Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.

This multiferroic materials exhibit simultaneously magnetic and ferroelectric ordering. The archetypical multiferroic material, BiFeO3 (BFO), is a unique material with both properties present at room temperature. The BFO has attracted much attention due to its high ferroelectric Curie temperature (1...

Full description

Autores:
Cardona Rodríguez, Alexander
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/62602
Acceso en línea:
http://hdl.handle.net/1992/62602
Palabra clave:
BFO
Nanoparticles
Nanomagnetism
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_e59390e86ad13f987b8a729a73b2d7c5
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/62602
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
title Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
spellingShingle Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
BFO
Nanoparticles
Nanomagnetism
Física
title_short Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
title_full Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
title_fullStr Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
title_full_unstemmed Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
title_sort Tuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.
dc.creator.fl_str_mv Cardona Rodríguez, Alexander
dc.contributor.advisor.none.fl_str_mv Reiber, Andreas
Ramírez Rojas, Juan Gabriel
dc.contributor.author.none.fl_str_mv Cardona Rodríguez, Alexander
dc.contributor.jury.none.fl_str_mv Osma Cruz, Johann Faccelo
Roa Rojas, Jairo
dc.contributor.researchgroup.es_CO.fl_str_mv Group of nanoscience and Quantum Phenomena
dc.subject.keyword.none.fl_str_mv BFO
Nanoparticles
Nanomagnetism
topic BFO
Nanoparticles
Nanomagnetism
Física
dc.subject.themes.es_CO.fl_str_mv Física
description This multiferroic materials exhibit simultaneously magnetic and ferroelectric ordering. The archetypical multiferroic material, BiFeO3 (BFO), is a unique material with both properties present at room temperature. The BFO has attracted much attention due to its high ferroelectric Curie temperature (1103K) and high antiferromagnetic Neel temperature (643K) in bulk form. The antiferromagnetic ordering instead of a ferromagnetic one has limited the technological applica tions exploiting the ferroic order with both, voltages, and magnetic fields. In this thesis, we explore new routes of magnetic control via nano-structuration in the form of nanoparticles (NPs). The confinement at the nanoscale allows tuning the antisymmetric anisotropy (also called Dzyaloshinskii-Moriya interaction) that causes a distortion of the antiferromagnetic-coupled Fe spins along the [111]h direction and giving rise to a spin cycloid (Lambda). Therefore, NPs with sizes close to the (Lambda). may exhibit interesting magnetic phenomena. We fabricated the BFO NPs by the sol-gel method . We tune the nanoparticle size by varying the calcination temperature which allowed us to go from a few nm up to values close to bulk. All fab ricated BFO NPs show an R3c rhombohedral structure with a residual strain that is a function of the NP size. We found that the magnetic ordering of the BFO NPs is strongly affected by the structural disorder which inevitably arises when the nanoparticle size is decreased to a nanometer scale. Using HRTEM images, we identified that the planes at the surface are better defined in relation to those that are at the core of the particle, we can think that the degree of structural ordering between the surface and core is different due to presence of strain . We found a mixture of different magnetic contributions from superparamagnetism up to weak-ferromagnetis . Furthermore, the complex magnetic structure of the the NPs gives rise to different magnetic transitions at low temperature and high temperature . These transitions are fingerprints of a disorder-driven magnetism present in our BFO NPs. This is confirmed by models based on an atomic vibration instability approach. As a result, a magnetic glassy state can be identified in the smallest particles together with a magnetic core-shell structure in the bigger ones. We employed several characterization techniques to deconvolute the magnetic contributions as a function of size and strain, from in-house magnetometry measurements up to synchrotron-based X-ray magnetic dichroism measurements. In addition to the magnetic measurements, we investigated the optical properties of BFO using Ra man and UV-vis spectroscopy. The results showed a high coincidence between peaks as a consequence of the high crystallinity of our nanoparticles. Using the UV-vis spectroscopy measurements, the bandgap can be deduced by the well-established Tauc plot method. We find that the optical band gap is reduced with decreasing nanoparticle size. These results point to a novel route to control the optical properties in addition to the multiferroic properties of BFO NPs. We employed Density Functional Theory with input from the experimental crystal structures to link the crystallographic and strain contributions to observed magnetic moment . Interestingly, we find that due to the strong phonon-magnon coupling the strain effects alone can be responsible for the observed magnetic tunning. As a result of this thesis, we identify great opportunities for BFO NPs for spintronic applications
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-10T14:24:52Z
dc.date.available.none.fl_str_mv 2022-10-10T14:24:52Z
dc.date.issued.none.fl_str_mv 2022-08-22
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/62602
dc.identifier.doi.none.fl_str_mv 10.57784/1992/62602
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/62602
identifier_str_mv 10.57784/1992/62602
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv A. Cardona Rodríguez, I. C. Arango, M. F. Gomez, C. Dominguez, J. Trastoy, C.Urban, S. Sulekar, J. C. Nino, I. K. Schuller, M. E. Gomez, and J. G. Ramírez, Solid State Communications 288, 38 (2019).
D. Carranza-Celis, A. Cardona-Rodriguez, J. Narvaez, O. Moscoso-Londono, D. Muraca, M. Knobel, N. Ornelas-Soto, A. Reiber, and J. G. Ramirez, Scientific Reports 9, 3182 (2019).
E. Ramos, A. Cardona-Rodríguez, D. Carranza-Celis, R. González-Hernández, D. Muraca, and J. G. Ramírez, Journal of physics. Condensed matter : an Institute of Physics journal 32, 185703 (2020).
A. Cardona-Rodríguez, E. Ramos Rodríguez, D. Carranza-Celis, N. Vergara-Duran, A. da Cruz, O.Moscoso Londoño, F. Béron, M. Knobel, A. Reiber,D.Muraca, and J.Gabriel Ramírez, Journal ofMagnetism andMagneticMaterials 556, 169409 (2022).
A. Cardona Rodríguez, A. Reiber, I. K. Schuller, D. Muraca, and J. Gabriel Ramírez, Journal of Magnetism andMagneticMaterials 563, 169917 (2022).
M. Fiebig, T. Lottermoser, D.Meier, and M. Trassin, Nature ReviewsMaterials 1, 16046 (2016).
I. Sosnowska, T. P.Neumaier, and E. Steichele, Journal of Physics C: Solid State Physics 15, 4835 (1982).
F. Huang, X. Xu, X. Lu, M. Zhou, H. Sang, and J. Zhu, Scientific Reports 8, 2311 (2018).
M. Hasan, M. F. Islam, R. Mahbub, M. S. Hossain, and M. Hakim, Materials Research Bulletin 73, 179 (2016).
F.Huang, Z.Wang, X. Lu, J. Zhang, K.Min,W. Lin, R. Ti, T. Xu, J.He, C. Yue, and J. Zhu, Scientific Reports 3, 2907 (2013).
N. Zhang, J. Su, Z. Y. Liu, Z. M. Fu, X.W. Wang, and G. L. Song, Journal of applied physics 115, 133912 (2014).
M. K. Singh, R. S. Katiyar, and J. F. Scott, Journal of Physics: Condensed Matter 20, 252203 (2008).
S. Nadupalli, F. Yan, and E. Erdem, Journal of Physical Chemistry C 125, 24596 (2021).
Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, and J. Yang, Nanomate- rials 8, 1 (2018).
D. Fu and M. Itoh, in Ferroelectrics, edited by M. Lallart (IntechOpen, Rijeka, 2011) Chap. 20.
E. Bousquet and A. Cano, Journal of Physics: CondensedMatter 28, 123001 (2016).
N. A. Spaldin, S.W. Cheong, and R. Ramesh, Phys.Today 63, 38 (2017).
D. I. Khomskii, Physics 2, 20 (2009).
S. Dong, J. M. Liu, S.W. Cheong, and Z. Ren, Advances in Physics 64, 519 (2015).
J.-H. Cho and W. Jo, Journal of the Korean Institute of Electrical and Electronic Material Engineers 34, 149 (2021).
M.Mostovoy, Physical Review Letters 96, 1 (2006).
F. Kubel and H. Schmid, Acta Crystallographica Section B 46, 698 (1990).
Jean-MichelMoreau, ChristianMichel, Robert Gerson andW. J. James., Journal of Physics and Chemistry of Solids, 32, 1315 (1971).
K.-T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S.Woo, K. Chu, J. Seidel, B.-G. Jeon, Y. S. Oh, K. H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y. H. Jeong, R. Ramesh, J.-H. Park, and C.-H. Yang, Nature Communications 2, 567 (2011).
G. Kiselev, S.V. and Ozerov, R.P. and Zhdanov, Soviet Physics Doklady 7, 742 (1963).
J.-G. Park, M. D. Le, J. Jeong, and S. Lee, Journal of Physics: Condensed Matter 26, 433202 (2014).
J. T. Zhang, X. M. Lu, J. Zhou, H. Sun, J. Su, C. C. Ju, F. Z. Huang, and J. S. Zhu, Applied Physics Letters 100, 242413 (2012).
S. R. Burns, O. Paull, J. Juraszek, V. Nagarajan, and D. Sando, Advanced Materials 32, 2003711 (2020).
A. P. Guimarães, Principles of Nanomagnetism (Springer, 2009).
S. Ohnishi, A. J. Freeman, and M.Weinert, Physical Review B 28, 6741 (1983).
V. V.Mody, A. Singh, and B.Wesley, European Journal of Nanomedicine 5, 11 (2013).
J. Nogués and I. K. Schuller, Journal ofMagnetism andMagneticMaterials 192, 203 (1999).
W. H.Meiklejohn, Journal of Applied Physics 33, 1328 (1962).
S. Mørup, M. F. Hansen, and C. Frandsen, J. Nanotechnol. 1, 182 (2010).
B. Cullity, Elements of X-ray Diffraction, Addison-Wesley series in metallurgy and materials (Addison-Wesley Publishing Company, 1978).
T. Li, A. J. Senesi, and B. Lee, Chemical Reviews 116, 11128 (2016).
D. D. P. Magalhães, Study and Characterization via Monte Carlo Simulation of Ionizing Radiation Damages in Hybrid Pixel Detectors, Ph.D. thesis (2018).
G. van der Laan and A. I. Figueroa, Coordination Chemistry Reviews 277-278, 95 (2014).
P. Kumari, M. Zzaman, S. Jena, M. Kumar, R. R. Bharadwaj, V. K. Verma, R. Shahid, and K. Amemiya, Journal of Superconductivity and NovelMagnetism 34, 1119 (2021).
D. Nath, F. Singh, and R. Das,Materials Chemistry and Physics 239, 122021 (2020).
X. Bai, M. Bugnet, C. Frontera, P. Gemeiner, J. Guillot, D. Lenoble, and I. C. Infante, Inorganic Chemistry 58, 11364 (2019).
T. E. Torres, E. Lima, A.Mayoral, A. Ibarra, C.Marquina, M. R. Ibarra, and G. F. Goya, Journal of Applied Physics 118, 183902 (2015).
M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson, Physical Review Letters 101, 2 (2008).
R. Jarrier, X.Marti, J.Herrero-Albillos, P. Ferrer, R.Haumont, P.Gemeiner, G.Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S.Wong, T. J. Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Phys. Rev. B. 85, 1 (2012).
F. Saadaoui, R. M'nassri, A. Mleiki, M. Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, Journal ofMaterials Science: Materials in Electronics 28, 15500 (2017).
R. Pike, Phys. Rev. B 68, 104424 (2003).
M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, and A. M. Hirt, Journal of Applied Physics 116, 124304 (2014).
A. Juhin, A. López-Ortega, M. Sikora, C. Carvallo, M. Estrader, S. Estradé, F. Peiró, M. D. Baró, P. Sainctavit, P. Glatzel, and J. Nogués, Nanoscale 6, 11911 (2014).
D. R. Cornejo, T. R. Peixoto, S. Reboh, P. F. Fichtner, V. C. De Franco, V. Villas-Boas, and F. P. Missell, in J.Mater Sci., Vol. 45 (2010) pp. 5077-5083.
R. Egli, Global and Planetary Change 110, 302 (2013).
A. M. Hirt, G. A. Sotiriou, P. R. Kidambi, and A. Teleki, Journal of Applied Physics 115, 044314 (2014).
R. Egli, A. P. Chen, M.Winklhofer, K. P. Kodama, and C.-S.Horng, Geochem, Geophys, Geosyst. 11, Q01Z11 (2010).
R. Haumont, J. Kreisel, and P. Bouvier, Phase Transitions 79, 1043 (2006).
J.Wei, C.Wu, Y. Liu, Y. Guo, T. Yang, D.Wang, Z. Xu, and R. Haumont, Inorganic Chemistry 56, 8964 (2017).
P. Hermet, M. Goffinet, J. Kreisel, and P. Ghosez, Phys. Rev. B 75, 3 (2007).
S. Chaturvedi, R. Das, P. Poddar, and S. Kulkarni, RSC Advances 5, 23563 (2015).
P. Trivedi, S.Katba, S. Jethva, M.Udeshi, and B. Vyas, Solid StateCommunications 222, 5 (2015).
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks, and L.Marks, English (US)WIEN2k: An Augmented PlaneWave Plus Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat, 2019).
J. P. Perdew and Y.Wang, Phys. Rev. B 45, 13244 (1992).
K.Momma and F. Izumi, Journal of Applied Crystallography 41, 653 (2008).
Z.W. Qing Jiang, Thermodynamics ofMaterials (Springer, 2009).
F. Yan, G. Xing, R.Wang, and L. Li, Scientific Reports 5, 9128 (2015).
R. Jarrier, X.Marti, J.Herrero-Albillos, P. Ferrer, R.Haumont, P.Gemeiner, G.Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S.Wong, T.-J. Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Physical Review B 85, 184104 (2012).
S. Goswami and D. Bhattacharya, Journal of Alloys and Compounds 738, 277 (2018).
J. Herrero-Albillos, G. Catalan, J. A. Rodriguez-Velamazan, M. Viret, D. Colson, and J. F. Scott, Journal of Physics: CondensedMatter 22, 256001 (2010).
M. K. Singh, R. S. Katiyar, and J. F. Scott, Journal of Physics: Condensed Matter 20, 252203 (2008).
C.-Y. Kuo, Z. Hu, J. C. Yang, S.-C. Liao, Y. L. Huang, R. K. Vasudevan, M. B. Okatan, S. Jesse, S. V. Kalinin, L. Li, H. J. Liu, C.-H. Lai, T. W. Pi, S. Agrestini, K. Chen, P. Ohresser, A. Tanaka, L. H. Tjeng, and Y. H. Chu, Nature Communications 7, 12712 (2016).
J. Landers, S. Salamon, M. Escobar Castillo, D. C. Lupascu, and H. Wende, Nano Letters 14, 6061 (2014).
S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T.Grande, Chemistry ofMaterials 19, 6478 (2007).
S. Goswami, D. Bhattacharya, C. K. Ghosh, B. Ghosh, S. D. Kaushik, V. Siruguri, and P. S. R. Krishna, Scientific Reports 8, 3728 (2018).
V. Annapu Reddy, N. Pathak, and R. Nath, Journal of Alloys and Compounds 543, 206 (2012).
S. Goswami, D. Bhattacharya, and P. Choudhury, Journal of Applied Physics 109, 07D737 (2011).
P. S. V.Mocherla, C. Karthik, R. Ubic, M. S. Ramachandra Rao, and C. Sudakar, Applied Physics Letters 105, 132409 (2014).
X. Y. Lang, Z.Wen, and Q. Jiang, The Journal of Physical Chemistry C 112, 4055 (2008).
L. A. Bulavin, O. M. Alekseev, Y. F. Zabashta, and M. M. Lazarenko,Ukrainian Journal of Physics 63, 1036 (2018).
C. Yang and Q. Jiang, ActaMaterialia 53, 3305 (2005).
X. Y. Lang,W. T. Zheng, and Q. Jiang, Phys. Rev. B 73, 224444 (2006).
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 145
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/551bbfe0-2660-4365-9197-33186b8a01d3/download
https://repositorio.uniandes.edu.co/bitstreams/2503f255-e1fb-46fb-905d-da923437f4b5/download
https://repositorio.uniandes.edu.co/bitstreams/343c946e-93d3-4d7b-9c6d-1ca7364c6aa7/download
https://repositorio.uniandes.edu.co/bitstreams/cd39e398-1456-4f59-b591-492cc484209c/download
https://repositorio.uniandes.edu.co/bitstreams/202dafb4-3d81-4cbb-b107-de52a4c28c2e/download
https://repositorio.uniandes.edu.co/bitstreams/9d04791b-e2ee-4b60-be98-5d7020408d2c/download
https://repositorio.uniandes.edu.co/bitstreams/b9e874ef-1187-463e-8495-9dd69266fee0/download
https://repositorio.uniandes.edu.co/bitstreams/148da45c-9d85-4f0a-8705-882d057c8b36/download
bitstream.checksum.fl_str_mv a540f270b252b35ac30f4002ddd34b17
0211b3260511ad0770cc7e001fd55458
5c2955ce6be18fe84493a7cba4cd9725
18fc4c8b75e491c7108270cb776100a5
4460e5956bc1d1639be9ae6146a50347
5aa5c691a1ffe97abd12c2966efcb8d6
686be0b308a415ce6764926e24c6aa4a
4491fe1afb58beaaef41a73cf7ff2e27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133950607327232
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reiber, Andreas4fa3e854-5628-49b1-b656-c8b807df63ed600Ramírez Rojas, Juan Gabrielvirtual::9590-1Cardona Rodríguez, Alexander7667600Osma Cruz, Johann FacceloRoa Rojas, JairoGroup of nanoscience and Quantum Phenomena2022-10-10T14:24:52Z2022-10-10T14:24:52Z2022-08-22http://hdl.handle.net/1992/6260210.57784/1992/62602instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This multiferroic materials exhibit simultaneously magnetic and ferroelectric ordering. The archetypical multiferroic material, BiFeO3 (BFO), is a unique material with both properties present at room temperature. The BFO has attracted much attention due to its high ferroelectric Curie temperature (1103K) and high antiferromagnetic Neel temperature (643K) in bulk form. The antiferromagnetic ordering instead of a ferromagnetic one has limited the technological applica tions exploiting the ferroic order with both, voltages, and magnetic fields. In this thesis, we explore new routes of magnetic control via nano-structuration in the form of nanoparticles (NPs). The confinement at the nanoscale allows tuning the antisymmetric anisotropy (also called Dzyaloshinskii-Moriya interaction) that causes a distortion of the antiferromagnetic-coupled Fe spins along the [111]h direction and giving rise to a spin cycloid (Lambda). Therefore, NPs with sizes close to the (Lambda). may exhibit interesting magnetic phenomena. We fabricated the BFO NPs by the sol-gel method . We tune the nanoparticle size by varying the calcination temperature which allowed us to go from a few nm up to values close to bulk. All fab ricated BFO NPs show an R3c rhombohedral structure with a residual strain that is a function of the NP size. We found that the magnetic ordering of the BFO NPs is strongly affected by the structural disorder which inevitably arises when the nanoparticle size is decreased to a nanometer scale. Using HRTEM images, we identified that the planes at the surface are better defined in relation to those that are at the core of the particle, we can think that the degree of structural ordering between the surface and core is different due to presence of strain . We found a mixture of different magnetic contributions from superparamagnetism up to weak-ferromagnetis . Furthermore, the complex magnetic structure of the the NPs gives rise to different magnetic transitions at low temperature and high temperature . These transitions are fingerprints of a disorder-driven magnetism present in our BFO NPs. This is confirmed by models based on an atomic vibration instability approach. As a result, a magnetic glassy state can be identified in the smallest particles together with a magnetic core-shell structure in the bigger ones. We employed several characterization techniques to deconvolute the magnetic contributions as a function of size and strain, from in-house magnetometry measurements up to synchrotron-based X-ray magnetic dichroism measurements. In addition to the magnetic measurements, we investigated the optical properties of BFO using Ra man and UV-vis spectroscopy. The results showed a high coincidence between peaks as a consequence of the high crystallinity of our nanoparticles. Using the UV-vis spectroscopy measurements, the bandgap can be deduced by the well-established Tauc plot method. We find that the optical band gap is reduced with decreasing nanoparticle size. These results point to a novel route to control the optical properties in addition to the multiferroic properties of BFO NPs. We employed Density Functional Theory with input from the experimental crystal structures to link the crystallographic and strain contributions to observed magnetic moment . Interestingly, we find that due to the strong phonon-magnon coupling the strain effects alone can be responsible for the observed magnetic tunning. As a result of this thesis, we identify great opportunities for BFO NPs for spintronic applicationsFacultad de Ciencias-Universidad de los Andes Departamento de Física Uniandes.Doctor en Ciencias - FísicaDoctorado145application/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaTuning the magnetic properties of multiferroic BiFeO3 : From bulk to nanoscale.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDBFONanoparticlesNanomagnetismFísicaA. Cardona Rodríguez, I. C. Arango, M. F. Gomez, C. Dominguez, J. Trastoy, C.Urban, S. Sulekar, J. C. Nino, I. K. Schuller, M. E. Gomez, and J. G. Ramírez, Solid State Communications 288, 38 (2019).D. Carranza-Celis, A. Cardona-Rodriguez, J. Narvaez, O. Moscoso-Londono, D. Muraca, M. Knobel, N. Ornelas-Soto, A. Reiber, and J. G. Ramirez, Scientific Reports 9, 3182 (2019).E. Ramos, A. Cardona-Rodríguez, D. Carranza-Celis, R. González-Hernández, D. Muraca, and J. G. Ramírez, Journal of physics. Condensed matter : an Institute of Physics journal 32, 185703 (2020).A. Cardona-Rodríguez, E. Ramos Rodríguez, D. Carranza-Celis, N. Vergara-Duran, A. da Cruz, O.Moscoso Londoño, F. Béron, M. Knobel, A. Reiber,D.Muraca, and J.Gabriel Ramírez, Journal ofMagnetism andMagneticMaterials 556, 169409 (2022).A. Cardona Rodríguez, A. Reiber, I. K. Schuller, D. Muraca, and J. Gabriel Ramírez, Journal of Magnetism andMagneticMaterials 563, 169917 (2022).M. Fiebig, T. Lottermoser, D.Meier, and M. Trassin, Nature ReviewsMaterials 1, 16046 (2016).I. Sosnowska, T. P.Neumaier, and E. Steichele, Journal of Physics C: Solid State Physics 15, 4835 (1982).F. Huang, X. Xu, X. Lu, M. Zhou, H. Sang, and J. Zhu, Scientific Reports 8, 2311 (2018).M. Hasan, M. F. Islam, R. Mahbub, M. S. Hossain, and M. Hakim, Materials Research Bulletin 73, 179 (2016).F.Huang, Z.Wang, X. Lu, J. Zhang, K.Min,W. Lin, R. Ti, T. Xu, J.He, C. Yue, and J. Zhu, Scientific Reports 3, 2907 (2013).N. Zhang, J. Su, Z. Y. Liu, Z. M. Fu, X.W. Wang, and G. L. Song, Journal of applied physics 115, 133912 (2014).M. K. Singh, R. S. Katiyar, and J. F. Scott, Journal of Physics: Condensed Matter 20, 252203 (2008).S. Nadupalli, F. Yan, and E. Erdem, Journal of Physical Chemistry C 125, 24596 (2021).Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, and J. Yang, Nanomate- rials 8, 1 (2018).D. Fu and M. Itoh, in Ferroelectrics, edited by M. Lallart (IntechOpen, Rijeka, 2011) Chap. 20.E. Bousquet and A. Cano, Journal of Physics: CondensedMatter 28, 123001 (2016).N. A. Spaldin, S.W. Cheong, and R. Ramesh, Phys.Today 63, 38 (2017).D. I. Khomskii, Physics 2, 20 (2009).S. Dong, J. M. Liu, S.W. Cheong, and Z. Ren, Advances in Physics 64, 519 (2015).J.-H. Cho and W. Jo, Journal of the Korean Institute of Electrical and Electronic Material Engineers 34, 149 (2021).M.Mostovoy, Physical Review Letters 96, 1 (2006).F. Kubel and H. Schmid, Acta Crystallographica Section B 46, 698 (1990).Jean-MichelMoreau, ChristianMichel, Robert Gerson andW. J. James., Journal of Physics and Chemistry of Solids, 32, 1315 (1971).K.-T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S.Woo, K. Chu, J. Seidel, B.-G. Jeon, Y. S. Oh, K. H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y. H. Jeong, R. Ramesh, J.-H. Park, and C.-H. Yang, Nature Communications 2, 567 (2011).G. Kiselev, S.V. and Ozerov, R.P. and Zhdanov, Soviet Physics Doklady 7, 742 (1963).J.-G. Park, M. D. Le, J. Jeong, and S. Lee, Journal of Physics: Condensed Matter 26, 433202 (2014).J. T. Zhang, X. M. Lu, J. Zhou, H. Sun, J. Su, C. C. Ju, F. Z. Huang, and J. S. Zhu, Applied Physics Letters 100, 242413 (2012).S. R. Burns, O. Paull, J. Juraszek, V. Nagarajan, and D. Sando, Advanced Materials 32, 2003711 (2020).A. P. Guimarães, Principles of Nanomagnetism (Springer, 2009).S. Ohnishi, A. J. Freeman, and M.Weinert, Physical Review B 28, 6741 (1983).V. V.Mody, A. Singh, and B.Wesley, European Journal of Nanomedicine 5, 11 (2013).J. Nogués and I. K. Schuller, Journal ofMagnetism andMagneticMaterials 192, 203 (1999).W. H.Meiklejohn, Journal of Applied Physics 33, 1328 (1962).S. Mørup, M. F. Hansen, and C. Frandsen, J. Nanotechnol. 1, 182 (2010).B. Cullity, Elements of X-ray Diffraction, Addison-Wesley series in metallurgy and materials (Addison-Wesley Publishing Company, 1978).T. Li, A. J. Senesi, and B. Lee, Chemical Reviews 116, 11128 (2016).D. D. P. Magalhães, Study and Characterization via Monte Carlo Simulation of Ionizing Radiation Damages in Hybrid Pixel Detectors, Ph.D. thesis (2018).G. van der Laan and A. I. Figueroa, Coordination Chemistry Reviews 277-278, 95 (2014).P. Kumari, M. Zzaman, S. Jena, M. Kumar, R. R. Bharadwaj, V. K. Verma, R. Shahid, and K. Amemiya, Journal of Superconductivity and NovelMagnetism 34, 1119 (2021).D. Nath, F. Singh, and R. Das,Materials Chemistry and Physics 239, 122021 (2020).X. Bai, M. Bugnet, C. Frontera, P. Gemeiner, J. Guillot, D. Lenoble, and I. C. Infante, Inorganic Chemistry 58, 11364 (2019).T. E. Torres, E. Lima, A.Mayoral, A. Ibarra, C.Marquina, M. R. Ibarra, and G. F. Goya, Journal of Applied Physics 118, 183902 (2015).M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson, Physical Review Letters 101, 2 (2008).R. Jarrier, X.Marti, J.Herrero-Albillos, P. Ferrer, R.Haumont, P.Gemeiner, G.Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S.Wong, T. J. Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Phys. Rev. B. 85, 1 (2012).F. Saadaoui, R. M'nassri, A. Mleiki, M. Koubaa, N. Chniba Boudjada, and A. Cheikhrouhou, Journal ofMaterials Science: Materials in Electronics 28, 15500 (2017).R. Pike, Phys. Rev. B 68, 104424 (2003).M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, and A. M. Hirt, Journal of Applied Physics 116, 124304 (2014).A. Juhin, A. López-Ortega, M. Sikora, C. Carvallo, M. Estrader, S. Estradé, F. Peiró, M. D. Baró, P. Sainctavit, P. Glatzel, and J. Nogués, Nanoscale 6, 11911 (2014).D. R. Cornejo, T. R. Peixoto, S. Reboh, P. F. Fichtner, V. C. De Franco, V. Villas-Boas, and F. P. Missell, in J.Mater Sci., Vol. 45 (2010) pp. 5077-5083.R. Egli, Global and Planetary Change 110, 302 (2013).A. M. Hirt, G. A. Sotiriou, P. R. Kidambi, and A. Teleki, Journal of Applied Physics 115, 044314 (2014).R. Egli, A. P. Chen, M.Winklhofer, K. P. Kodama, and C.-S.Horng, Geochem, Geophys, Geosyst. 11, Q01Z11 (2010).R. Haumont, J. Kreisel, and P. Bouvier, Phase Transitions 79, 1043 (2006).J.Wei, C.Wu, Y. Liu, Y. Guo, T. Yang, D.Wang, Z. Xu, and R. Haumont, Inorganic Chemistry 56, 8964 (2017).P. Hermet, M. Goffinet, J. Kreisel, and P. Ghosez, Phys. Rev. B 75, 3 (2007).S. Chaturvedi, R. Das, P. Poddar, and S. Kulkarni, RSC Advances 5, 23563 (2015).P. Trivedi, S.Katba, S. Jethva, M.Udeshi, and B. Vyas, Solid StateCommunications 222, 5 (2015).P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks, and L.Marks, English (US)WIEN2k: An Augmented PlaneWave Plus Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat, 2019).J. P. Perdew and Y.Wang, Phys. Rev. B 45, 13244 (1992).K.Momma and F. Izumi, Journal of Applied Crystallography 41, 653 (2008).Z.W. Qing Jiang, Thermodynamics ofMaterials (Springer, 2009).F. Yan, G. Xing, R.Wang, and L. Li, Scientific Reports 5, 9128 (2015).R. Jarrier, X.Marti, J.Herrero-Albillos, P. Ferrer, R.Haumont, P.Gemeiner, G.Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S.Wong, T.-J. Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Physical Review B 85, 184104 (2012).S. Goswami and D. Bhattacharya, Journal of Alloys and Compounds 738, 277 (2018).J. Herrero-Albillos, G. Catalan, J. A. Rodriguez-Velamazan, M. Viret, D. Colson, and J. F. Scott, Journal of Physics: CondensedMatter 22, 256001 (2010).M. K. Singh, R. S. Katiyar, and J. F. Scott, Journal of Physics: Condensed Matter 20, 252203 (2008).C.-Y. Kuo, Z. Hu, J. C. Yang, S.-C. Liao, Y. L. Huang, R. K. Vasudevan, M. B. Okatan, S. Jesse, S. V. Kalinin, L. Li, H. J. Liu, C.-H. Lai, T. W. Pi, S. Agrestini, K. Chen, P. Ohresser, A. Tanaka, L. H. Tjeng, and Y. H. Chu, Nature Communications 7, 12712 (2016).J. Landers, S. Salamon, M. Escobar Castillo, D. C. Lupascu, and H. Wende, Nano Letters 14, 6061 (2014).S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T.Grande, Chemistry ofMaterials 19, 6478 (2007).S. Goswami, D. Bhattacharya, C. K. Ghosh, B. Ghosh, S. D. Kaushik, V. Siruguri, and P. S. R. Krishna, Scientific Reports 8, 3728 (2018).V. Annapu Reddy, N. Pathak, and R. Nath, Journal of Alloys and Compounds 543, 206 (2012).S. Goswami, D. Bhattacharya, and P. Choudhury, Journal of Applied Physics 109, 07D737 (2011).P. S. V.Mocherla, C. Karthik, R. Ubic, M. S. Ramachandra Rao, and C. Sudakar, Applied Physics Letters 105, 132409 (2014).X. Y. Lang, Z.Wen, and Q. Jiang, The Journal of Physical Chemistry C 112, 4055 (2008).L. A. Bulavin, O. M. Alekseev, Y. F. Zabashta, and M. M. Lazarenko,Ukrainian Journal of Physics 63, 1036 (2018).C. Yang and Q. Jiang, ActaMaterialia 53, 3305 (2005).X. Y. Lang,W. T. Zheng, and Q. Jiang, Phys. Rev. B 73, 224444 (2006).200820873Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::9590-16ce2beec-157c-481d-8faa-d682fa74a732virtual::9590-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::9590-1ORIGINALTesis_Alexander__Final_ 8oct.pdfTesis_Alexander__Final_ 8oct.pdfTesis de Doctoradoapplication/pdf50724227https://repositorio.uniandes.edu.co/bitstreams/551bbfe0-2660-4365-9197-33186b8a01d3/downloada540f270b252b35ac30f4002ddd34b17MD53formato_autorization_JG.pdfformato_autorization_JG.pdfHIDEapplication/pdf238429https://repositorio.uniandes.edu.co/bitstreams/2503f255-e1fb-46fb-905d-da923437f4b5/download0211b3260511ad0770cc7e001fd55458MD55THUMBNAILTesis_Alexander__Final_ 8oct.pdf.jpgTesis_Alexander__Final_ 8oct.pdf.jpgIM Thumbnailimage/jpeg18784https://repositorio.uniandes.edu.co/bitstreams/343c946e-93d3-4d7b-9c6d-1ca7364c6aa7/download5c2955ce6be18fe84493a7cba4cd9725MD57formato_autorization_JG.pdf.jpgformato_autorization_JG.pdf.jpgIM Thumbnailimage/jpeg16020https://repositorio.uniandes.edu.co/bitstreams/cd39e398-1456-4f59-b591-492cc484209c/download18fc4c8b75e491c7108270cb776100a5MD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/202dafb4-3d81-4cbb-b107-de52a4c28c2e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/9d04791b-e2ee-4b60-be98-5d7020408d2c/download5aa5c691a1ffe97abd12c2966efcb8d6MD54TEXTTesis_Alexander__Final_ 8oct.pdf.txtTesis_Alexander__Final_ 8oct.pdf.txtExtracted texttext/plain235816https://repositorio.uniandes.edu.co/bitstreams/b9e874ef-1187-463e-8495-9dd69266fee0/download686be0b308a415ce6764926e24c6aa4aMD56formato_autorization_JG.pdf.txtformato_autorization_JG.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/148da45c-9d85-4f0a-8705-882d057c8b36/download4491fe1afb58beaaef41a73cf7ff2e27MD581992/62602oai:repositorio.uniandes.edu.co:1992/626022024-08-26 15:23:56.501http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==