Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes
Estudio acerca de la viabilidad de un método simple y de bajo costo para la detección de metales pesados en aguas.
- Autores:
-
Campo Serrano, Juana Del Pilar
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/67995
- Acceso en línea:
- http://hdl.handle.net/1992/67995
- Palabra clave:
- Colorimétrico
Metales pesados
Agua
Extracción en punto de nube
Microextracción
Química
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_e65338f389e1a3ba2e6fff949ae2af29 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/67995 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
title |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
spellingShingle |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes Colorimétrico Metales pesados Agua Extracción en punto de nube Microextracción Química |
title_short |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
title_full |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
title_fullStr |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
title_full_unstemmed |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
title_sort |
Exploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenes |
dc.creator.fl_str_mv |
Campo Serrano, Juana Del Pilar |
dc.contributor.advisor.none.fl_str_mv |
Rivas Hernández, Ricardo Eusebio |
dc.contributor.author.none.fl_str_mv |
Campo Serrano, Juana Del Pilar |
dc.contributor.jury.none.fl_str_mv |
Portilla Salinas, Jaime Antonio Román Ochoa, Yony |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de Investigación Química Analítica Aplicada |
dc.subject.keyword.none.fl_str_mv |
Colorimétrico Metales pesados Agua Extracción en punto de nube Microextracción |
topic |
Colorimétrico Metales pesados Agua Extracción en punto de nube Microextracción Química |
dc.subject.themes.es_CO.fl_str_mv |
Química |
description |
Estudio acerca de la viabilidad de un método simple y de bajo costo para la detección de metales pesados en aguas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-29T21:05:01Z |
dc.date.available.none.fl_str_mv |
2023-06-29T21:05:01Z |
dc.date.issued.none.fl_str_mv |
2023-06-02 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/67995 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/67995 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Woolf, A. D. Itai-Itai Disease-Japan, 1955. In History of Modern Clinical Toxicology; Elsevier, 2021; pp 109-120. https://doi.org/10.1016/B978-0-12-822218-8.00024-7. Nordberg, G. F. Historical Perspectives on Cadmium Toxicology. Toxicology and Applied Pharmacology. August 1, 2009, pp 192-200. https://doi.org/10.1016/j.taap.2009.03.015. Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; Khan, S. A.; Yadav, K. K. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health. MDPI AG April 1, 2020. https://doi.org/10.3390/ijerph17072179. Mitra, S.; Chakraborty, A. J.; Tareq, A. M.; Emran, T. bin; Nainu, F.; Khusro, A.; Idris, A. M.; Khandaker, M. U.; Osman, H.; Alhumaydhi, F. A.; Simal-Gandara, J. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J King Saud Univ Sci 2022, 34 (3). https://doi.org/10.1016/j.jksus.2022.101865. Kubier, A.; Wilkin, R. T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Applied Geochemistry. Elsevier Ltd September 1, 2019. https://doi.org/10.1016/j.apgeochem.2019.104388. Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. Elsevier Ltd September 1, 2020. https://doi.org/10.1016/j.heliyon.2020.e04691. Bansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosensors and Bioelectronics. Elsevier Ltd August 15, 2017, pp 443-455. https://doi.org/10.1016/j.bios.2017.03.031. Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. Journal of Hazardous Materials. Elsevier B.V. January 5, 2023. https://doi.org/10.1016/j.jhazmat.2022.129889. Jozic, M.; Peer, T.; Malissa, H. Rapid Test Methods for the Field Screening of Heavy Metals in Soil Samples. Water Air Soil Pollut 2009, 199 (1-4), 291-300. https://doi.org/10.1007/s11270-008-9878-6. Low, S. C.; Azmi, N. A. binti; Ong, C. S.; Lim, J. K. Environmental Monitoring of Trace Metal Pollutants Using Cellulosic-Paper Incorporating Color Change of Azo- 27 Chromophore. Environmental Science and Pollution Research 2022, 29 (47), 71614-71631. https://doi.org/10.1007/s11356-022-20706-z. Zhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal Preparation of Cellulose-Based Colorimetric Sensor for Heavy Metal Ion Detection. Carbohydr Polym 2020, 236. https://doi.org/10.1016/j.carbpol.2020.116037. Kheamphet, P.; Masawat, P. A Simple and Cost-Effective Smartphone-Based Digital Imaging Device for the Quantification of Selected Heavy Metals in Thai Rice. Analytical Methods 2022, 14 (2), 165-173. https://doi.org/10.1039/d1ay01816g. Sato, N.; Mori, M.; Itabashi, H. Cloud Point Extraction of Cu(II) Using a Mixture of Triton X-100 and Dithizone with a Salting-out Effect and Its Application to Visual Determination. Talanta 2013, 117, 376-381. https://doi.org/10.1016/j.talanta.2013.08.025. Jalili, V.; Barkhordari, A.; Ghiasvand, A. New Extraction Media in Microextraction Techniques. A Review of Reviews. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2019.104386. Halko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction. J Chromatogr A 2023, 1701, 464053. https://doi.org/https://doi.org/10.1016/j.chroma.2023.464053 Snigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent Innovations in Cloud Point Extraction towards a More Efficient and Environmentally Friendly Procedure. TrAC Trends in Analytical Chemistry 2023, 117113. https://doi.org/https://doi.org/10.1016/j.trac.2023.117113. Gavazov, K. B.; Hagarová, I.; Halko, R.; Andruch, V. Recent Advances in the Application of Nanoparticles in Cloud Point Extraction. Journal of Molecular Liquids. 2019. https://doi.org/10.1016/j.molliq.2019.02.071. Samaddar, P.; Sen, K. Cloud Point Extraction: A Sustainable Method of Elemental Preconcentration and Speciation. Journal of Industrial and Engineering Chemistry. 2014. https://doi.org/10.1016/j.jiec.2013.10.033. Wen, X.; Deng, Q.; Ji, S.; Yang, S.; Peng, L. Design of Rapidly Synergistic Cloud Point Extraction of Ultra-Trace Lead Combined with Flame Atomic Absorption Spectrometry Determination. Microchemical Journal 2012, 100 (1), 31-35. https://doi.org/10.1016/j.microc.2011.08.005. Naeemullah; Kazi, T. G.; Tuzen, M. Development of Novel Simultaneous Single Step and Multistep Cloud Point Extraction Method for Silver, Cadmium and Nickel in Water Samples. Journal of Industrial and Engineering Chemistry 2016, 35, 93-98. https://doi.org/10.1016/j.jiec.2015.12.022. Garrido, M.; Di Nezio, M. S.; Lista, A. G.; Palomeque, M.; Fernández Band, B. S. Cloud Point Extraction/Preconcentration on-Line Flow Injection Method for Mercury Determination. Anal Chim Acta 2004, 502 (2), 173-177. https://doi.org/10.1016/j.aca.2003.09.070. Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud Point Extraction of Metal Ions: A Review. Talanta. 2013. https://doi.org/10.1016/j.talanta.2013.02.037. Mortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2020.105055. Arya, S. S.; Kaimal, A. M.; Chib, M.; Sonawane, S. K.; Show, P. L. Novel, Energy Efficient and Green Cloud Point Extraction: Technology and Applications in Food Processing. Journal of Food Science and Technology. 2019. https://doi.org/10.1007/s13197-018- 3546-7. Mondal, S.; Nayak, L.; Rahaman, M.; Aldalbahi, A.; Chaki, T. K.; Khastgir, D.; Das, N. C. An Effective Strategy to Enhance Mechanical, Electrical, and Electromagnetic Shielding Effectiveness of Chlorinated Polyethylene-Carbon Nanofiber Nanocomposites. Compos B Eng 2017, 109. https://doi.org/10.1016/j.compositesb.2016.10.049. Liu, J.-L.; Zhou, X.-M.; Sun, M.; Jia, A.-Q.; Shi, H.-T.; Zhang, Q.-F. A Resorcinarene Based Chelating Agent for Selective Cloud Point Extraction of Pb2+ Ions in Water: Synthesis, Structural Characterization and Analytical Applications. Arabian Journal of Chemistry 2023, 16 (7), 104866. https://doi.org/https://doi.org/10.1016/j.arabjc.2023.104866. Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement (Lond) 2021, 171. https://doi.org/10.1016/j.measurement.2020.108829. Capitán-Vallvey, L. F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M. M.; Palma, A. J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Analytica Chimica Acta. 2015. https://doi.org/10.1016/j.aca.2015.10.009. Christodouleas, D. C.; Nemiroski, A.; Kumar, A. A.; Whitesides, G. M. Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry. Anal Chem 2015, 87 (18). https://doi.org/10.1021/acs.analchem.5b01612. Soda, Y.; Bakker, E. Quantification of Colorimetric Data for Paper-Based Analytical Devices. ACS Sensors. 2019. https://doi.org/10.1021/acssensors.9b01802. Yusufu, D.; Mills, A. Spectrophotometric and Digital Colour Colourimetric (DCC) Analysis of Colour-Based Indicators. Sens Actuators B Chem 2018, 273. https://doi.org/10.1016/j.snb.2018.06.131 Feng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric Sensing of Anions in Water Using Ratiometric Indicator-Displacement Assay. Anal Chim Acta 2012, 743. https://doi.org/10.1016/j.aca.2012.06.041. Lopez-Molinero, A.; Liñan, D.; Sipiera, D.; Falcon, R. Chemometric Interpretation of Digital Image Colorimetry. Application for Titanium Determination in Plastics. Microchemical Journal 2010, 96 (2). https://doi.org/10.1016/j.microc.2010.06.013. Dos Santos Benedetti, L. P.; Dos Santos, V. B.; Silva, T. A.; Filho, E. B.; Martins, V. L.; Fatibello-Filho, O. A Digital Image-Based Method Employing a Spot-Test for Quantification of Ethanol in Drinks. Analytical Methods 2015, 7 (10). https://doi.org/10.1039/c5ay00529a. Ntoi, L. L. A.; Buitendach, B. E.; Von Eschwege, K. G. Seven Chromisms Associated with Dithizone. Journal of Physical Chemistry A 2017, 121 (48), 9243-9251. https://doi.org/10.1021/acs.jpca.7b09490. Rauf, M. A.; Hisaindee, S.; Graham, J. P.; Al-Zamly, A. Effect of Various Solvents on the Absorption Spectra of Dithizone and DFT Calculations. J Mol Liq 2015, 211, 332-337. https://doi.org/10.1016/j.molliq.2015.07.039. Rice, C. R.; Faulkner, R. A.; Jewsbury, R. A.; Bullock, S.; Dunmore, R. A Structural Study of Dithizone Coordination Chemistry. CrystEngComm 2017, 19 (25), 3414-3419. https://doi.org/10.1039/c7ce00580f. Green, T. L. C.; Nelson, P. N.; Lawrence, M. A. W. Spectroscopic, Optical Sensing and RedOx Behaviour of 1, 5-Diphenylcarbazone. J Mol Struct 2019, 1195, 426-434. https://doi.org/10.1016/j.molstruc.2019.06.011. Huang, Y.; Cheng, P.; Tan, C. Visual Artificial Tongue for Identification of Various Metal Ions in Mixtures and Real Water Samples: A Colorimetric Sensor Array Using off-the Shelf Dyes. RSC Adv 2019, 9 (47). https://doi.org/10.1039/c9ra05983k. Leng, Y.; Qian, S.; Wang, Y.; Lu, C.; Ji, X.; Lu, Z.; Lin, H. Single-Indicator-Based Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and Understanding the Foundations from Experiment to Simulation. Sci Rep 2016, 6. https://doi.org/10.1038/srep25354. Cheng, G.; He, M.; Peng, H.; Hu, B. Dithizone Modified Magnetic Nanoparticles for Fast and Selective Solid Phase Extraction of Trace Elements in Environmental and Biological Samples Prior to Their Determination by ICP-OES. Talanta 2012, 88, 507-515. https://doi.org/https://doi.org/10.1016/j.talanta.2011.11.025. Li, X.; Li, S.; Liu, Q.; Cui, Z.; Chen, Z. A Triple-Channel Colorimetric Sensor Array for Identification of Biothiols Based on Color RGB (Red/Green/Blue) as Signal Readout. ACS Sustain Chem Eng 2019, 7 (20). https://doi.org/10.1021/acssuschemeng.9b04740. Pan, Y.; Liu, X.; Qian, L.; Cui, Y.; Zheng, X.; Kang, Y.; Fu, X.; Wang, S.; Wang, P.; Wang, D. A Hand-Held Optoelectronic Tongue for the Identification of Heavy-Metal Ions. Sens Actuators B Chem 2022, 352. https://doi.org/10.1016/j.snb.2021.130971. |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
30 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Química |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Química |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/553d2a0b-fb4e-4831-9f5f-e649696a0535/download https://repositorio.uniandes.edu.co/bitstreams/6cf5cb66-5055-40de-b906-5650d0fa88fe/download https://repositorio.uniandes.edu.co/bitstreams/42d8eeae-cca8-4730-b88f-43431117531d/download https://repositorio.uniandes.edu.co/bitstreams/e2d2273f-7970-4274-b730-8e6747684533/download https://repositorio.uniandes.edu.co/bitstreams/1f1f3c64-cd53-46d7-a788-474054d808ab/download https://repositorio.uniandes.edu.co/bitstreams/1282c1a2-5304-466e-aafd-84776bf58875/download https://repositorio.uniandes.edu.co/bitstreams/2c61b073-e283-4c22-8194-a573797f3dcf/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 6f78e16a69713bfe05e428b92bcee8e7 ab032f5a6b3fa75c1e21471f162af72a bcc4bc93cb2e9259945bfcaf81820738 3464d4e3fd02db51bf5901352543ddf8 cdfe24455c682bb598fa6a615bf8d089 08b106dfeb12472e88207a069e15ba30 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133884100345856 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivas Hernández, Ricardo Eusebiovirtual::5532-1Campo Serrano, Juana Del Pilarac87ab05-fb67-41ac-a35b-147255de7229600Portilla Salinas, Jaime AntonioRomán Ochoa, YonyGrupo de Investigación Química Analítica Aplicada2023-06-29T21:05:01Z2023-06-29T21:05:01Z2023-06-02http://hdl.handle.net/1992/67995instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Estudio acerca de la viabilidad de un método simple y de bajo costo para la detección de metales pesados en aguas.La contaminación con metales pesados representa un riesgo medioambiental considerable, por consiguiente, existe una preocupación mundial por determinar la concentración de elementos como Cd, Cu y Pb en cuerpos de agua. En este contexto, está investigación propone estudiar la viabilidad de un método colorimétrico muy económico y práctico (usando los componentes RGB obtenidos de una imagen fotográfica) para la detección y una eventual determinación simultánea de Cu, Cd y Pb en muestras de agua.QuímicoPregradoQuímica analítica30 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaExploración de un método colorimétrico (RGB) para la estimación de los niveles de Cd, Cu y Pb en aguas por medio de análisis de imágenesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPColorimétricoMetales pesadosAguaExtracción en punto de nubeMicroextracciónQuímicaWoolf, A. D. Itai-Itai Disease-Japan, 1955. In History of Modern Clinical Toxicology; Elsevier, 2021; pp 109-120. https://doi.org/10.1016/B978-0-12-822218-8.00024-7.Nordberg, G. F. Historical Perspectives on Cadmium Toxicology. Toxicology and Applied Pharmacology. August 1, 2009, pp 192-200. https://doi.org/10.1016/j.taap.2009.03.015.Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; Khan, S. A.; Yadav, K. K. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health. MDPI AG April 1, 2020. https://doi.org/10.3390/ijerph17072179.Mitra, S.; Chakraborty, A. J.; Tareq, A. M.; Emran, T. bin; Nainu, F.; Khusro, A.; Idris, A. M.; Khandaker, M. U.; Osman, H.; Alhumaydhi, F. A.; Simal-Gandara, J. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J King Saud Univ Sci 2022, 34 (3). https://doi.org/10.1016/j.jksus.2022.101865.Kubier, A.; Wilkin, R. T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Applied Geochemistry. Elsevier Ltd September 1, 2019. https://doi.org/10.1016/j.apgeochem.2019.104388.Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. Elsevier Ltd September 1, 2020. https://doi.org/10.1016/j.heliyon.2020.e04691.Bansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosensors and Bioelectronics. Elsevier Ltd August 15, 2017, pp 443-455. https://doi.org/10.1016/j.bios.2017.03.031.Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. Journal of Hazardous Materials. Elsevier B.V. January 5, 2023. https://doi.org/10.1016/j.jhazmat.2022.129889.Jozic, M.; Peer, T.; Malissa, H. Rapid Test Methods for the Field Screening of Heavy Metals in Soil Samples. Water Air Soil Pollut 2009, 199 (1-4), 291-300. https://doi.org/10.1007/s11270-008-9878-6.Low, S. C.; Azmi, N. A. binti; Ong, C. S.; Lim, J. K. Environmental Monitoring of Trace Metal Pollutants Using Cellulosic-Paper Incorporating Color Change of Azo- 27 Chromophore. Environmental Science and Pollution Research 2022, 29 (47), 71614-71631. https://doi.org/10.1007/s11356-022-20706-z.Zhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal Preparation of Cellulose-Based Colorimetric Sensor for Heavy Metal Ion Detection. Carbohydr Polym 2020, 236. https://doi.org/10.1016/j.carbpol.2020.116037.Kheamphet, P.; Masawat, P. A Simple and Cost-Effective Smartphone-Based Digital Imaging Device for the Quantification of Selected Heavy Metals in Thai Rice. Analytical Methods 2022, 14 (2), 165-173. https://doi.org/10.1039/d1ay01816g.Sato, N.; Mori, M.; Itabashi, H. Cloud Point Extraction of Cu(II) Using a Mixture of Triton X-100 and Dithizone with a Salting-out Effect and Its Application to Visual Determination. Talanta 2013, 117, 376-381. https://doi.org/10.1016/j.talanta.2013.08.025.Jalili, V.; Barkhordari, A.; Ghiasvand, A. New Extraction Media in Microextraction Techniques. A Review of Reviews. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2019.104386.Halko, R.; Hagarová, I.; Andruch, V. Innovative Approaches in Cloud-Point Extraction. J Chromatogr A 2023, 1701, 464053. https://doi.org/https://doi.org/10.1016/j.chroma.2023.464053Snigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Recent Innovations in Cloud Point Extraction towards a More Efficient and Environmentally Friendly Procedure. TrAC Trends in Analytical Chemistry 2023, 117113. https://doi.org/https://doi.org/10.1016/j.trac.2023.117113.Gavazov, K. B.; Hagarová, I.; Halko, R.; Andruch, V. Recent Advances in the Application of Nanoparticles in Cloud Point Extraction. Journal of Molecular Liquids. 2019. https://doi.org/10.1016/j.molliq.2019.02.071.Samaddar, P.; Sen, K. Cloud Point Extraction: A Sustainable Method of Elemental Preconcentration and Speciation. Journal of Industrial and Engineering Chemistry. 2014. https://doi.org/10.1016/j.jiec.2013.10.033.Wen, X.; Deng, Q.; Ji, S.; Yang, S.; Peng, L. Design of Rapidly Synergistic Cloud Point Extraction of Ultra-Trace Lead Combined with Flame Atomic Absorption Spectrometry Determination. Microchemical Journal 2012, 100 (1), 31-35. https://doi.org/10.1016/j.microc.2011.08.005.Naeemullah; Kazi, T. G.; Tuzen, M. Development of Novel Simultaneous Single Step and Multistep Cloud Point Extraction Method for Silver, Cadmium and Nickel in Water Samples. Journal of Industrial and Engineering Chemistry 2016, 35, 93-98. https://doi.org/10.1016/j.jiec.2015.12.022.Garrido, M.; Di Nezio, M. S.; Lista, A. G.; Palomeque, M.; Fernández Band, B. S. Cloud Point Extraction/Preconcentration on-Line Flow Injection Method for Mercury Determination. Anal Chim Acta 2004, 502 (2), 173-177. https://doi.org/10.1016/j.aca.2003.09.070.Pytlakowska, K.; Kozik, V.; Dabioch, M. Complex-Forming Organic Ligands in Cloud Point Extraction of Metal Ions: A Review. Talanta. 2013. https://doi.org/10.1016/j.talanta.2013.02.037.Mortada, W. I. Recent Developments and Applications of Cloud Point Extraction: A Critical Review. Microchemical Journal. 2020. https://doi.org/10.1016/j.microc.2020.105055.Arya, S. S.; Kaimal, A. M.; Chib, M.; Sonawane, S. K.; Show, P. L. Novel, Energy Efficient and Green Cloud Point Extraction: Technology and Applications in Food Processing. Journal of Food Science and Technology. 2019. https://doi.org/10.1007/s13197-018- 3546-7.Mondal, S.; Nayak, L.; Rahaman, M.; Aldalbahi, A.; Chaki, T. K.; Khastgir, D.; Das, N. C. An Effective Strategy to Enhance Mechanical, Electrical, and Electromagnetic Shielding Effectiveness of Chlorinated Polyethylene-Carbon Nanofiber Nanocomposites. Compos B Eng 2017, 109. https://doi.org/10.1016/j.compositesb.2016.10.049.Liu, J.-L.; Zhou, X.-M.; Sun, M.; Jia, A.-Q.; Shi, H.-T.; Zhang, Q.-F. A Resorcinarene Based Chelating Agent for Selective Cloud Point Extraction of Pb2+ Ions in Water: Synthesis, Structural Characterization and Analytical Applications. Arabian Journal of Chemistry 2023, 16 (7), 104866. https://doi.org/https://doi.org/10.1016/j.arabjc.2023.104866.Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement (Lond) 2021, 171. https://doi.org/10.1016/j.measurement.2020.108829.Capitán-Vallvey, L. F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M. M.; Palma, A. J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Analytica Chimica Acta. 2015. https://doi.org/10.1016/j.aca.2015.10.009.Christodouleas, D. C.; Nemiroski, A.; Kumar, A. A.; Whitesides, G. M. Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry. Anal Chem 2015, 87 (18). https://doi.org/10.1021/acs.analchem.5b01612.Soda, Y.; Bakker, E. Quantification of Colorimetric Data for Paper-Based Analytical Devices. ACS Sensors. 2019. https://doi.org/10.1021/acssensors.9b01802.Yusufu, D.; Mills, A. Spectrophotometric and Digital Colour Colourimetric (DCC) Analysis of Colour-Based Indicators. Sens Actuators B Chem 2018, 273. https://doi.org/10.1016/j.snb.2018.06.131Feng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric Sensing of Anions in Water Using Ratiometric Indicator-Displacement Assay. Anal Chim Acta 2012, 743. https://doi.org/10.1016/j.aca.2012.06.041.Lopez-Molinero, A.; Liñan, D.; Sipiera, D.; Falcon, R. Chemometric Interpretation of Digital Image Colorimetry. Application for Titanium Determination in Plastics. Microchemical Journal 2010, 96 (2). https://doi.org/10.1016/j.microc.2010.06.013.Dos Santos Benedetti, L. P.; Dos Santos, V. B.; Silva, T. A.; Filho, E. B.; Martins, V. L.; Fatibello-Filho, O. A Digital Image-Based Method Employing a Spot-Test for Quantification of Ethanol in Drinks. Analytical Methods 2015, 7 (10). https://doi.org/10.1039/c5ay00529a.Ntoi, L. L. A.; Buitendach, B. E.; Von Eschwege, K. G. Seven Chromisms Associated with Dithizone. Journal of Physical Chemistry A 2017, 121 (48), 9243-9251. https://doi.org/10.1021/acs.jpca.7b09490.Rauf, M. A.; Hisaindee, S.; Graham, J. P.; Al-Zamly, A. Effect of Various Solvents on the Absorption Spectra of Dithizone and DFT Calculations. J Mol Liq 2015, 211, 332-337. https://doi.org/10.1016/j.molliq.2015.07.039.Rice, C. R.; Faulkner, R. A.; Jewsbury, R. A.; Bullock, S.; Dunmore, R. A Structural Study of Dithizone Coordination Chemistry. CrystEngComm 2017, 19 (25), 3414-3419. https://doi.org/10.1039/c7ce00580f.Green, T. L. C.; Nelson, P. N.; Lawrence, M. A. W. Spectroscopic, Optical Sensing and RedOx Behaviour of 1, 5-Diphenylcarbazone. J Mol Struct 2019, 1195, 426-434. https://doi.org/10.1016/j.molstruc.2019.06.011.Huang, Y.; Cheng, P.; Tan, C. Visual Artificial Tongue for Identification of Various Metal Ions in Mixtures and Real Water Samples: A Colorimetric Sensor Array Using off-the Shelf Dyes. RSC Adv 2019, 9 (47). https://doi.org/10.1039/c9ra05983k.Leng, Y.; Qian, S.; Wang, Y.; Lu, C.; Ji, X.; Lu, Z.; Lin, H. Single-Indicator-Based Multidimensional Sensing: Detection and Identification of Heavy Metal Ions and Understanding the Foundations from Experiment to Simulation. Sci Rep 2016, 6. https://doi.org/10.1038/srep25354.Cheng, G.; He, M.; Peng, H.; Hu, B. Dithizone Modified Magnetic Nanoparticles for Fast and Selective Solid Phase Extraction of Trace Elements in Environmental and Biological Samples Prior to Their Determination by ICP-OES. Talanta 2012, 88, 507-515. https://doi.org/https://doi.org/10.1016/j.talanta.2011.11.025.Li, X.; Li, S.; Liu, Q.; Cui, Z.; Chen, Z. A Triple-Channel Colorimetric Sensor Array for Identification of Biothiols Based on Color RGB (Red/Green/Blue) as Signal Readout. ACS Sustain Chem Eng 2019, 7 (20). https://doi.org/10.1021/acssuschemeng.9b04740.Pan, Y.; Liu, X.; Qian, L.; Cui, Y.; Zheng, X.; Kang, Y.; Fu, X.; Wang, S.; Wang, P.; Wang, D. A Hand-Held Optoelectronic Tongue for the Identification of Heavy-Metal Ions. Sens Actuators B Chem 2022, 352. https://doi.org/10.1016/j.snb.2021.130971.201911827Publicationhttps://scholar.google.es/citations?user=KAejHIcAAAAJvirtual::5532-10000-0003-1273-0409virtual::5532-1024fb45a-e509-46b5-bc93-786e746abd35virtual::5532-1024fb45a-e509-46b5-bc93-786e746abd35virtual::5532-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/553d2a0b-fb4e-4831-9f5f-e649696a0535/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILDocumento trabajo de grado_Juana Campo.pdf.jpgDocumento trabajo de grado_Juana Campo.pdf.jpgIM Thumbnailimage/jpeg7296https://repositorio.uniandes.edu.co/bitstreams/6cf5cb66-5055-40de-b906-5650d0fa88fe/download6f78e16a69713bfe05e428b92bcee8e7MD55autorizacion tesis_Juana Campo.pdf.jpgautorizacion tesis_Juana Campo.pdf.jpgIM Thumbnailimage/jpeg15754https://repositorio.uniandes.edu.co/bitstreams/42d8eeae-cca8-4730-b88f-43431117531d/downloadab032f5a6b3fa75c1e21471f162af72aMD57ORIGINALDocumento trabajo de grado_Juana Campo.pdfDocumento trabajo de grado_Juana Campo.pdfTrabajo de gradoapplication/pdf529179https://repositorio.uniandes.edu.co/bitstreams/e2d2273f-7970-4274-b730-8e6747684533/downloadbcc4bc93cb2e9259945bfcaf81820738MD52autorizacion tesis_Juana Campo.pdfautorizacion tesis_Juana Campo.pdfHIDEapplication/pdf315418https://repositorio.uniandes.edu.co/bitstreams/1f1f3c64-cd53-46d7-a788-474054d808ab/download3464d4e3fd02db51bf5901352543ddf8MD53TEXTDocumento trabajo de grado_Juana Campo.pdf.txtDocumento trabajo de grado_Juana Campo.pdf.txtExtracted texttext/plain48600https://repositorio.uniandes.edu.co/bitstreams/1282c1a2-5304-466e-aafd-84776bf58875/downloadcdfe24455c682bb598fa6a615bf8d089MD54autorizacion tesis_Juana Campo.pdf.txtautorizacion tesis_Juana Campo.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/2c61b073-e283-4c22-8194-a573797f3dcf/download08b106dfeb12472e88207a069e15ba30MD561992/67995oai:repositorio.uniandes.edu.co:1992/679952024-03-13 12:57:52.598https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |