Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare

Cadmium (Cd) is a naturally occurring heavy metal that poses significant environmental and health risks due to its mobility and toxicity. This study focuses on assessing Cd concentrations in soils and cacao seeds from three different cacao farms located in Calamar, Retorno, and San José in the depar...

Full description

Autores:
Giraldo Stapper, David Roberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74446
Acceso en línea:
https://hdl.handle.net/1992/74446
Palabra clave:
Guaviare
Cacao
Cadmium
ICP-MS
Atomic absorption
XRF
Geochemistry
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_e6fc9c86fa85a593f09de525d94718e5
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74446
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
title Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
spellingShingle Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
Guaviare
Cacao
Cadmium
ICP-MS
Atomic absorption
XRF
Geochemistry
Geociencias
title_short Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
title_full Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
title_fullStr Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
title_full_unstemmed Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
title_sort Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare
dc.creator.fl_str_mv Giraldo Stapper, David Roberto
dc.contributor.advisor.none.fl_str_mv Rodríguez Vargas, Andrés Ignacio
Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Giraldo Stapper, David Roberto
dc.contributor.jury.none.fl_str_mv Chapela Lara, María
dc.subject.keyword.eng.fl_str_mv Guaviare
Cacao
Cadmium
ICP-MS
Atomic absorption
XRF
Geochemistry
topic Guaviare
Cacao
Cadmium
ICP-MS
Atomic absorption
XRF
Geochemistry
Geociencias
dc.subject.themes.spa.fl_str_mv Geociencias
description Cadmium (Cd) is a naturally occurring heavy metal that poses significant environmental and health risks due to its mobility and toxicity. This study focuses on assessing Cd concentrations in soils and cacao seeds from three different cacao farms located in Calamar, Retorno, and San José in the department of Guaviare, Colombia, an area lacking prior extensive research. The primary objective of this study is to determine both total and bioavailable Cd levels to understand the potential environmental and health risks associated with cacao cultivation in this region. The findings indicate that the organic matter content in the soils of San José and Calamar exceeds the recommended lower limit, contributing to improved soil quality. However, excessive organic matter could lead to soil acidification and increased metal mobility. The pH analysis revealed acidic conditions in the Retorno sample, suggesting a potential for future heavy metal leaching. Cd concentrations in the soil samples from Guaviare were found to be below the detection limit of 30 ppb, significantly lower than those reported in other Colombian regions. The bioavailability of Cd, measured using the Tessier extraction method, showed low levels in Calamar (1.09 ppb), Retorno (2.58 ppb), and San José (1.22 ppb), correlating with the low total Cd concentrations. This study also identified factors such as soil pH and organic matter content as critical determinants of Cd bioavailability. ICP-MS analysis of cacao seeds revealed very low Cd concentrations: Calamar (49.29 ppb), Retorno (95.43 ppb), and San José (51.23 ppb), well below international safety standards set by EFSA, WHO, and the EU. This alleviates concerns regarding the commercial viability of cacao products from Guaviare, as the Cd levels do not pose a significant health risk. The present thesis shows the complexity of Cd distribution and recommends that future research should focus on long-term monitoring of Cd bioavailability and soil-plant interactions to inform sustainable agricultural practices and mitigate potential health risks.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-03T20:35:43Z
dc.date.available.none.fl_str_mv 2024-07-03T20:35:43Z
dc.date.issued.none.fl_str_mv 2024-06-19
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74446
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74446
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Barraza, F., Schreck, E., Léveque, T., Uzu, G., Lopéz, F., Ruales, J., & Maurice, L. (2017). Cadmium Bioaccumulation and Gastric Bioaccessibility in Cacao: a Field Study in Areas Impacted by Oil Activities in Ecuador. Environmental Pollution, 229, 950-963. doi:10.1016/j.envpol.2017.07.080
Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., . . . Rodríguez, E. A. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Journal of Agronomy, 11, 761, 1-18. doi:https://doi.org/10.3390/agronomy11040761
Bravo, D., Pardo-Díaz, s., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & LeonMoreno, C. (2017). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeasthern Colombia. Journal Of Applied Microbiology, 1175-1194. doi:doi:10.1111/jam.13698
Bravo, D., Quiroga-Mateus, R., López-Casallas, M., Torres, S., Contreras, R., Otero, A. C., . . . González-Orozco, C. E. (2024). Assessing the cadmium content of cacao crops in Arauca, Colombia. Environ Monit Assess, 196, 1-17. doi:https://doi.org/10.1007/s10661-024-12539-9
Dekeyrel, J., Atkinson, R., Chavez, E., Silva, M. D., Idarraga-Castaño, O., Pulleman, M., & Smolders, E. (2024). Using Optimized Monochomatic Energy Dispersive X-ray Fluorescence to Analyze the Cadmium Concentrations In Cacao Soil Samples. Division of Soil and Water Managment, 1-17. doi:https://dx.doi.org/10.2139/ssrn.4782221
Ene, A., Bosneaga, A., & Georgescu, L. (2010). Determination of Heavy Metals In Soils Using XRF Technique. Romania: Duranea de Jos University of Galati, Faculty of Sciences.
European Commission. (2014). no. 488/2014 Maximum Levels of Cadmium on Foodstuffs. Commission Regulation (EU), 1-5.
European Food Safety Authority. (2009). EFSA sets lower tolerable intake level for damium in food. Parma: EFSA. Retrieved from https://www.efsa.europa.eu/en/news/efsasets-lower-tolerable-intake-level-cadmium-food
FAO. (2020). Soil Testing Methods - Global soil Doctors Programme - A farmer-to-farmer training programme. Rome: Food and Agriculture Organization of the United Nations. doi: https://doi.org/10.4060/ca2796en
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 1-24. doi: doi:10.3390/ijerph17113782
Guerrero, M., & Pineda, V. (2016). Contaminación del suelo en la zona minera de Rasgatá Bajo (Tausa). Modelo Conceptual. Ciencia e Ingeniería Neogranadina, 1.
Guney, M., & Zagury, G. J. (2013). Guney, M., & Zagury, G. J. (2013). Contamination by Ten Harmful Elements in Toys and Children’s Jewelry Bought on the North American Market. Environmental Science & Technology, 47(11), 1-10. doi:https://doi.org/10.1021/es304969n
Iverson, A. (1964). The Measured Resistivity of Pure Water and Determination of the Limiting Mobility of OH-from 5 to 55. The Journal of Physical Chemistry, 68(3), 515-521. doi:doi.org/10.1021/j100785a012
Jimenez, C. (2015). Estado Legal Mundial del cadmio en Cacao (Theobroma cacao). Fantasía o Realidad Producción + Limpia, 89-104.
Joya-Barrero, V., Huguet, C., & Pearse, J. (2023). Natural and Anthropogenic Sources of Cadmium in Cacao Crop Soils of Santander, Colombia. Soil Systems, 1-18. doi: https://doi.org/10.3390/soilsystems7010012
Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants. Trace Elements in Soils and Plants, Fourth Edition. doi:https://doi.org/10.1201/b10158
Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 92-107. doi:https://doi.org/10.1016/j.apgeochem.2019.104388
Li, R., Xu, J., Luo, J., Yang, P., Hu, Y., & Ning, W. (2022). Spatial Distribution Characteristics, Influencing Factors, and Soruce Distribution of Soil Cadmium in Shantou City, Guangdong Province. Ecotoxicology and Environmental Saftey, 244, 1-12. doi:https://doi.org/10.1016/j.ecoenv.2022.114064
Liu, J., Li, J., Wolfe, K., Perrotta, B., & Cobb, G. P. (2021). Mobility of Arsenic in the Growth media of Rice Plants (Oryza sativa subsp. japonica. ’Koshihikari’) with Exposure to Copper Oxide Nanoparticles in a Life-Cycle Greenhouse Study. Sci. Total Environ, 774, 1.9. doi:https://doi.org/10.1016/j.scitotenv.2021.145620
Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. National Soil Resources Institute, Cranfield University, 1-18. doi:https://doi.org/10.1016/S0167-1987(02)00139-3
McGrath, S. (1999). Adverse effects of cadmium on soil microflora and Fauna. Cadmium in Soils and Plants ed.McLaughlin, M.J. and Singh, B.R, 199-218. doi:DOI: 10.1007/978-94-011-4473-5_8
Mortensen, l. H., Ronn, R., & Vestergard, M. (2018). Bioaccumulation of Cadmium in Soil Organisms - With Focus on Wood Ash Application. Ecotoxicology and Environmental Safety, 452-462. doi:10.1016/j.ecoenv.2018.03.018
Moulis, J.-M., & Thévenod, F. (2010). New Perspectives in cadmium toxicity: an introduction. Biometals, 23, 763-768. doi:https://doi.org/10.1007/s10534-010-9365-6
Nivia, A., Giraldo, M. I., Arango, M. I., Albarracín, H. A., G.Bemúdez, J., & Zapata, G. (2011). Geología de la Plancha 350 San José del Guaviare. Servicio Geologico Colombiano, 2-5
Powlson, D. S., & Neal, A. (2021). Influence of Organic Matter on Soil Properties: By How Much can Organic Carbon be Increased in Arable Soils and can Changes be Measured. Proceddings of the International Fertiliser Society, 1-32. Retrieved from https://fertiliser-society.org/ifs-events/2021-ifs-agronomic-conference/
Profrock, D., Prange, A., Helmholtz, & Geesthacht. (2012). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Quantitative Analysis in Environmental and Life Sciences: A review of Challenges, Solutions, and Trends. Department Marine Bioanalytical Chemistry, 843-868. doi:https://doi.org/10.1366/12-06681
Reid, M., Spencer, K., & Shotbolt, L. (2011). An appraisal of microwave-assisted Tessier and BCR sequential extraction methods for the analysis of metals in sediments and soils. (Vol. 11). Journal of Soils and Sediments. doi:https://doi.org/10.1007/s11368-011- 0340-9
Rincón, D. L., & Concha, A. E. (2018). Petrografía y Geoquímica de la Sienita Nefelínica de San José del GUaviare en cercanías de El Capricho. Geología Colombiana, Vol. 41., 27-42.
Serviminas S.A.S. (2018|). Mapa Geologicó de la Plancha 372, El Retorno. Bogotá: Servicio Geologico Colombiano. Retrieved from https://srvags.sgc.gov.co/Flexviewer/Estado_Cartografia_Geologica/
Tangarife, D. C., & Lasprilla, D. (2016). Metricas de Calidad de Suelos y Aguas como Indicadores de Desarrollo Sostenible en las Cabeceras del Corregimiento la Florida. Universidad Libre Seccional Pereira; Ciencias de la Salud, 39-51.
Thompson, M., & Wood, S. J. (1982). Atomic-Absorption Methods in applied Geochemistry. Applied Geochemistry Research Group; Department of Geology, Imperial College, 261-284. doi:https://doi.org/10.1016/S0167-9244(08)70089-1
WHO. (2017). Guidlines for drinking-water quality. Wolrd Health Organization, 4, 155-180.
WHO. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. (Vol. 4). Geneva: World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789240045064
World Health Organization. (2021). Cadmium Food Contaminants Evaluation. Geneva: WHO. Retrieved from https://apps.who.int/food-additives-contaminants-jecfadatabase/Home/Chemical/1376
Yanai, J., Okada, T., & Yamada, H. (2012). Elemental Composition of agricultural soils in Japan in relation to soil type, land use and region. Kyoto: Soil Science and Plant Nutrition. doi:http://dx.doi.org/10.1080/00380768.2012.658349
Z-SPEC. (2023). E-Max Portable Heavy Metal Analyzer for Soil and Food. Retrieved from ZSPECIN: https://zspecinc.com/e-max
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 39 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Geociencias
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Geociencias
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/5d312569-3bf6-480b-bd2c-3395223e86b4/download
https://repositorio.uniandes.edu.co/bitstreams/e0e918af-4a84-4cb5-896c-8eb78aa21849/download
https://repositorio.uniandes.edu.co/bitstreams/c77530f1-265d-46c8-b3c5-43d1414c9aaf/download
https://repositorio.uniandes.edu.co/bitstreams/d8b72b91-e997-4a5a-8021-166e350422e3/download
https://repositorio.uniandes.edu.co/bitstreams/eb49d6eb-171d-4bf0-86e6-342096711d21/download
https://repositorio.uniandes.edu.co/bitstreams/cab5237d-502b-48e7-9e0d-1b74f856c14a/download
https://repositorio.uniandes.edu.co/bitstreams/11e2a3eb-70e4-45a7-a610-55b59883a0a8/download
https://repositorio.uniandes.edu.co/bitstreams/1e15ad36-d49d-484f-a807-afd5e5e08688/download
bitstream.checksum.fl_str_mv 530e259b69aa3fbf8849720619feadc8
795115a5569820bd1845b778e954c79e
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
af9f9910e9d7ed6a69469fe56b2b4d84
8858e4cb340682ee4be40de1f70bf12c
33cd46616c0e3e2dcb453d248811b8fc
06169b7e3be5f2e659b99a5824fc1e3c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133982921293824
spelling Rodríguez Vargas, Andrés IgnacioEickmann, Benjaminvirtual::18551-1Giraldo Stapper, David RobertoChapela Lara, María2024-07-03T20:35:43Z2024-07-03T20:35:43Z2024-06-19https://hdl.handle.net/1992/74446instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cadmium (Cd) is a naturally occurring heavy metal that poses significant environmental and health risks due to its mobility and toxicity. This study focuses on assessing Cd concentrations in soils and cacao seeds from three different cacao farms located in Calamar, Retorno, and San José in the department of Guaviare, Colombia, an area lacking prior extensive research. The primary objective of this study is to determine both total and bioavailable Cd levels to understand the potential environmental and health risks associated with cacao cultivation in this region. The findings indicate that the organic matter content in the soils of San José and Calamar exceeds the recommended lower limit, contributing to improved soil quality. However, excessive organic matter could lead to soil acidification and increased metal mobility. The pH analysis revealed acidic conditions in the Retorno sample, suggesting a potential for future heavy metal leaching. Cd concentrations in the soil samples from Guaviare were found to be below the detection limit of 30 ppb, significantly lower than those reported in other Colombian regions. The bioavailability of Cd, measured using the Tessier extraction method, showed low levels in Calamar (1.09 ppb), Retorno (2.58 ppb), and San José (1.22 ppb), correlating with the low total Cd concentrations. This study also identified factors such as soil pH and organic matter content as critical determinants of Cd bioavailability. ICP-MS analysis of cacao seeds revealed very low Cd concentrations: Calamar (49.29 ppb), Retorno (95.43 ppb), and San José (51.23 ppb), well below international safety standards set by EFSA, WHO, and the EU. This alleviates concerns regarding the commercial viability of cacao products from Guaviare, as the Cd levels do not pose a significant health risk. The present thesis shows the complexity of Cd distribution and recommends that future research should focus on long-term monitoring of Cd bioavailability and soil-plant interactions to inform sustainable agricultural practices and mitigate potential health risks.Pregrado39 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geochemical analysis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of GuaviareTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPGuaviareCacaoCadmiumICP-MSAtomic absorptionXRFGeochemistryGeocienciasBarraza, F., Schreck, E., Léveque, T., Uzu, G., Lopéz, F., Ruales, J., & Maurice, L. (2017). Cadmium Bioaccumulation and Gastric Bioaccessibility in Cacao: a Field Study in Areas Impacted by Oil Activities in Ecuador. Environmental Pollution, 229, 950-963. doi:10.1016/j.envpol.2017.07.080Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., . . . Rodríguez, E. A. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Journal of Agronomy, 11, 761, 1-18. doi:https://doi.org/10.3390/agronomy11040761Bravo, D., Pardo-Díaz, s., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & LeonMoreno, C. (2017). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeasthern Colombia. Journal Of Applied Microbiology, 1175-1194. doi:doi:10.1111/jam.13698Bravo, D., Quiroga-Mateus, R., López-Casallas, M., Torres, S., Contreras, R., Otero, A. C., . . . González-Orozco, C. E. (2024). Assessing the cadmium content of cacao crops in Arauca, Colombia. Environ Monit Assess, 196, 1-17. doi:https://doi.org/10.1007/s10661-024-12539-9Dekeyrel, J., Atkinson, R., Chavez, E., Silva, M. D., Idarraga-Castaño, O., Pulleman, M., & Smolders, E. (2024). Using Optimized Monochomatic Energy Dispersive X-ray Fluorescence to Analyze the Cadmium Concentrations In Cacao Soil Samples. Division of Soil and Water Managment, 1-17. doi:https://dx.doi.org/10.2139/ssrn.4782221Ene, A., Bosneaga, A., & Georgescu, L. (2010). Determination of Heavy Metals In Soils Using XRF Technique. Romania: Duranea de Jos University of Galati, Faculty of Sciences.European Commission. (2014). no. 488/2014 Maximum Levels of Cadmium on Foodstuffs. Commission Regulation (EU), 1-5.European Food Safety Authority. (2009). EFSA sets lower tolerable intake level for damium in food. Parma: EFSA. Retrieved from https://www.efsa.europa.eu/en/news/efsasets-lower-tolerable-intake-level-cadmium-foodFAO. (2020). Soil Testing Methods - Global soil Doctors Programme - A farmer-to-farmer training programme. Rome: Food and Agriculture Organization of the United Nations. doi: https://doi.org/10.4060/ca2796enGenchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 1-24. doi: doi:10.3390/ijerph17113782Guerrero, M., & Pineda, V. (2016). Contaminación del suelo en la zona minera de Rasgatá Bajo (Tausa). Modelo Conceptual. Ciencia e Ingeniería Neogranadina, 1.Guney, M., & Zagury, G. J. (2013). Guney, M., & Zagury, G. J. (2013). Contamination by Ten Harmful Elements in Toys and Children’s Jewelry Bought on the North American Market. Environmental Science & Technology, 47(11), 1-10. doi:https://doi.org/10.1021/es304969nIverson, A. (1964). The Measured Resistivity of Pure Water and Determination of the Limiting Mobility of OH-from 5 to 55. The Journal of Physical Chemistry, 68(3), 515-521. doi:doi.org/10.1021/j100785a012Jimenez, C. (2015). Estado Legal Mundial del cadmio en Cacao (Theobroma cacao). Fantasía o Realidad Producción + Limpia, 89-104.Joya-Barrero, V., Huguet, C., & Pearse, J. (2023). Natural and Anthropogenic Sources of Cadmium in Cacao Crop Soils of Santander, Colombia. Soil Systems, 1-18. doi: https://doi.org/10.3390/soilsystems7010012Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants. Trace Elements in Soils and Plants, Fourth Edition. doi:https://doi.org/10.1201/b10158Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 92-107. doi:https://doi.org/10.1016/j.apgeochem.2019.104388Li, R., Xu, J., Luo, J., Yang, P., Hu, Y., & Ning, W. (2022). Spatial Distribution Characteristics, Influencing Factors, and Soruce Distribution of Soil Cadmium in Shantou City, Guangdong Province. Ecotoxicology and Environmental Saftey, 244, 1-12. doi:https://doi.org/10.1016/j.ecoenv.2022.114064Liu, J., Li, J., Wolfe, K., Perrotta, B., & Cobb, G. P. (2021). Mobility of Arsenic in the Growth media of Rice Plants (Oryza sativa subsp. japonica. ’Koshihikari’) with Exposure to Copper Oxide Nanoparticles in a Life-Cycle Greenhouse Study. Sci. Total Environ, 774, 1.9. doi:https://doi.org/10.1016/j.scitotenv.2021.145620Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. National Soil Resources Institute, Cranfield University, 1-18. doi:https://doi.org/10.1016/S0167-1987(02)00139-3McGrath, S. (1999). Adverse effects of cadmium on soil microflora and Fauna. Cadmium in Soils and Plants ed.McLaughlin, M.J. and Singh, B.R, 199-218. doi:DOI: 10.1007/978-94-011-4473-5_8Mortensen, l. H., Ronn, R., & Vestergard, M. (2018). Bioaccumulation of Cadmium in Soil Organisms - With Focus on Wood Ash Application. Ecotoxicology and Environmental Safety, 452-462. doi:10.1016/j.ecoenv.2018.03.018Moulis, J.-M., & Thévenod, F. (2010). New Perspectives in cadmium toxicity: an introduction. Biometals, 23, 763-768. doi:https://doi.org/10.1007/s10534-010-9365-6Nivia, A., Giraldo, M. I., Arango, M. I., Albarracín, H. A., G.Bemúdez, J., & Zapata, G. (2011). Geología de la Plancha 350 San José del Guaviare. Servicio Geologico Colombiano, 2-5Powlson, D. S., & Neal, A. (2021). Influence of Organic Matter on Soil Properties: By How Much can Organic Carbon be Increased in Arable Soils and can Changes be Measured. Proceddings of the International Fertiliser Society, 1-32. Retrieved from https://fertiliser-society.org/ifs-events/2021-ifs-agronomic-conference/Profrock, D., Prange, A., Helmholtz, & Geesthacht. (2012). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Quantitative Analysis in Environmental and Life Sciences: A review of Challenges, Solutions, and Trends. Department Marine Bioanalytical Chemistry, 843-868. doi:https://doi.org/10.1366/12-06681Reid, M., Spencer, K., & Shotbolt, L. (2011). An appraisal of microwave-assisted Tessier and BCR sequential extraction methods for the analysis of metals in sediments and soils. (Vol. 11). Journal of Soils and Sediments. doi:https://doi.org/10.1007/s11368-011- 0340-9Rincón, D. L., & Concha, A. E. (2018). Petrografía y Geoquímica de la Sienita Nefelínica de San José del GUaviare en cercanías de El Capricho. Geología Colombiana, Vol. 41., 27-42.Serviminas S.A.S. (2018|). Mapa Geologicó de la Plancha 372, El Retorno. Bogotá: Servicio Geologico Colombiano. Retrieved from https://srvags.sgc.gov.co/Flexviewer/Estado_Cartografia_Geologica/Tangarife, D. C., & Lasprilla, D. (2016). Metricas de Calidad de Suelos y Aguas como Indicadores de Desarrollo Sostenible en las Cabeceras del Corregimiento la Florida. Universidad Libre Seccional Pereira; Ciencias de la Salud, 39-51.Thompson, M., & Wood, S. J. (1982). Atomic-Absorption Methods in applied Geochemistry. Applied Geochemistry Research Group; Department of Geology, Imperial College, 261-284. doi:https://doi.org/10.1016/S0167-9244(08)70089-1WHO. (2017). Guidlines for drinking-water quality. Wolrd Health Organization, 4, 155-180.WHO. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. (Vol. 4). Geneva: World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789240045064World Health Organization. (2021). Cadmium Food Contaminants Evaluation. Geneva: WHO. Retrieved from https://apps.who.int/food-additives-contaminants-jecfadatabase/Home/Chemical/1376Yanai, J., Okada, T., & Yamada, H. (2012). Elemental Composition of agricultural soils in Japan in relation to soil type, land use and region. Kyoto: Soil Science and Plant Nutrition. doi:http://dx.doi.org/10.1080/00380768.2012.658349Z-SPEC. (2023). E-Max Portable Heavy Metal Analyzer for Soil and Food. Retrieved from ZSPECIN: https://zspecinc.com/e-max201922331Publication0000-0002-6535-37500000-0002-6535-3750virtual::18551-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::18551-1cf07a914-b4d9-4b5a-95f7-940947126780cf07a914-b4d9-4b5a-95f7-940947126780virtual::18551-1ORIGINALGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdfGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdfapplication/pdf1260775https://repositorio.uniandes.edu.co/bitstreams/5d312569-3bf6-480b-bd2c-3395223e86b4/download530e259b69aa3fbf8849720619feadc8MD52autorizacion tesis_DavidGiraldo.pdfautorizacion tesis_DavidGiraldo.pdfHIDEapplication/pdf185384https://repositorio.uniandes.edu.co/bitstreams/e0e918af-4a84-4cb5-896c-8eb78aa21849/download795115a5569820bd1845b778e954c79eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/c77530f1-265d-46c8-b3c5-43d1414c9aaf/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/d8b72b91-e997-4a5a-8021-166e350422e3/download4460e5956bc1d1639be9ae6146a50347MD54TEXTGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdf.txtGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdf.txtExtracted texttext/plain63341https://repositorio.uniandes.edu.co/bitstreams/eb49d6eb-171d-4bf0-86e6-342096711d21/downloadaf9f9910e9d7ed6a69469fe56b2b4d84MD55autorizacion tesis_DavidGiraldo.pdf.txtautorizacion tesis_DavidGiraldo.pdf.txtExtracted texttext/plain1636https://repositorio.uniandes.edu.co/bitstreams/cab5237d-502b-48e7-9e0d-1b74f856c14a/download8858e4cb340682ee4be40de1f70bf12cMD57THUMBNAILGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdf.jpgGeochemical analisis of cadmium (Cd) concentrations in cacao crops and associated surface samples in the region of Guaviare.pdf.jpgGenerated Thumbnailimage/jpeg5707https://repositorio.uniandes.edu.co/bitstreams/11e2a3eb-70e4-45a7-a610-55b59883a0a8/download33cd46616c0e3e2dcb453d248811b8fcMD56autorizacion tesis_DavidGiraldo.pdf.jpgautorizacion tesis_DavidGiraldo.pdf.jpgGenerated Thumbnailimage/jpeg9671https://repositorio.uniandes.edu.co/bitstreams/1e15ad36-d49d-484f-a807-afd5e5e08688/download06169b7e3be5f2e659b99a5824fc1e3cMD581992/74446oai:repositorio.uniandes.edu.co:1992/744462024-07-04 03:10:23.079http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K