Harmonic analysis and the topology of spheres

The goal of this undergraduate thesis is to study the harmonic analysis in homogeneous spaces, based on the theory of representations of compact Lie groups, and how we can use this theory to find topological invariants of those spaces. Specifically, it deals with the case of spheres S^n, which can b...

Full description

Autores:
Gómez Cobos, David Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39278
Acceso en línea:
http://hdl.handle.net/1992/39278
Palabra clave:
Análisis armónico
Grupos de Lie
Espacios homogéneos
Invariantes
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_e762fc7beaae1b3e43fcf7cf672bc54f
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/39278
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::2629-1Gómez Cobos, David Santiago2fd28102-704c-4c9f-a224-9cfe8280cae8400Malakhaltsev, Mikhail A.2020-06-10T16:08:49Z2020-06-10T16:08:49Z2019http://hdl.handle.net/1992/39278u821182.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The goal of this undergraduate thesis is to study the harmonic analysis in homogeneous spaces, based on the theory of representations of compact Lie groups, and how we can use this theory to find topological invariants of those spaces. Specifically, it deals with the case of spheres S^n, which can be seen as homogeneous spaces by means of the quotient of special orthogonal groups SO(n + 1) / SO(n), and explicit calculations of its Euler character are presented. The latter with the help of the Hodge decomposition theorem and the index theorem for the Dirac-de Rham operator on the sphere"El objetivo de esta tesis de pregrado es estudiar el análisis armónico en espacios homogéneos, basado en la teoría de representaciones de grupos de Lie compactos, y cómo podemos usar esta teoría para encontrar invariantes topológicos de dichos espacios. Concretamente, se trata el caso de las esferas S^n, las cuales pueden ser vistas como espacios homogéneos por medio del cociente de grupos ortogonales especiales SO(n + 1) / SO(n), y se presentan cálculos explícitos de su característica de Euler. Esto último con la ayuda del teorema de descomposición de Hodge y el teorema de índice para el operador de Dirac-de Rham en la esfera."--Tomado del Formato de Documento de GradoMatemáticoPregrado52 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaHarmonic analysis and the topology of spheresTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAnálisis armónicoGrupos de LieEspacios homogéneosInvariantesMatemáticasPublicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2629-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::2629-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::2629-1ORIGINALu821182.pdfapplication/pdf352375https://repositorio.uniandes.edu.co/bitstreams/5e6dee9b-885d-4c06-b1ca-c8fbcbe90b36/download818343c47d38f28093d11fa2da7be773MD51THUMBNAILu821182.pdf.jpgu821182.pdf.jpgIM Thumbnailimage/jpeg6261https://repositorio.uniandes.edu.co/bitstreams/25bb1207-cd64-408f-96ff-6535a6bf4aa9/downloada5531185f3e2033fd6012168696df7b3MD55TEXTu821182.pdf.txtu821182.pdf.txtExtracted texttext/plain80492https://repositorio.uniandes.edu.co/bitstreams/5f00e23f-3cbe-4d76-9a2f-4212a409a198/downloada4c6503473dff2143364f8fb77e6d1a7MD541992/39278oai:repositorio.uniandes.edu.co:1992/392782024-03-13 12:14:50.301http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Harmonic analysis and the topology of spheres
title Harmonic analysis and the topology of spheres
spellingShingle Harmonic analysis and the topology of spheres
Análisis armónico
Grupos de Lie
Espacios homogéneos
Invariantes
Matemáticas
title_short Harmonic analysis and the topology of spheres
title_full Harmonic analysis and the topology of spheres
title_fullStr Harmonic analysis and the topology of spheres
title_full_unstemmed Harmonic analysis and the topology of spheres
title_sort Harmonic analysis and the topology of spheres
dc.creator.fl_str_mv Gómez Cobos, David Santiago
dc.contributor.advisor.none.fl_str_mv Cardona Guio, Alexander
dc.contributor.author.none.fl_str_mv Gómez Cobos, David Santiago
dc.contributor.jury.none.fl_str_mv Malakhaltsev, Mikhail A.
dc.subject.keyword.es_CO.fl_str_mv Análisis armónico
Grupos de Lie
Espacios homogéneos
Invariantes
topic Análisis armónico
Grupos de Lie
Espacios homogéneos
Invariantes
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description The goal of this undergraduate thesis is to study the harmonic analysis in homogeneous spaces, based on the theory of representations of compact Lie groups, and how we can use this theory to find topological invariants of those spaces. Specifically, it deals with the case of spheres S^n, which can be seen as homogeneous spaces by means of the quotient of special orthogonal groups SO(n + 1) / SO(n), and explicit calculations of its Euler character are presented. The latter with the help of the Hodge decomposition theorem and the index theorem for the Dirac-de Rham operator on the sphere
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-06-10T16:08:49Z
dc.date.available.none.fl_str_mv 2020-06-10T16:08:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/39278
dc.identifier.pdf.none.fl_str_mv u821182.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/39278
identifier_str_mv u821182.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 52 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/5e6dee9b-885d-4c06-b1ca-c8fbcbe90b36/download
https://repositorio.uniandes.edu.co/bitstreams/25bb1207-cd64-408f-96ff-6535a6bf4aa9/download
https://repositorio.uniandes.edu.co/bitstreams/5f00e23f-3cbe-4d76-9a2f-4212a409a198/download
bitstream.checksum.fl_str_mv 818343c47d38f28093d11fa2da7be773
a5531185f3e2033fd6012168696df7b3
a4c6503473dff2143364f8fb77e6d1a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133834869702656