Formas de volumen en geometría sub-riemanniania
Este proyecto se enfoca en el estudio de las variedades sub-riemannianas, cuya relevancia ha sido destacada en diversas disciplinas puras y aplicadas desde mucho antes de formalizar el término actual. Estas estructuras se han utilizado en áreas como la teoría de control, la geometría no holonómica,...
- Autores:
-
Santos Bautista, Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/69265
- Acceso en línea:
- http://hdl.handle.net/1992/69265
- Palabra clave:
- Geometría sub-riemanniana
Forma de volumen de Popp
Grupos de Carnot
Distribuciones vectoriales
Matemáticas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Este proyecto se enfoca en el estudio de las variedades sub-riemannianas, cuya relevancia ha sido destacada en diversas disciplinas puras y aplicadas desde mucho antes de formalizar el término actual. Estas estructuras se han utilizado en áreas como la teoría de control, la geometría no holonómica, la teoría de grupos geométricos, la geometría simpléctica y de contacto. El objetivo central es examinar las nociones de volumen y dimensión en estas variedades y compararlas con las usadas en el caso riemanniano, haciendo énfasis en la forma de volumen de Popp cuya construcción generaliza la forma de volumen riemanniana al caso sub-riemanniano. Además, se aborda la caracterización de las variedades sub-riemannianas y se presta especial atención a los grupos de Carnot como modelos naturales de este tipo de variedades. |
---|