Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico
A medida que avanza la sociedad y esta continúa creciendo se hace cada vez más presente la necesidad de satisfacer los requerimientos alimenticios de la población global. Tradicionalmente esto ha sido posible mediante el uso de programas de mejoramiento, junto con el uso de fertilizantes, pesticidas...
- Autores:
-
Racedo Pulido, Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/69282
- Acceso en línea:
- http://hdl.handle.net/1992/69282
- Palabra clave:
- ACCD
Bacterias
Biofertilizantes
IAA
Sideróforos
Microbiología
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_e7141569a18ee1a81d9d5593feaf880b |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/69282 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
title |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
spellingShingle |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico ACCD Bacterias Biofertilizantes IAA Sideróforos Microbiología |
title_short |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
title_full |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
title_fullStr |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
title_full_unstemmed |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
title_sort |
Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídrico |
dc.creator.fl_str_mv |
Racedo Pulido, Camilo |
dc.contributor.advisor.none.fl_str_mv |
Bernal Giraldo, Adriana Jimena Barrera Garzón, Claudia Camila |
dc.contributor.author.none.fl_str_mv |
Racedo Pulido, Camilo |
dc.contributor.researchgroup.es_CO.fl_str_mv |
LIMMA |
dc.subject.keyword.none.fl_str_mv |
ACCD Bacterias Biofertilizantes IAA Sideróforos |
topic |
ACCD Bacterias Biofertilizantes IAA Sideróforos Microbiología |
dc.subject.themes.es_CO.fl_str_mv |
Microbiología |
description |
A medida que avanza la sociedad y esta continúa creciendo se hace cada vez más presente la necesidad de satisfacer los requerimientos alimenticios de la población global. Tradicionalmente esto ha sido posible mediante el uso de programas de mejoramiento, junto con el uso de fertilizantes, pesticidas y otros agroquímicos, sin embargo, este acercamiento genera efectos adversos en el medio ambiente como lixiviación, contaminación, eutrofización, etc. Por esta razón, una alternativa que se ha evaluado para favorecer el crecimiento y producción de sistemas agrícolas se basa en el uso de bacterias promotoras del crecimiento vegetal (PGPB), las cuales funcionan como biofertilizantes, fitoestimuladores, biocontroladores o biorremediadores, siendo una alternativa sostenible para aumentar la producción agrícola. Para este proyecto de tesis se evaluó el potencial de 184 bacterias pertenecientes a la colección del Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura (LIMMA) para promover crecimiento vegetal y aliviar estrés hídrico por medio de pruebas bioquímicas. Para esto, se analizó la capacidad de las bacterias para producir ácido indol-3-ácetico (IAA), producir sideróforos, solubilizar fosfato, crecer en medio libre de nitrógeno, producir ácido 1-aminociclopropano-1-carboxílico desaminasa (ACCD) y producir exopolisacáridos. Adicionalmente se hizo una amplificación del gen nifH para las bacterias que presentaban crecimiento en medio libre de N y se secuenció el gen 16S para las bacterias con una mayor cantidad de pruebas positivas. Finalmente, se realizaron ensayos in vitro utilizando Arabidopsis thaliana como un primer acercamiento a promoción de crecimiento en modelos vegetales. Se encontró que la mayoría de las bacterias aisladas producían IAA, sideróforos y solubilizaban fosfatos, mientras que la producción de ACCD y fijación de nitrógeno fueron las características encontradas en menor proporción. Además, en los ensayos realizados en Arabidopsis se logró encontrar una bacteria que promovía crecimiento por lo cual debería ser considerada para estudios futuros como una PGPB. Sin embargo, se deben realizar ensayos en ambientes con condiciones más reales y con diferentes plantas para caracterizar la capacidad de esta bacteria como PGPB. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-04T20:49:22Z |
dc.date.available.none.fl_str_mv |
2023-08-04T20:49:22Z |
dc.date.issued.none.fl_str_mv |
2023-08-03 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/69282 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/69282 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Acevedo, E., Galindo-Castañeda, T., Prada, F., Navia, M. & Romero, H. M. (2014). Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology, 80, 26-33. https://doi.org/10.1016/j.apsoil.2014.03.011 Aguilar, A.; Etchevers, J. D. & Castellanos, J. Z. (1987). Análisis químico para evaluar la fertilidad del suelo. Ed. Sociedad Mexicana de la Ciencia del Suelo. Ahmed, E., & Holmström, S. J. M. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196-208. https://doi.org/10.1111/1751-7915.12117 Alaylar, B., Egamberdieva, D., Gulluce, M., Karadayi, M., & Arora, N. K. (2020). Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World Journal of Microbiology and Biotechnology, 36(7). https://doi.org/10.1007/s11274-020-02870-x Albelda-Berenguer, M., Monachon, M., & Joseph, E. (2019). Siderophores: From natural roles to potential applications. En Advances in Applied Microbiology (pp. 193-225). Elsevier BV. https://doi.org/10.1016/bs.aambs.2018.12.001 Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39-45. https://doi.org/10.1007/bf00369386 Ali, S. Z., Sandhya, V. & Venkateswar Rao, L. (2013). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2), 493-502. https://doi.org/10.1007/s13213-013-0680-3 Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971 Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140. Bianco, C. L., Imperlini, E., Calogero, R. A., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia colis defences to stress. Archives of Microbiology, 185(5), 373-382. https://doi.org/10.1007/s00203-006-0103-y Broeckling, C., Manter, D., Paschke, M., & Vivanco, J. (2008). Rhizosphere Ecology. Encyclopedia of Ecology, 3030-3035. https://doi.org/10.1016/b978-008045405-4.00540-1 Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 64(1), 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106 Cornelis, P., & Matthijs, S. (2007). Pseudomonas Siderophores and their Biological Significance. En Springer eBooks (pp. 193-203). https://doi.org/10.1007/978-3-540-71160-5_9 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104(20), 8607-8619. https://doi.org/10.1007/s00253-020-10869-5 Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek, 106(1), 85-125. https://doi.org/10.1007/s10482-013-0095-y Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8). https://doi.org/10.1073/pnas.1414592112 El-Sayed, A.A.; Elenein, R.A.; Shalaby, E.E.; Shalan, M.A.; Said, M.A. Response of barley to biofertilizer with N and P application under newly reclaimed areas in Egypt. In Proceedings of the 3rd International Crop Science Congress (ICSC), Hamburg, Germany, 17-22 August 2000; pp. 17-22 Ferreira, C. M., Soares, H. M. & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225 Gaby, J. C., & Buckley, D. H. (2012, 25 julio). A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042149 Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401 Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009 Grobelak, A., & Hiller, J. (2017). Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 19(9), 825-833. https://doi.org/10.1080/15226514.2017.1290581 Habibi, S., Djedidi, S., Ohkama-Ohtsu, N., Sarhadi, W. A., Kojima, K., Rallos, R. V., Ramirez, M. S., Yamaya, H., Sekimoto, H., & Yokoyama, T. (2019). Isolation and Screening of Indigenous Plant Growth-promoting Rhizobacteria from Different Rice Cultivars in Afghanistan Soils. Microbes and Environments, 34(4), 347-355. https://doi.org/10.1264/jsme2.me18168 Hakeem, K. R., Dar, G. H., Mehmood, M. A., & Bhat, R. A. (Eds.). (2021). Microbiota and Biofertilizers. Springer. https://doi.org/10.1007/978-3-030-48771-3 Himedia (2020). Ashby's Mannitol Agar [M706]. Himedia Huang, J., Xu, C., Ridoutt, B. G., Wang, X., & Ren, P. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171-179. https://doi.org/10.1016/j.jclepro.2017.05.008 Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-microbe Interactions, 20(6), 619-626. https://doi.org/10.1094/mpmi-20-6-0619 Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386-1389. https://doi.org/10.1093/bioinformatics/btq098 Lamers, J. G., Schippers, B., & Geels, F. P. (1988). Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, associated with disease resistance. Cereal breeding related to integrated cereal production, 134-139. Le, C., & Stuckey, D. C. (2016). Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation. Water Research, 94, 280-287. https://doi.org/10.1016/j.watres.2016.03.008 Louden, B. C., Haarmann, D. & Lynne, A. M. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education, 12(1), 51-53. https://doi.org/10.1128/jmbe.v12i1.249 M. Stella & M. Suhaimi. (2009). Selection of suitable growth medium for free-living diazotrophs isolated from compost. Journal of Tropical Agriculture and Food Science, 38(2), 211-219. Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. Plant Nutrients and Abiotic Stress Tolerance, 171-190. https://doi.org/10.1007/978-981-10-9044-8_7 Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition, 13(3), 638-649. Epub 27 de agosto de 2013.https://dx.doi.org/10.4067/S0718-95162013005000051 Motsim, B., Matiullah, K., Asghari, B., Tamoor, U. H., Asia M., & Ali Raza G. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture, Geomicrobiology Journal, 36:10, 904-916, DOI: 10.1080/01490451.2019.1654043 Nascimento, F. J. A., Rossi, M. J., Soares, C. M., McConkey, B. J., & Glick, B. R. (2014). New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLOS ONE, 9(6), e99168. https://doi.org/10.1371/journal.pone.0099168 Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A. & AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21-32. https://doi.org/10.1016/j.micres.2018.02.003 Paque, S., & Weijers, D. (2016). Q&A: Auxin: the plant molecule that influences almost anything. BMC Biology, 14(1). https://doi.org/10.1186/s12915-016-0291-0 Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207-220. https://doi.org/10.1139/m96-032 Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x Percival Scientific, Inc. (2023, February 27). AR-66L3 - Percival Scientific, Inc. https://www.percival-scientific.com/product/ar-66l3/ Pieterse, C. M. J., Berendsen, R. L., De Jonge, R., Stringlis, I. A., Van Dijken, A. J., Van Pelt, J. A., Van Wees, S. C. M., Yu, K., Zamioudis, C., & Bakker, P. (2021). Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 461(1-2), 245-263. https://doi.org/10.1007/s11104-020-04786-9 Pilbeam, D. J. (2010). The Utilization of Nitrogen by Plants: A Whole Plant Perspective. Annual Plant Reviews Volume 42, 305-351. https://doi.org/10.1002/9781444328608.ch13 Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152(1), 95-103. https://doi.org/10.1016/s0923-2508(00)01172-4 Postgate, J. R. (1971). Chapter XIII The Acetylene Reduction Test for Nitrogen Fixation. Methods in Microbiology, 343-356. https://doi.org/10.1016/s0580-9517(08)70604-4 Poza-Carrión, C., Jiménez-Vicente, E., Navarro-Rodríguez, M., Echavarri-Erasun, C., & Rubio, L. M. (2014). Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium. Journal of Bacteriology, 196(3), 595-603. https://doi.org/10.1128/jb.00942-13 Prabhu, N., Borkar, S., & Garg, S. (2019). Phosphate solubilization by microorganisms. En Elsevier eBooks (pp. 161-176). https://doi.org/10.1016/b978-0-12-817497-5.00011-2 Prudêncio de Araújo, V. L. V., Lira Junior, M. A., Souza Júnior, V. S. D., de Araújo Filho, J. C., Cury Fracetto, F. J., Andreote, F. D., de Araujo Pereira, A. P., Mendes Júnior, J. P., Rêgo Barros, F. M. D. & Monteiro Fracetto, G. G. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564 Puri, A., Padda, K. P., & Chanway, C. P. (2018). Nitrogen-Fixation by endophytic bacteria in agricultural crops: recent advances. En InTech eBooks. https://doi.org/10.5772/intechopen.71988 Ramakrishna, W., Yadav, R. & Li, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138, 10-18. https://doi.org/10.1016/j.apsoil.2019.02.019 Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. https://doi.org/10.3390/plants8020034 Sae, K. S., Ah, S. A., Has, I. A., & Ahme, P. H. (2015). Effect of Bio-fertilizer and Chemical Fertilizer on Growth and Yield in Cucumber (Cucumis sativus) in Green House Condition. Pakistan Journal of Biological Sciences, 18(3), 129-134. https://doi.org/10.3923/pjbs.2015.129.134 Saha, B., Saha, S., Das, A., Bhattacharyya, P. K., Basak, N., Sinha, A. K., & Poddar, P. (2017). Biological Nitrogen Fixation for Sustainable Agriculture. Agriculturally Important Microbes for Sustainable Agriculture, 81-128. https://doi.org/10.1007/978-981-10-5343-6_4 Sahasrabudhe, M. M. (2011). Screening of rhizobia for indole acetic acid production. Annals of Biological Research, 2(4), 460-468. https://www.cabdirect.org/cabdirect/abstract/20113309067 Sargun, A., Gerner, R. R., Raffatellu, M., & Nolan, E. M. (2021). Harnessing Iron Acquisition Machinery to Target Enterobacteriaceae. The Journal of Infectious Diseases, 223(Supplement_3), S307-S313. https://doi.org/10.1093/infdis/jiaa440 Sarker, A., & Al-Rashid, J. (2013). Analytical protocol for determination of Indole 3 acetic acid (IAA) production by Plant Growth Promoting Bacteria (PGPB) (pp. 1-2). Technical report of Quantification of IAA by microbes. Sarwar, S., Khaliq, A., Yousra, M., Sultan, T., Ahmad, N., & Khan, M. S. (2020). Screening of Siderophore-Producing PGPRs Isolated from Groundnut (Arachis hypogaea L.) Rhizosphere and Their Influence on Iron Release in Soil. Communications in Soil Science and Plant Analysis, 51(12), 1680-1692. https://doi.org/10.1080/00103624.2020.1791159 Sayyed, R. Z., Chincholkar, S. B., Reddy, M. V., Gangurde, N. S., & Patel, P. M. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. En Springer eBooks (pp. 449-471). https://doi.org/10.1007/978-3-642-33639-3_17 Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675 (2012). https://doi.org/10.1038/nmeth.2089 Sepp, S., Vasar, M., Davison, J., Oja, J., Anslan, S., Al-Quraishy, S., Bahram, M., Bueno, C. G., Cantero, J. J., Fabiano, E., Decocq, G., Drenkhan, R., Fraser, L. H., Oriel, R. G., Hiiesalu, I., Laanisto, L., Kõljalg, U., Moora, M., Mucina, L., . . . Zobel, M. (2023). Global diversity and distribution of nitrogen-fixing bacteria in the soil. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1100235 Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-587 Shekhawat, K., Fröhlich, K., García-Ramírez, G. X., Trapp, M. A., & Hirt, H. (2022). Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells, 12(1), 31. https://doi.org/10.3390/cells12010031 Singh, R. P., Ma, Y., & Shadan, A. (2022). Perspective of ACC-deaminase producing bacteria in stress agriculture. Journal of Biotechnology, 352, 36-46. https://doi.org/10.1016/j.jbiotec.2022.05.002 Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00937 Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011 Spaepen, S., & Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. https://doi.org/10.1101/cshperspect.a001438 Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Nitrogen Fixation and Diazotrophs - A Review. Romanian Biotechnological Letters, 26(4), 2834-2845. https://doi.org/10.25083/rbl/26.4/2834-2845 Sundara-Rao, W. V. B. S., & Sinha, M. K. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences, 33(4), 272-278. https://eurekamag.com/research/025/231/025231385.php Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2), 137-144. https://doi.org/10.1007/s00253-006-0380-z Wagner, S. C. (2011). Biological Nitrogen Fixation. Nature. https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/ Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. Biometals, 27(4), 623-631. https://doi.org/10.1007/s10534-014-9739-2 Widyantoro, A., H., & S. (2018). Antagonism and compatibility of biofertilizer bacteria toward Fusarium oxysporum f. sp. cubense. Asian Journal of Agriculture and Biology, 7(2), 263-268. https://www.cabdirect.org/cabdirect/abstract/20203305435 Zymo Research. (2017). YeaStar Genomic DNA Kit. Zymo Research International. https://zymoresearch.eu/products/yeastar-genomic-dna-kit |
dc.rights.uri.none.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
52 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Microbiología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/099ccb0e-1b1f-45b3-a08d-a997a04c22fd/download https://repositorio.uniandes.edu.co/bitstreams/7251b587-11b0-466c-98cd-19bd049c7cd8/download https://repositorio.uniandes.edu.co/bitstreams/950edaae-aa41-4c77-9b12-e505863cd623/download https://repositorio.uniandes.edu.co/bitstreams/5d4828eb-babc-40b8-8f1b-fed2a2819b76/download https://repositorio.uniandes.edu.co/bitstreams/ece7fffc-e648-4fa8-90ea-49f7a5541420/download https://repositorio.uniandes.edu.co/bitstreams/cd57d5f0-c5dd-4ebc-9f1d-50a26fc29419/download https://repositorio.uniandes.edu.co/bitstreams/cf3491a3-e045-4d17-a164-a03d55019b73/download |
bitstream.checksum.fl_str_mv |
1f6cc630ad95fdc405f1ef034ed08ab6 08b106dfeb12472e88207a069e15ba30 afc3e0c671036605c33537bc772cd3fe 8eee0ca877d8b9f26f09f23c05162ead 5aa5c691a1ffe97abd12c2966efcb8d6 f879c77cacac80b1c1befc1adccd2bb8 2e4c45a314a1fe6e17c6445274fb8453 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133893551161344 |
spelling |
Bernal Giraldo, Adriana Jimena721a9490-6cc8-4365-b58a-154fb21deb4a600Barrera Garzón, Claudia Camilab76b9ecc-07ab-45d6-a9db-3e8191843a03600Racedo Pulido, Camilo74b30f32-fb8d-4214-9d43-967c1e4ce14b600LIMMA2023-08-04T20:49:22Z2023-08-04T20:49:22Z2023-08-03http://hdl.handle.net/1992/69282instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/A medida que avanza la sociedad y esta continúa creciendo se hace cada vez más presente la necesidad de satisfacer los requerimientos alimenticios de la población global. Tradicionalmente esto ha sido posible mediante el uso de programas de mejoramiento, junto con el uso de fertilizantes, pesticidas y otros agroquímicos, sin embargo, este acercamiento genera efectos adversos en el medio ambiente como lixiviación, contaminación, eutrofización, etc. Por esta razón, una alternativa que se ha evaluado para favorecer el crecimiento y producción de sistemas agrícolas se basa en el uso de bacterias promotoras del crecimiento vegetal (PGPB), las cuales funcionan como biofertilizantes, fitoestimuladores, biocontroladores o biorremediadores, siendo una alternativa sostenible para aumentar la producción agrícola. Para este proyecto de tesis se evaluó el potencial de 184 bacterias pertenecientes a la colección del Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura (LIMMA) para promover crecimiento vegetal y aliviar estrés hídrico por medio de pruebas bioquímicas. Para esto, se analizó la capacidad de las bacterias para producir ácido indol-3-ácetico (IAA), producir sideróforos, solubilizar fosfato, crecer en medio libre de nitrógeno, producir ácido 1-aminociclopropano-1-carboxílico desaminasa (ACCD) y producir exopolisacáridos. Adicionalmente se hizo una amplificación del gen nifH para las bacterias que presentaban crecimiento en medio libre de N y se secuenció el gen 16S para las bacterias con una mayor cantidad de pruebas positivas. Finalmente, se realizaron ensayos in vitro utilizando Arabidopsis thaliana como un primer acercamiento a promoción de crecimiento en modelos vegetales. Se encontró que la mayoría de las bacterias aisladas producían IAA, sideróforos y solubilizaban fosfatos, mientras que la producción de ACCD y fijación de nitrógeno fueron las características encontradas en menor proporción. Además, en los ensayos realizados en Arabidopsis se logró encontrar una bacteria que promovía crecimiento por lo cual debería ser considerada para estudios futuros como una PGPB. Sin embargo, se deben realizar ensayos en ambientes con condiciones más reales y con diferentes plantas para caracterizar la capacidad de esta bacteria como PGPB.As society advances and continues growing, the need for global food safety is becoming more and more evident. Traditionally, this has been achieved by the implementations of crop improvement programs with concomitant use of fertilizers, pesticides, and other agrochemicals, but the use of these products generates negative effects on the environment such as lixiviation, pollution, eutrophication, etc. For this reason, an alternative that has been evaluated to enhance plant growth and yield is the use of plant growth promoting bacteria (PGPB), which have been shown to function as biofertilizers, phytostimulants, biocontrollers or biorremediators, as an alternative for increasing agricultural yield. For this thesis project the ability as plant growth promoters and the capacity to alleviate water stress was tested for 184 bacteria belonging to the collection of the Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura (LIMMA) using biochemical tests. The capability to produce indole 3 acetic acid (IAA) was evaluated, as well as siderophores production, phosphate solubilization, growth on nitrogen free medium, 1- aminocyclopropane-1-carboxylate deaminase production and exopolysaccharides production. Additionally, for bacteria which grew on N free medium the nifH gen was amplified and the bacteria with the highest amount of positive test the 16S gen was sequenced. Finally, in vitro tests were performed using Arabidopsis thaliana as a first approach for testing growth promotion in plant models. The results showed that most of the bacteria analyzed could produce IAA, siderophores and solubilize phosphate; meanwhile, nitrogen fixation and the production of ACCD were found in lower proportions. Additionally, the Arabidopsis assays showed that one bacteria had the capacity to promote growth at least in this plant model and should be studied more as a PGPB. Nevertheless, it is important to do more tests implementing real growth conditions and with different plant models to further evaluate the capacity of this bacteria as a PGPB.MicrobiólogoPregradoPGPBBiofertilizantesCultivos52 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caracterización de bacterias aisladas de la rizosfera de sacha inchi (Plukenetia volubilis) asociadas a la promoción de crecimiento vegetal y protección contra estrés hídricoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPACCDBacteriasBiofertilizantesIAASideróforosMicrobiologíaAcevedo, E., Galindo-Castañeda, T., Prada, F., Navia, M. & Romero, H. M. (2014). Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology, 80, 26-33. https://doi.org/10.1016/j.apsoil.2014.03.011Aguilar, A.; Etchevers, J. D. & Castellanos, J. Z. (1987). Análisis químico para evaluar la fertilidad del suelo. Ed. Sociedad Mexicana de la Ciencia del Suelo.Ahmed, E., & Holmström, S. J. M. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196-208. https://doi.org/10.1111/1751-7915.12117Alaylar, B., Egamberdieva, D., Gulluce, M., Karadayi, M., & Arora, N. K. (2020). Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World Journal of Microbiology and Biotechnology, 36(7). https://doi.org/10.1007/s11274-020-02870-xAlbelda-Berenguer, M., Monachon, M., & Joseph, E. (2019). Siderophores: From natural roles to potential applications. En Advances in Applied Microbiology (pp. 193-225). Elsevier BV. https://doi.org/10.1016/bs.aambs.2018.12.001Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12(1), 39-45. https://doi.org/10.1007/bf00369386Ali, S. Z., Sandhya, V. & Venkateswar Rao, L. (2013). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2), 493-502. https://doi.org/10.1007/s13213-013-0680-3Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S. & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140.Bianco, C. L., Imperlini, E., Calogero, R. A., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia colis defences to stress. Archives of Microbiology, 185(5), 373-382. https://doi.org/10.1007/s00203-006-0103-yBroeckling, C., Manter, D., Paschke, M., & Vivanco, J. (2008). Rhizosphere Ecology. Encyclopedia of Ecology, 3030-3035. https://doi.org/10.1016/b978-008045405-4.00540-1Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 64(1), 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106Cornelis, P., & Matthijs, S. (2007). Pseudomonas Siderophores and their Biological Significance. En Springer eBooks (pp. 193-203). https://doi.org/10.1007/978-3-540-71160-5_9Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104(20), 8607-8619. https://doi.org/10.1007/s00253-020-10869-5Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek, 106(1), 85-125. https://doi.org/10.1007/s10482-013-0095-yEdwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8). https://doi.org/10.1073/pnas.1414592112El-Sayed, A.A.; Elenein, R.A.; Shalaby, E.E.; Shalan, M.A.; Said, M.A. Response of barley to biofertilizer with N and P application under newly reclaimed areas in Egypt. In Proceedings of the 3rd International Crop Science Congress (ICSC), Hamburg, Germany, 17-22 August 2000; pp. 17-22Ferreira, C. M., Soares, H. M. & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of The Total Environment, 682, 779-799. https://doi.org/10.1016/j.scitotenv.2019.04.225Gaby, J. C., & Buckley, D. H. (2012, 25 julio). A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042149Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1-15. https://doi.org/10.6064/2012/963401Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009Grobelak, A., & Hiller, J. (2017). Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 19(9), 825-833. https://doi.org/10.1080/15226514.2017.1290581Habibi, S., Djedidi, S., Ohkama-Ohtsu, N., Sarhadi, W. A., Kojima, K., Rallos, R. V., Ramirez, M. S., Yamaya, H., Sekimoto, H., & Yokoyama, T. (2019). Isolation and Screening of Indigenous Plant Growth-promoting Rhizobacteria from Different Rice Cultivars in Afghanistan Soils. Microbes and Environments, 34(4), 347-355. https://doi.org/10.1264/jsme2.me18168Hakeem, K. R., Dar, G. H., Mehmood, M. A., & Bhat, R. A. (Eds.). (2021). Microbiota and Biofertilizers. Springer. https://doi.org/10.1007/978-3-030-48771-3Himedia (2020). Ashby's Mannitol Agar [M706]. HimediaHuang, J., Xu, C., Ridoutt, B. G., Wang, X., & Ren, P. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171-179. https://doi.org/10.1016/j.jclepro.2017.05.008Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-microbe Interactions, 20(6), 619-626. https://doi.org/10.1094/mpmi-20-6-0619Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386-1389. https://doi.org/10.1093/bioinformatics/btq098Lamers, J. G., Schippers, B., & Geels, F. P. (1988). Soil-borne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, associated with disease resistance. Cereal breeding related to integrated cereal production, 134-139.Le, C., & Stuckey, D. C. (2016). Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation. Water Research, 94, 280-287. https://doi.org/10.1016/j.watres.2016.03.008Louden, B. C., Haarmann, D. & Lynne, A. M. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education, 12(1), 51-53. https://doi.org/10.1128/jmbe.v12i1.249M. Stella & M. Suhaimi. (2009). Selection of suitable growth medium for free-living diazotrophs isolated from compost. Journal of Tropical Agriculture and Food Science, 38(2), 211-219.Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. Plant Nutrients and Abiotic Stress Tolerance, 171-190. https://doi.org/10.1007/978-981-10-9044-8_7Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of soil science and plant nutrition, 13(3), 638-649. Epub 27 de agosto de 2013.https://dx.doi.org/10.4067/S0718-95162013005000051Motsim, B., Matiullah, K., Asghari, B., Tamoor, U. H., Asia M., & Ali Raza G. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture, Geomicrobiology Journal, 36:10, 904-916, DOI: 10.1080/01490451.2019.1654043Nascimento, F. J. A., Rossi, M. J., Soares, C. M., McConkey, B. J., & Glick, B. R. (2014). New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLOS ONE, 9(6), e99168. https://doi.org/10.1371/journal.pone.0099168Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A. & AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21-32. https://doi.org/10.1016/j.micres.2018.02.003Paque, S., & Weijers, D. (2016). Q&A: Auxin: the plant molecule that influences almost anything. BMC Biology, 14(1). https://doi.org/10.1186/s12915-016-0291-0Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207-220. https://doi.org/10.1139/m96-032Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.xPercival Scientific, Inc. (2023, February 27). AR-66L3 - Percival Scientific, Inc. https://www.percival-scientific.com/product/ar-66l3/Pieterse, C. M. J., Berendsen, R. L., De Jonge, R., Stringlis, I. A., Van Dijken, A. J., Van Pelt, J. A., Van Wees, S. C. M., Yu, K., Zamioudis, C., & Bakker, P. (2021). Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 461(1-2), 245-263. https://doi.org/10.1007/s11104-020-04786-9Pilbeam, D. J. (2010). The Utilization of Nitrogen by Plants: A Whole Plant Perspective. Annual Plant Reviews Volume 42, 305-351. https://doi.org/10.1002/9781444328608.ch13Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152(1), 95-103. https://doi.org/10.1016/s0923-2508(00)01172-4Postgate, J. R. (1971). Chapter XIII The Acetylene Reduction Test for Nitrogen Fixation. Methods in Microbiology, 343-356. https://doi.org/10.1016/s0580-9517(08)70604-4Poza-Carrión, C., Jiménez-Vicente, E., Navarro-Rodríguez, M., Echavarri-Erasun, C., & Rubio, L. M. (2014). Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium. Journal of Bacteriology, 196(3), 595-603. https://doi.org/10.1128/jb.00942-13Prabhu, N., Borkar, S., & Garg, S. (2019). Phosphate solubilization by microorganisms. En Elsevier eBooks (pp. 161-176). https://doi.org/10.1016/b978-0-12-817497-5.00011-2Prudêncio de Araújo, V. L. V., Lira Junior, M. A., Souza Júnior, V. S. D., de Araújo Filho, J. C., Cury Fracetto, F. J., Andreote, F. D., de Araujo Pereira, A. P., Mendes Júnior, J. P., Rêgo Barros, F. M. D. & Monteiro Fracetto, G. G. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564Puri, A., Padda, K. P., & Chanway, C. P. (2018). Nitrogen-Fixation by endophytic bacteria in agricultural crops: recent advances. En InTech eBooks. https://doi.org/10.5772/intechopen.71988Ramakrishna, W., Yadav, R. & Li, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138, 10-18. https://doi.org/10.1016/j.apsoil.2019.02.019Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. https://doi.org/10.3390/plants8020034Sae, K. S., Ah, S. A., Has, I. A., & Ahme, P. H. (2015). Effect of Bio-fertilizer and Chemical Fertilizer on Growth and Yield in Cucumber (Cucumis sativus) in Green House Condition. Pakistan Journal of Biological Sciences, 18(3), 129-134. https://doi.org/10.3923/pjbs.2015.129.134Saha, B., Saha, S., Das, A., Bhattacharyya, P. K., Basak, N., Sinha, A. K., & Poddar, P. (2017). Biological Nitrogen Fixation for Sustainable Agriculture. Agriculturally Important Microbes for Sustainable Agriculture, 81-128. https://doi.org/10.1007/978-981-10-5343-6_4Sahasrabudhe, M. M. (2011). Screening of rhizobia for indole acetic acid production. Annals of Biological Research, 2(4), 460-468. https://www.cabdirect.org/cabdirect/abstract/20113309067Sargun, A., Gerner, R. R., Raffatellu, M., & Nolan, E. M. (2021). Harnessing Iron Acquisition Machinery to Target Enterobacteriaceae. The Journal of Infectious Diseases, 223(Supplement_3), S307-S313. https://doi.org/10.1093/infdis/jiaa440Sarker, A., & Al-Rashid, J. (2013). Analytical protocol for determination of Indole 3 acetic acid (IAA) production by Plant Growth Promoting Bacteria (PGPB) (pp. 1-2). Technical report of Quantification of IAA by microbes.Sarwar, S., Khaliq, A., Yousra, M., Sultan, T., Ahmad, N., & Khan, M. S. (2020). Screening of Siderophore-Producing PGPRs Isolated from Groundnut (Arachis hypogaea L.) Rhizosphere and Their Influence on Iron Release in Soil. Communications in Soil Science and Plant Analysis, 51(12), 1680-1692. https://doi.org/10.1080/00103624.2020.1791159Sayyed, R. Z., Chincholkar, S. B., Reddy, M. V., Gangurde, N. S., & Patel, P. M. (2013). Siderophore Producing PGPR for Crop Nutrition and Phytopathogen Suppression. En Springer eBooks (pp. 449-471). https://doi.org/10.1007/978-3-642-33639-3_17Schneider, C., Rasband, W. & Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675 (2012). https://doi.org/10.1038/nmeth.2089Sepp, S., Vasar, M., Davison, J., Oja, J., Anslan, S., Al-Quraishy, S., Bahram, M., Bueno, C. G., Cantero, J. J., Fabiano, E., Decocq, G., Drenkhan, R., Fraser, L. H., Oriel, R. G., Hiiesalu, I., Laanisto, L., Kõljalg, U., Moora, M., Mucina, L., . . . Zobel, M. (2023). Global diversity and distribution of nitrogen-fixing bacteria in the soil. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1100235Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-587Shekhawat, K., Fröhlich, K., García-Ramírez, G. X., Trapp, M. A., & Hirt, H. (2022). Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells, 12(1), 31. https://doi.org/10.3390/cells12010031Singh, R. P., Ma, Y., & Shadan, A. (2022). Perspective of ACC-deaminase producing bacteria in stress agriculture. Journal of Biotechnology, 352, 36-46. https://doi.org/10.1016/j.jbiotec.2022.05.002Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00937Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/plants9081011Spaepen, S., & Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438. https://doi.org/10.1101/cshperspect.a001438Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Nitrogen Fixation and Diazotrophs - A Review. Romanian Biotechnological Letters, 26(4), 2834-2845. https://doi.org/10.25083/rbl/26.4/2834-2845Sundara-Rao, W. V. B. S., & Sinha, M. K. (1963). Phosphate dissolving microorganisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences, 33(4), 272-278. https://eurekamag.com/research/025/231/025231385.phpVassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71(2), 137-144. https://doi.org/10.1007/s00253-006-0380-zWagner, S. C. (2011). Biological Nitrogen Fixation. Nature. https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. Biometals, 27(4), 623-631. https://doi.org/10.1007/s10534-014-9739-2Widyantoro, A., H., & S. (2018). Antagonism and compatibility of biofertilizer bacteria toward Fusarium oxysporum f. sp. cubense. Asian Journal of Agriculture and Biology, 7(2), 263-268. https://www.cabdirect.org/cabdirect/abstract/20203305435Zymo Research. (2017). YeaStar Genomic DNA Kit. Zymo Research International. https://zymoresearch.eu/products/yeastar-genomic-dna-kit201821758PublicationTEXTTesis Micro Final Completa.pdf.txtTesis Micro Final Completa.pdf.txtExtracted texttext/plain107829https://repositorio.uniandes.edu.co/bitstreams/099ccb0e-1b1f-45b3-a08d-a997a04c22fd/download1f6cc630ad95fdc405f1ef034ed08ab6MD54201821758_ForAutEntTesisTraGraSisBib_202320.pdf.txt201821758_ForAutEntTesisTraGraSisBib_202320.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/7251b587-11b0-466c-98cd-19bd049c7cd8/download08b106dfeb12472e88207a069e15ba30MD56ORIGINALTesis Micro Final Completa.pdfTesis Micro Final Completa.pdfTrabajo de gradoapplication/pdf1508600https://repositorio.uniandes.edu.co/bitstreams/950edaae-aa41-4c77-9b12-e505863cd623/downloadafc3e0c671036605c33537bc772cd3feMD52201821758_ForAutEntTesisTraGraSisBib_202320.pdf201821758_ForAutEntTesisTraGraSisBib_202320.pdfHIDEapplication/pdf316721https://repositorio.uniandes.edu.co/bitstreams/5d4828eb-babc-40b8-8f1b-fed2a2819b76/download8eee0ca877d8b9f26f09f23c05162eadMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/ece7fffc-e648-4fa8-90ea-49f7a5541420/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTesis Micro Final Completa.pdf.jpgTesis Micro Final Completa.pdf.jpgIM Thumbnailimage/jpeg5554https://repositorio.uniandes.edu.co/bitstreams/cd57d5f0-c5dd-4ebc-9f1d-50a26fc29419/downloadf879c77cacac80b1c1befc1adccd2bb8MD55201821758_ForAutEntTesisTraGraSisBib_202320.pdf.jpg201821758_ForAutEntTesisTraGraSisBib_202320.pdf.jpgIM Thumbnailimage/jpeg15889https://repositorio.uniandes.edu.co/bitstreams/cf3491a3-e045-4d17-a164-a03d55019b73/download2e4c45a314a1fe6e17c6445274fb8453MD571992/69282oai:repositorio.uniandes.edu.co:1992/692822023-10-10 16:40:14.895https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |