garter snakes after consumption of rough-skinned newts. Chemoecology, 22, 179-185.
Yasumoto T, Yotsu-Yamashita M. (1996). Chemical and etiological studies on tetrodotoxin and its analogs. Journal of Toxicology: Toxin Reviews, 15, 81-90.
Amézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, Lima A P. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.
Andrews RM, Pough FH. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology, 58, 214-231.
Arbuckle K, Brockhurst, M, Speed MP. (2013). Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 27, 863-881.
Borror DJ, Triplehorn A, Johnson NF. (1992). An introduction to the study of insects 6th Ed. New York, Saunders College Publishing.
Brusa O, Bellati A, Meuche I, Mundy NI, Pröhl H. (2013). Divergent evolution in the polymorphic granular poison-dart frog, Oophaga granulifera: genetics, coloration, advertisement calls and morphology. Journal of Biogeographic, 40, 394-408.
Burton T, Killen SS, Armstrong, JD, Metcalfe NB. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proceedings of the National Academy of Sciences, 278, 3465-3473.
Darst CR, Cummings ME, Cannatella DC. (2006a). A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, 103, 5852-5857.
Darst CR, Cummings ME. (2006b). Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440, 208-211.
Edmunds M. (1974). Defence in Animals: A survey of antipredator defences. Longman, New York.
Frappell P, Schultz T, Christian K. (2002). Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. Journal of Experimental Biology, 205, 2725-2736.
Fernández F. 2003. (ed.). Introducción a las hormigas de la región neotropical. Instituto Alexander von Humboldt, Bogotá, D.C.
Germain RM, Hart SP, Turcotte MM, Otto SP, Sakarchi J, Rolland J et al. (2021). On the origin of coexisting species. Trends Ecology and Evolution, 36, 284-293.
Gordon CE. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198.
Grether GF, Peiman KS, Tobias JA, Robinson BW. (2017). Causes and consequences of behavioral interference between species. Trends Ecology and Evolution, 32, 760-772.
John-Alder HB, Bennett AF. (1981). Thermal dependence of endurance and locomotory energetics in a lizard.American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 241, 342-349.
Kim SY, Velando A. (2015). Phenotypic integration between antipredator behavior and camouflage pattern in juvenile sticklebacks. Evolution, 69, 830-838.
Krebs CJ. (1999). Ecological Methodology. Second edition. Addison.
Levins R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University.
Mappes J, Marples NM, Endler, JA. (2005). The complex business of survival by aposematism. Trends Ecology and Evolution. 20, 598-603.
Martin P (1986) Recording methods. Meas Behav Introd Guid 48-69.
Nespolo RF, Franco M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal Experimental Biology, 210, 2000-2005.
Palacios C, Valencia C. (2015). Hábitos tróficos de dos especies sintópicas de carácidos en una quebrada de alta montaña en los Andes colombianos, Revista Mexicana de Biologia, 86, 782-788.
Palacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 156-162.
Pough FH, Taigen TL. (1990). Metabolic correlates of the foraging and social behaviour of dart- poison frogs. Anim Behav 39:145-155.
Prudic KL, Oliver JC, Sperling FA. (2007). The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proceedings of the National Academy of Sciences, 104, 19381-19386.
Rodríguez, C, Amézquita, A, Ringler, M, Pasukonis, A, , Hödl, W. (2020). Calling amplitude flexibility and acoustic spacing in the territorial frog Allobates femoralis. Behavioral Ecology and Sociobiology, 74, 1-10.
Richard-Zawacki CL, Wang IJ, Summers K. (2012). Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology, 21, 3879-3892.
Ruxton GD, Sherratt TN, Speed MP. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.
Santos JC, Coloma LA, Cannatella DC. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100, 12792-12797.
Speed MP, Brockhurst MA, Ruxton GD. (2010). The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution, 64, 1622-1633.
Stevens M, Cuthill IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings Royal Society B, 273, 2141-2147.
Taigen TL, Emerson SB, Pough FH. (1982). Ecological correlates of anuran exercisephysiology. Oecologia, 52, 49-56.
Thayer G H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; Being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.
Toft CA. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetological, 51, 202-21.
Willink B, Brenes-Mora E, Bolaños F, Pröhl H. (2013). Not everything is black and white: color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog. Evolution, 67, 2783-2794.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 85 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ciencias - Biología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/a946ef5a-7e3b-4c2f-a59e-6b640f378d59/download
https://repositorio.uniandes.edu.co/bitstreams/1aed07ac-0abf-4f9e-9a4f-0f0d18364f35/download
https://repositorio.uniandes.edu.co/bitstreams/eb20a113-2b63-4bab-af55-eefab211593a/download
https://repositorio.uniandes.edu.co/bitstreams/c998c325-a5af-4629-adf1-e896c95f7c71/download
https://repositorio.uniandes.edu.co/bitstreams/96c05d7e-0e5d-4548-a1c7-404e8643c259/download
https://repositorio.uniandes.edu.co/bitstreams/636b282a-1d78-49fb-b47d-9828b8b84abc/download
https://repositorio.uniandes.edu.co/bitstreams/0aa728c2-2bdb-49ca-a1bf-b07254761c9b/download
bitstream.checksum.fl_str_mv af02ba4ab26a548bf52ff3e3c58814cc
26f34d2392219120f1505d16046f8dcf
c6c9b5bafc8cbd7c0d648d851c56fada
9c0584ef46b3d9e005a0e8b829151dd4
5aa5c691a1ffe97abd12c2966efcb8d6
6582756bbdfef67e29f28a4ab181cb18
b3d1e0b5953658b10d36d0158492a42f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390345517432832
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Brunetti, Andrés Eduardoeba39c59-8d16-49ef-8309-c4f3853b8bea600Vives Flórez, Martha Josefinavirtual::9865-1Palacios Rodríguez, Pablodd5e5db7-ac77-4812-866f-65da007c2925600Rojas, BibianaMolina Escobar, Jorge AlbertoGrupo de Ecofisiologia, Comportamiento y Herpetología2023-01-31T22:10:22Z2023-01-31T22:10:22Z2022-07-28http://hdl.handle.net/1992/64426instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Es un documento que aún se encuentra en proceso de publicación varios de sus capítulos.The study of biological models exhibiting dual cryptic-aposematic anti- predatory strategies based on their coloration, can shed important light on some of the great controversies in the evolution of aposematism. Among them, the greatest vulnerability faced by the first conspicuous individuals within a population; the link between conspicuous coloration and other traits indicative of condition, physiological performance and development of toxicity; and the consequences of aposematic coloration in contexts of courtship, sexual selection and reproductive isolation. In this context, this thesis investigates the functional and evolutionary origin, and the ecological correlation of the femoral and inguinal colorful spots in frog lineages of the superfamily Dendrobatoidae historically considered as cryptic.National Ph.D. Scholarship Fund 785 of 2017Doctor en Ciencias - BiologíaDoctoradoComportamiento animal85 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - BiologíaFacultad de CienciasDepartamento de Ciencias BiológicasOrigin, development, and function of colored inguinal and axillary spots in cryptic lineages of poison frogs (Amphibia: Anura: Dendrobatoidea)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDSexual dichromatismParental careTadpole transportDendrobatoideaColostethus imbricolusBiologíaAmézquita A, Ramos, Oscar, González MC, Rodríguez Camilo, Medina I, Simões PI, Lima AP. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.Agarwal A, Garg S, Rakesh PK, Singh I, Mishra BK. (2010). Tensile behavior of glass fiber reinforced plastics subjected to different environmental conditions. Indian Journal of Engineering & Material Sciences,17, 471-476.Barnett JB, Michalis C, Scott-Samuel NE, Cuthill IC. (2018). Distance-dependent defensive coloration in the poison frog Dendrobates tinctorius, Dendrobatidae. Proceedings of the National Academy of Sciences, 115, 6416-6421.Behrens RR. (1999). The role of artists in ship camouflage during World War I. Leonardo, 32, 53- 59.Caldwell JP. (1996). The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). Journal of Zoology, 240, 75-101Caro T, Sherratt TN, Stevens M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809.Caro T, Stoddard MC, Stuart-Fox D. (2017). Animal coloration research: why it matters. Philosophical Transactions of the Royal Society B, 372, 20160333.Cott HB. (1940). Adaptive Colouration in Animals. Methuen, London.Crump ML. (2015). Anuran reproductive modes: evolving perspectives. Journal of Herpetology, 49, 1-16.Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72.Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr. (1994). An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon, 32, 657-663.Darst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. American Naturalist, 165, 56-69.Duarte RC, Flores AA, Stevens M. (2017). Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160342.Endler JA. (1978). A predator's view of animal colour patterns. Evolutionary Biology, 11, 319- 364.Endler JA, Mappes J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372, 20160352.Fraser S, Callahan A, Klassen D, Sherratt TN. (2007). Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society B, 274, 1325-1331.Frost Darrel R. (2019). Amphibian Species of the World: an Online Reference. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.Gordon SP, Kokko H, Rojas B, Nokelainen O, Mappes J. (2015). Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space. Journal of Animal Ecology, 84, 1555-1564.Grant T, Frost DR, Caldwell JP, Gagliardo R. Haddad CFB, Kok PJR, Means BD, Noonan BP, Schargel W. Wheeler WC. (2006) Phylogenetic systematics of dart poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262.Grant T, Rada M, Anganoy-Criollo M, Batista A, Dias PH, Jeckel M, Machado DJ. Rueda- Almonacid JV. (2017). Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). South American Journal of Herpetology, 12, S1-S90.Higginson AD, Delf J, Ruxton GD, Speed MP. (2011). Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology, 80, 384- 392.Hödl W, Amézquita A. (2001). Visual signaling in anuran amphibians. Anuran communication, 121-141.Honma A, Mappes J, Valkonen JK. (2015). Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecology and Evolution, 5, 4863-4874.Hughes A, Liggins E, Stevens M. (2019). Imperfect camouflage: how to hide in a variable world?. Proceedings of the Royal Society B, 286, 20190646.Leary CJ, Harris S. (2013). Steroid hormone levels in calling males and males practicing alternative non-calling mating tactics in the green treefrog, Hyla cinerea. Hormones and Behavior, 63, 20-24.Maan ME, Cummings ME. (2008). Female preferences for aposematic signal components in a polymorphic poison frog. Evolution, 62, 2334-2345.Maan ME, Cummings ME. (2011). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, 1-14.Marler CA, Ryan MJ. (1996). Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. Journal of Zoology, 240, 397-409.Marples NM, Kelly DJ, Thomas RJ. (2005). Perspective: the evolution of warning coloration is not paradoxical. Evolution, 59, 933-940.Mappes J, Marples NM, Endler JA. (2005). The complex business of survival by aposematism. Trends in Ecology and Evolution, 20, 598-603.McMahon K, Marples N. (2017). Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. Journal of Avian Biology, 48, 448-454.Merilaita S. (1998). Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London B, 26, 1059-1064.Moore MC, Crews D. (1986). Sex steroid hormones in natural populations of a sexual whiptail lizard Cnemidophorus inornatus, a direct evolutionary ancestor of a unisexual parthenogen. General and Comparative Endocrinology, 63,424-430.Nokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J. (2012). Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proceedings of the Royal Society B, 279, 257-265.Nokelainen O, Valkonen J, Lindstedt C, Mappes J. (2014). Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. Journal of Animal Ecology, 83, 598-605.Ojala, K, Julkunen-Tiitto, R, Lindström, L, Mappes, J. (2005). Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evolutionary Ecology Research, 7, 1153-1170.Poulton EB. (1890). The colours of animals: Their meaning and use. Kegan Paul, Trench, Trubner, London.Rodríguez A, Poth D, Schulz S, Vences M. (2011). Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba. Biology Letters, 7, 414-418.Rodríguez A, Poth D, Schulz S, Gehara M, Vences M. (2013). Genetic diversity, phylogeny and evolution of alkaloid sequestering in Cuban miniaturized frogs of the Eleutherodactylus limbatus group. Molecular Phylogenetics and Evolution, 68, 541-554.Roper TJ. (1994). Conspicuousness of prey retards reversal of learned avoidance. Oikos, 69, 115-118.Rojas B, Valkonen J, Nokelainen O. (2015). Aposematism. Current Biology, 25, 350-351.Rojas B. (2017). Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biological Reviews, 92, 1059-1080.Rowe C, Guilford T. (1999). The evolution of multimodal warning displays. Evolutionary Ecology, 13, 655-671.Ruxton GD. (2002). The possible fitness benefits of striped coat coloration for zebra. Mammal Review, 32, 237-244.Ruxton GD, Sherratt, T.N, Speed, M.P. (2004). Avoiding attack: The Evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.Ruxton GD, Sherratt TN. (2006). Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B, 273, 2417-2424.Ryan MJ. (2001). Anuran communication. Smithsonian Institution, Washington, DC.Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC. (2009). Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biology, 7, 1000056.Savitzky AH, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J. (2012). Sequestered defensive toxins in tetrapod vertebrates: principles, patterns and prospects for future studies. Chemoecology, 22, 141-158.Silverstone PA. (1975). Two new species of Colostethus (Amphibia: Anura: Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County, 268, 1-10.Sinervo B. (2000). Adaptation, natural selection and optimal life-history allocation in the face of genetically based trade-offs. 41-64. In Mousseau TA, Sinervo B, and Endler J, editors. Adaptive genetic variation in the wild. Oxford University Press, Oxford, UK.Speed MP, Ruxton GD. (2005). Aposematism: what should our starting point be?. Proceedings of the Royal Society B, 272, 431-438.Stevens M, Cuthill, IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society B, 273, 2141-2147.Stevens M, Cuthill IC, Windsor AM, Walker H J. (2006). Disruptive contrast in animal camouflage. Proceedings of the Royal Society B, 273, 2433-2438.Stevens M, Merilaita S. (2009). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423-427.Stevens M, Ruxton GD. (2011). Linking the evolution and form of warning coloration in nature. Proceedings Transactions of the Royal Society B, 279, 417-426.Stevens M. (2016). Color change, phenotypic plasticity, and camouflage. Frontiers in Ecology and Evolution, 4, 51.Stevens M, Ruxton GD. (2019). The key role of behaviour in animal camouflage. Biological Reviews, 94, 116-134.Summers K, Clough ME. (2001). The evolution of coloration and toxicity in the poison frog familiy (Dendrobatidae) Proccedings of the Natural Academy of Science, 98, 6227-6232.Thayer GH. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.Thomas RJ, Marples NM, Cuthill IC, Takahashi M, Gibson EA. (2003). Dietary conservatism may facilitate the initial evolution of aposematism. Oikos, 101, 458-466.Thomas RJ, Bartlett LA, Marples NM, Kelly DJ, Cuthill IC. (2004). Prey selection by wild birds can allow novel and conspicuous colour morphs to spread in prey populations. Oikos, 106, 285-294.Tullberg BS, Gamberale-Stille G, Solbreck C. (2000). Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Ecological Entomology, 25, 220-225.Tullberg BS, Merilaita S, Wiklund C. (2005). Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London B, 272, 1315-1321.Wallace AR. (1867). Mimicry and other protective resemblances among animals. Westminster Foreign, 32, 1-43.Wallace AR. (1877). The colours of animals and plants. American Naturalist, 11, 641-662.Wells KD. (2007). The Ecology and behavior of amphibians. The University of Chicago Press, Chicago. USAZylinski S, Osorio D. (2013). Visual contrast and color in rapid learning of novel patterns by chicks. Journal of Experimental Biology, 216, 4184-4189.Acosta-Galvis AR, Vargas-Ramírez M. (2018). A new species of Hyloxalus Jiménez De La Espada, 1871 "1870" (Anura: Dendrobatidae: Hyloxalinae) from a cloud forest near Bogotá, Colombia, with comments on the subpunctatus clade. Vertebrate Zoology, 68, 123-141.Allen CE, Zwaan BJ, Brakefield PM. (2011). Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56, 445-464.Amundsen T, Forsgren E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences, 98, 13155-13160.Andersson MB. (1994) Sexual selection: Princeton Univ Press.Angelier F, Wingfield JC, Tartu S, Chastel O. (2016). Does prolactin mediate parental and life- history decisions in response to environmental conditions in birds? A review. Hormones and Behavior, 77, 18-29.Aspengren S, Sköld HN, Wallin M. (2009). Different strategies for color change. Cellular and Molecular Life Sciences, 66, 187-191.Bagnara JT, Taylor JD, Hadley ME. (1968). The dermal chromatophore unit. Journal of Cell Biology, 38, 67-79.Bell RC, Webster GN, Whiting MJ. (2017). Breeding biology and the evolution of dynamic sexual dichromatism in frogs. Journal Evolutionary Biology, 30, 2104-2115.Bell RC, Zamudio KR. (2012). Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proceedings of the Royal Society B, 279, 4687-4693.Brown JL, Twomey E, Amezquita A, et al. (2011). A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1-120.Brown PS. (1976). The effect of prolactin on color and skin pteridines in the frog, Rana pipiens. General and Comparative Endocrinology, 28, 426-433.Bush SL, Bell DJ. (1997). Courtship and female competition in the Majorcan midwife toad, Alytes muletensis. Ethology, 103, 292-303.Caldwell JP. (2005). Amphibian faunas of two eastern Amazonian rainforest sites in Pará, Brazil. Sam Noble Oklahoma Museum of Natural History.Camargo CR, Visconti MA, Castrucci AML. (1999). Physiological color change in the bullfrog, Rana catesbeiana. Journal Experimental Zoology, 283, 160-169.Caro T, Stankowich T, Kiffner C, Hunter J. (2013). Are spotted skunks conspicuous or cryptic? Ethology Ecology & Evolution, 25, 144-160.Carvajal-Castro JD, Vargas-Salinas F, Casas-Cardona S, et al. (2021). Aposematism facilitates the diversification of parental care strategies in poison frogs. Scientific Reports, 11, 1-15.Cossio R. (2008). Oophaga pumilio (Strawberry Poison Frog) Parental Care. Herpetolical Review, 39, 462.Crump ML. (1996). Parental care among the amphibia. In: Advances in the Study of Behavior. Elsevier, 25, 109-144.Daly JW, Gusovsky F, Myers CW, et al. (1994). First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon, 32, 279-285.Downie JR, Robinson E, Linklater-McLennan RJ. (2005). Are there costs to extended larval transport in the Trinidadian stream frog, Mannophryne trinitatis (Dendrobatidae)? Journal of Natural History, 39, 2023-2034.Duellman WE, Trueb L. (1986). Biology of Amphibians New York McGraw-Hill.Dugas MB, Richards-Zawacki CL. (2015). A captive breeding experiment reveals no evidence of reproductive isolation among lineages of a polytypic poison frog. Biological Journal of the Linnean Society, 116, 52-62.Dunn PO, Armenta JK, Whittingham LA. (2015). Natural and sexual selection act on different axes of variation in avian plumage color. Science Advances, 1, e1400155.Endler JA. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315-352.Engelbrecht-Wiggans E, Tumulty JP. (2019). "Reverse" sexual dichromatism in a Neotropical frog. Ethology, 125, 957-964.Galeano SP, Harms KE. (2016). Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behavioral Ecology and Sociobiology, 70, 83-97.Grant T. (2004). On the identities of Colostethus inguinalis (Cope, 1868) and C. panamensis (Dunn, 1933), with comments on C. latinasus (Cope, 1863) (Anura: Dendrobatidae). American Museum Novitates, 2004, 1--24.Grant T. (2007). A new, toxic species of Colostethus (Anura: Dendrobatidae: Colostethinae) from the Cordillera Central of Colombia. Zootaxa, 1555, 39-51.Greener MS, Hutton E, Pollock CJ, et al. (2020). Sexual dichromatism in the neotropical genus Mannophryne (Anura: Aromobatidae). PLoS One 15, e0223080.Kahn TR, La Marca E, Lötters S, Brown, JL, Twomey E, Amézquita A. (2016). Aposematic poison frogs (Dendrobatidae) of the Andean countries: Bolivia, Colombia, Ecuador, Peru.Killius AM, Dugas MB. (2014). Tadpole transport by male Oophaga pumilio (Anura: Dendrobatidae): an observation and brief review. Herpetology Notes, 7, 747-749.Kindermann C, Narayan EJ, Hero JM. (2014). The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS One, 9, e114120.Kodric-Brown A. (1998). Sexual dichromatism and temporary color changes in the reproduction of fishes. American Zoology, 38, 70-81.La Marca E. (1994). Taxonomy of the frogs of the genus Mannophryne (Amphibia: Anura: Dendrobatida. Asociación de Amigos de Doñana.Liao WB, Lu X. (2009a). Sex recognition by male Andrew's toad Bufo andrewsi in a subtropical montane region. Behavioral Processes, 82, 100-103.Liao WB, Lu X. (2009b). Male mate choice in the Andrew's toad Bufo andrewsi: a preference for larger females. Journal of Ethology, 27, 413-417.Lötters S, Jungfer KH, Henkel FW, Schmidt W. (2007). Poison frogs. Biology species Captive husbandry Ed Chimaira, Frankfurt am Main, Ger 668.Luiz LF, Contrera FAL, Neckel-Oliveira S. (2015). Diet and tadpole transportation in the poison dart frog Ameerega trivittata (Anura, Dendrobatidae). Herpetological Journal, 25, 187-190.Maan ME, Cummings ME. (2009). Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences, 106, 19072-19077.Maia R, Eliason CM, Bitton P, et al. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecology Evolution, 4, 906-913.Maia R, Gruson H, Endler JA, White TE. (2019). pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecology Evolution, 10, 1097-1107.Martin P. (1986) Recording methods. Measuring behaviour introductory, 48-69.Meuche I, Linsenmair KE, Pröhl H. (2011). Female territoriality in the strawberry poison frog (Oophaga pumilio). Copeia, 2011, 351-356.Myers CW, Daly JW. (1976). Preliminary evaluation of skin toxins and vocalizations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bulletin American Museum Natural History,157, 157-177.Portik DM, Bell RC, Blackburn DC, et al. (2019). Sexual dichromatism drives diversification within a major radiation of African amphibians. Systematic Biology, 68, 859-875.Pröhl H. (2005). Territorial behavior in dendrobatid frogs. Journal of Herpetology, 39, 354-365.Ringler E, Pasukonis A, Hödl W, Ringler M. (2013). Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Frontiers in Zoology, 10, 1-10.Rosenqvist G. (1990). Male mate choice and female-female competition for mates in the pipefish Nerophis ophidion. Animal Behavior, 39, 1110-1115.Ruxton GD, Allen WL, Sherratt TN, Speed MP. (2019). Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press.Sage M. (1970). Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. Journal Experimental Zoology, 173, 121-127.Silverstone PA. (1975a). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.Silverstone PA. (1975b). Two New Species of Colostethus (Amphibia, Anura, Dendrobatidae) from Colombia. Natural History Museum of Los Angeles County.Silverstone PA. (1976). A revision of the poison-arrow frogs of the genus Phyllobates Bibron in Sagra (Family Dendrobatidae). Natural History, 27, 1-53.Summers K, Tumulty J. (2014). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Sexual selection. Elsevier, 289-320.Sztatecsny M, Preininger D, Freudmann A, et al. (2012). Don't get the blues: conspicuous nuptial colouration of male moor frogs (Rana arvalis) supports visual mate recognition during scramble competition in large breeding aggregations. Behavioral Ecology and Sociobiology, 66, 1587-1593.Team Rs (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020.Twomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. (2020a). A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 29:2004-2015.Wells KD. (1980). Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behavioral Ecology and Sociobiology, 6, 199-209.Wells KD. (2010). The ecology and behavior of amphibians. University of Chicago Press.Weygoldt P. (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behavioral Ecology and Sociobiology, 7, 329-332.Zimmermann H, Zimmermann E. (1980) Durch Nachzucht erhalten: Der Baumsteiger Dendrobates leucomelas. Aquarium Magazine, 14, 211-217.Zimmermann H, Zimmermann E. (1981) Sozialverhalten, Fortpflanzungsverhalten und Zucht der Färberfrösche Dendrobates histrionicus und D. lehmanni sowie einiger anderer Dendrobatiden. Zeitschrift des Kölner Zoo, 24, 83-99.Abràmoff MD, Magalhães PJ, Ram SJ. (2004). Image processing with ImageJ. Biophotonics International, 11, 36-42.Dell AI, Bender JA, Branson K, Couzin ID, Polavieja G, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, Brose U. (2014). Automated image-based tracking and its application in ecology, Trends in Ecology and Evolution, 29, 417-428.Bolton Sarah, Dickerson Kelsie, Saporito Ralph. (2017). Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods. Journal of Chemical Ecology, 43, 1-17.Booth CL. (1990). Evolutionary significance of ontogenetic colour change in animals. Biological Journal of the Linnean Society, 40, 125-163.Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Caro T. (2017). The biology of color. Science, 357, 0221.Dreher CE, Rodríguez A, Cummings ME, Pröhl H. (2017). Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecology and Evolution, 7, 10503-10512.Endler J, Mappes J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532-547.Gonzalez M, Palacios-Rodriguez P, Hernandez-Restrepo J, González-Santoro M, Amézquita A, Brunetti AE, Carazzone C. (2021). First characterization of toxic alkaloids and volatile organic compounds (V.O.C.s) in the cryptic dendrobatid Silverstoneia punctiventris.Frontiers in Zoology, 18, 1-15.Hagman M, Forsman A. (2003). Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Evolution, 57, 2904-2910.Hanlon R. (2007). Cephalopod dynamic camouflage. Current biology, 17, R400-R404.Maan ME, Cummings ME. (2012). Poison frog colors are honest signals of toxicity, particularly for bird predators. The American Naturalist, 179, E1-E14.Meuche I. (2009). Changes of individual colour patterns in the Central American strawberry poison frog, Oophaga pumilio (Amphibia: Dendrobatidae). Salamandra, 45, 177-179.Palacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 1-10.Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. (2014). idTracker: tracking individuals in a group by automatically identifying unmarked animals. Methods of Nature, 11, 743-748.Richards-Zawacki CL, Yeager J, Bart HP. (2013). No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evolutionary Ecology, 27, 783- 795.Rojas B, Endler, JA. (2013). Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evolutionary Ecology, 27, 739-753.Rojas B, Devillechabrolle J, Endler JA. (2014). Paradox lost: variable colour-pattern geometry is associated with differences in movement in aposematic frogs. Biology letters, 10, 20140193.Ruxton GD, Sherratt TN, Speed MP. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press, Oxford.Santos JC, Cannatella DC. (2011). Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108, 6175-6180.Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF. (2010). Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. Journal of Natural Products, 73, 317-321.Wang IJ. (2011). Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution, 65, 1637-1649.Wang IJ, Shaffer HB. (2008). Rapid color evolution in an aposematic species: A phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution. International Journal of Organic Evolution, 62, 2742-2759.Yuan ML, Jung C, Bell RC, Nelson JL. (2022). Aposematic patterns shift continuously throughout the life of poison frogs. Journal of Zoology, 00, 1-8.Bagnara JT, Fernandez PJ, Fujii R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20, 14-26.Crothers L, Saporito RA, Yeager J, Lynch K, Friesen C, Richards-Zawacki CL, Cummings M. (2016). Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evolutionary Ecology, 30, 601-621.Czeczuga B. (1980). Investigations on carotenoids in Amphibia-II. Carotenoids occurring in various parts of the body of certain species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 65, 623-630.Daly, JW, Myers, CW, Whittaker, N. (1987). Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon, 25, 1023-1095.Daly JW. (1998). The nature and origin of amphibian alkaloids. In The Alkaloids: Chemistry and Biology, 50, 141-169. Academic Press.Daly JW, Spande TF, Garraffo HM. (2005). Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. Journal of Natural Products, 68, 1556-1575.DuShane GP. (1935). An experimental study of the origin of pigment cells in Amphibia. Experimental Zoology, 72, 1-31.Frost S, Robinson SJ. (1984). Pigment cell differentiation in the fire-bellied toad, Bombina orientalis. Journal of Morphology, 179, 229 -242.Itoi S. (2013). Larval pufferfish protected by maternal tetrodotoxin. Toxicon, 78, 35-40.Kanoh S. (1988). Distribution of tetrodotoxin in vertebrates. Recent Advances in Tetrodotoxin Research, 32-44.Kikuchi DW, Pfennig DW. (2012). A Batesian mimic and its model share color production mechanisms. Current Zoology, 58, 658-667.McGraw KJ. (2006). Mechanics of carotenoid-based coloration. Pages 177-242 in GE. Hill and KJ. McGraw, eds. Bird coloration: mechanisms and measurements. Harvard University Press, Cambridge, MA.Mebs D, Alvarez JV, Pogoda W, Toennes SW, Köhler G. (2014). Poor alkaloid sequestration by arrow poison frogs of the genus Phyllobates from Costa Rica. Toxicon, 80, 73-77.Mills M, Patterson LB. (2008). Not just black and white: pigment pattern development and evolution in vertebrates. Seminars in Cell and Developmental Biology, 20, 72 - 81.Miyazawa K, Noguchi T. (2001). Distribution and origin of tetrodotoxin. Journal of Toxicology: Toxin Reviews, 20, 11-33.Neuwirth M, Daly JW, Myers CW, Tice LW. (1979). Morphology of the granular secretory glands in skin of poison-dart frogs (Dendrobatidae). Tissue and Cell, 11, 755-771.Noldus LP, Spink AJ, Tegelenbosch RA. (2001). EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, and Computers, 33, 398-414.Obika M, Bagnara JT. (1964). Pteridines as pigments in amphibians. Science, 143, 485-487.Posso-Terranova A, Andrés JÁ. (2017). Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution, 71, 2677-2692.Prum RO, Torres R. (2003). Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409-2429.Saenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC. (2013). Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biology, 11, 1-12.Santos, JC, Baquero, M, Barrio-Amorós, C, Coloma, LA, Erdtmann, LK, Lima, AP, Cannatella, DC. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B, 281, 20141761.Santos JC, Tarvin RD, O'Connell LA. (2016). A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. In: Schulte BA, Goodwin TE, Ferkin MH, editors. Chemical signals in vertebrates 13. Cham: Springer International Publishing; 2016. 305-37.Saporito RA, Donnelly MA, Spande TF, Garraffo HM. (2012). A review of chemical ecology in poison frogs. Chemoecology, 22, 159-168.Saporito RA, Spande TF, Garraffo HM, Donnelly MA. (2009). Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles, 79, 277-297.Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW. (2007). Oribatid mites as a major dietary source for alkaloids in poison frogs. Proceedings of the National Academy of Sciences, 104, 8885-8890.Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA. (2007). Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia, 2007, 1006-1011.Segami MJ, Rudh A, Rogell B, Odeen A, Lovlie H, Rosher C, Qvarnstrom A. (2017). Cryptic female Strawberry poison frogs experience elevated predation risk when associating with an aposematic partner. Ecology and Evolution, 7, 744-750.Shawkey M, d'Alba L. (2017). Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philosopical Transactions of the Royal Society B, 372, 20160536.Silverstone PA. (1975). A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History, 21, 1-55.Shawkey M, Hill G. (2005). Carotenoids need structural colours to shine. Biology Letters, 1, 121- 124.Stokes AN, Ducey PK, Neuman-Lee L, Hanifin CT, French SS, Pfrender ME, Brodie Jr ED. (2014). Confirmation and distribution of tetrodotoxin for the first time in terrestrial invertebrates: two terrestrial flatworm species (Bipalium adventitium and Bipalium kewense). PLoS One, 9, e100718.Tarvin RD, Santos JC, O'Connell LA, Zakon HH, Cannatella DC. (2016). Convergent substitutions in a sodium channel suggest multiple origins of toxin resistance in poison frogs. Molecular Biology and Evolution, 33, 1068-1080.Twomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Bocxlaer IV. (2020). Mechanisms for color convergence in a mimetic radiation of poison frogs. The American Naturalist, 195, E132-E149.Vaelli P M, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. (2020). The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. Elife, 9, e53898.Williams BL, Hanifin CT, Brodie ED. (2012). Predators usurp prey defenses? Toxicokinetics of tetrodotoxin in common garter snakes after consumption of rough-skinned newts. Chemoecology, 22, 179-185.Yasumoto T, Yotsu-Yamashita M. (1996). Chemical and etiological studies on tetrodotoxin and its analogs. Journal of Toxicology: Toxin Reviews, 15, 81-90.Amézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, Lima A P. (2017). Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frog Allobates femoralis. Evolution, 71, 1039-1050.Andrews RM, Pough FH. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiological Zoology, 58, 214-231.Arbuckle K, Brockhurst, M, Speed MP. (2013). Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 27, 863-881.Borror DJ, Triplehorn A, Johnson NF. (1992). An introduction to the study of insects 6th Ed. New York, Saunders College Publishing.Brusa O, Bellati A, Meuche I, Mundy NI, Pröhl H. (2013). Divergent evolution in the polymorphic granular poison-dart frog, Oophaga granulifera: genetics, coloration, advertisement calls and morphology. Journal of Biogeographic, 40, 394-408.Burton T, Killen SS, Armstrong, JD, Metcalfe NB. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proceedings of the National Academy of Sciences, 278, 3465-3473.Darst CR, Cummings ME, Cannatella DC. (2006a). A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, 103, 5852-5857.Darst CR, Cummings ME. (2006b). Predator learning favours mimicry of a less-toxic model in poison frogs. Nature, 440, 208-211.Edmunds M. (1974). Defence in Animals: A survey of antipredator defences. Longman, New York.Frappell P, Schultz T, Christian K. (2002). Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. Journal of Experimental Biology, 205, 2725-2736.Fernández F. 2003. (ed.). Introducción a las hormigas de la región neotropical. Instituto Alexander von Humboldt, Bogotá, D.C.Germain RM, Hart SP, Turcotte MM, Otto SP, Sakarchi J, Rolland J et al. (2021). On the origin of coexisting species. Trends Ecology and Evolution, 36, 284-293.Gordon CE. (2000). The coexistence of species. Revista Chilena de Historia Natural, 73, 175-198.Grether GF, Peiman KS, Tobias JA, Robinson BW. (2017). Causes and consequences of behavioral interference between species. Trends Ecology and Evolution, 32, 760-772.John-Alder HB, Bennett AF. (1981). Thermal dependence of endurance and locomotory energetics in a lizard.American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 241, 342-349.Kim SY, Velando A. (2015). Phenotypic integration between antipredator behavior and camouflage pattern in juvenile sticklebacks. Evolution, 69, 830-838.Krebs CJ. (1999). Ecological Methodology. Second edition. Addison.Levins R. (1968). Evolution in changing environments: some theoretical explorations (No. 2). Princeton University.Mappes J, Marples NM, Endler, JA. (2005). The complex business of survival by aposematism. Trends Ecology and Evolution. 20, 598-603.Martin P (1986) Recording methods. Meas Behav Introd Guid 48-69.Nespolo RF, Franco M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal Experimental Biology, 210, 2000-2005.Palacios C, Valencia C. (2015). Hábitos tróficos de dos especies sintópicas de carácidos en una quebrada de alta montaña en los Andes colombianos, Revista Mexicana de Biologia, 86, 782-788.Palacios-Rodríguez P, González-Santoro M, Amézquita A, Brunetti AE. (2022). Sexual dichromatism in a cryptic poison frog is correlated with female tadpole transport. Evolutionary Ecology, 36, 156-162.Pough FH, Taigen TL. (1990). Metabolic correlates of the foraging and social behaviour of dart- poison frogs. Anim Behav 39:145-155.Prudic KL, Oliver JC, Sperling FA. (2007). The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proceedings of the National Academy of Sciences, 104, 19381-19386.Rodríguez, C, Amézquita, A, Ringler, M, Pasukonis, A, , Hödl, W. (2020). Calling amplitude flexibility and acoustic spacing in the territorial frog Allobates femoralis. Behavioral Ecology and Sociobiology, 74, 1-10.Richard-Zawacki CL, Wang IJ, Summers K. (2012). Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Molecular Ecology, 21, 3879-3892.Ruxton GD, Sherratt TN, Speed MP. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford.Santos JC, Coloma LA, Cannatella DC. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences, 100, 12792-12797.Speed MP, Brockhurst MA, Ruxton GD. (2010). The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution, 64, 1622-1633.Stevens M, Cuthill IC. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings Royal Society B, 273, 2141-2147.Taigen TL, Emerson SB, Pough FH. (1982). Ecological correlates of anuran exercisephysiology. Oecologia, 52, 49-56.Thayer G H. (1909). Concealing coloration in the animal kingdom. An exposition of the laws of disguise through color and pattern; Being a summary of Abbott H. Thayer's discoveries. Macmillan, New York.Toft CA. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetological, 51, 202-21.Willink B, Brenes-Mora E, Bolaños F, Pröhl H. (2013). Not everything is black and white: color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog. Evolution, 67, 2783-2794.201420530Publicationhttps://scholar.google.es/citations?user=FmskIBcAAAAJvirtual::9865-10000-0001-7795-1494virtual::9865-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000190195virtual::9865-1324db0c6-0b71-49b7-846b-c997885dbe42virtual::9865-1324db0c6-0b71-49b7-846b-c997885dbe42virtual::9865-1ORIGINALThesis final.pdfThesis final.pdfTesis de grado doctoral.application/pdf23441983https://repositorio.uniandes.edu.co/bitstreams/a946ef5a-7e3b-4c2f-a59e-6b640f378d59/downloadaf02ba4ab26a548bf52ff3e3c58814ccMD52Autorizacioìn entrega de tesis-AEB MV copia.pdfAutorizacioìn entrega de tesis-AEB MV copia.pdfHIDEapplication/pdf218417https://repositorio.uniandes.edu.co/bitstreams/1aed07ac-0abf-4f9e-9a4f-0f0d18364f35/download26f34d2392219120f1505d16046f8dcfMD53TEXTThesis final.pdf.txtThesis final.pdf.txtExtracted texttext/plain214245https://repositorio.uniandes.edu.co/bitstreams/eb20a113-2b63-4bab-af55-eefab211593a/downloadc6c9b5bafc8cbd7c0d648d851c56fadaMD54Autorizacioìn entrega de tesis-AEB MV copia.pdf.txtAutorizacioìn entrega de tesis-AEB MV copia.pdf.txtExtracted texttext/plain1521https://repositorio.uniandes.edu.co/bitstreams/c998c325-a5af-4629-adf1-e896c95f7c71/download9c0584ef46b3d9e005a0e8b829151dd4MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/96c05d7e-0e5d-4548-a1c7-404e8643c259/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILThesis final.pdf.jpgThesis final.pdf.jpgIM Thumbnailimage/jpeg9629https://repositorio.uniandes.edu.co/bitstreams/636b282a-1d78-49fb-b47d-9828b8b84abc/download6582756bbdfef67e29f28a4ab181cb18MD55Autorizacioìn entrega de tesis-AEB MV copia.pdf.jpgAutorizacioìn entrega de tesis-AEB MV copia.pdf.jpgIM Thumbnailimage/jpeg16269https://repositorio.uniandes.edu.co/bitstreams/0aa728c2-2bdb-49ca-a1bf-b07254761c9b/downloadb3d1e0b5953658b10d36d0158492a42fMD571992/64426oai:repositorio.uniandes.edu.co:1992/644262024-03-13 14:02:34.211https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==