Exact results and melting theories in two-dimensional systems
Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activat...
- Autores:
-
Salazar Romero, Robert Paul
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/38751
- Acceso en línea:
- http://hdl.handle.net/1992/38751
- Palabra clave:
- Confinamiento del plasma
Transición de fase
Excitación de Coulomb
Método de Montecarlo
Teoría reticular
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_e4caf53102b2519ec775cd4128a6d388 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/38751 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Exact results and melting theories in two-dimensional systems |
dc.title.alternative.es_CO.fl_str_mv |
Resultados exactos y mecanismos de fusión en sistemas bidimensionales Résultats exacts et mécanismes de fusion pour les systèmes bidimensionnels |
title |
Exact results and melting theories in two-dimensional systems |
spellingShingle |
Exact results and melting theories in two-dimensional systems Confinamiento del plasma Transición de fase Excitación de Coulomb Método de Montecarlo Teoría reticular Física |
title_short |
Exact results and melting theories in two-dimensional systems |
title_full |
Exact results and melting theories in two-dimensional systems |
title_fullStr |
Exact results and melting theories in two-dimensional systems |
title_full_unstemmed |
Exact results and melting theories in two-dimensional systems |
title_sort |
Exact results and melting theories in two-dimensional systems |
dc.creator.fl_str_mv |
Salazar Romero, Robert Paul |
dc.contributor.advisor.none.fl_str_mv |
Téllez Acosta, Gabriel Mazars, Martial |
dc.contributor.author.none.fl_str_mv |
Salazar Romero, Robert Paul |
dc.subject.keyword.es_CO.fl_str_mv |
Confinamiento del plasma Transición de fase Excitación de Coulomb Método de Montecarlo Teoría reticular |
topic |
Confinamiento del plasma Transición de fase Excitación de Coulomb Método de Montecarlo Teoría reticular Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY-model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.This work is focused on the study of the two dimensional one component plasma 2dOCPa system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNY-theory but also provides alternatives to detect transitions in two-dimensional systems |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T14:29:57Z |
dc.date.available.none.fl_str_mv |
2020-06-10T14:29:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/38751 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/38751 |
dc.identifier.pdf.none.fl_str_mv |
u806988.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/38751 |
identifier_str_mv |
10.57784/1992/38751 u806988.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
216 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/607f4f07-c40e-4543-b69b-0048ca4d323c/download https://repositorio.uniandes.edu.co/bitstreams/db339cc4-1ad7-4205-ba2b-77dd641b3236/download https://repositorio.uniandes.edu.co/bitstreams/074cd5d7-3637-44db-b580-c99008ca4c5b/download |
bitstream.checksum.fl_str_mv |
5c745a7003fa11d424efe227b8931246 921660be91e57cc21703149c64d759fb 171e18b839a48aced3372ad970180b2b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134007820779520 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Téllez Acosta, Gabrielce6d43a2-90b6-4ec6-8c19-d3cc782c25b9600Mazars, Martial0e8abf3f-ee41-4476-8d0c-643b9a1d2aba500Salazar Romero, Robert Paul104096002020-06-10T14:29:57Z2020-06-10T14:29:57Z2017http://hdl.handle.net/1992/3875110.57784/1992/38751u806988.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY-model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.This work is focused on the study of the two dimensional one component plasma 2dOCPa system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNY-theory but also provides alternatives to detect transitions in two-dimensional systemsSistemas de muchas partículas pueden exhibir variados comportamientos dependiendo del tipo de interacción entre sus componentes. En algunas situaciones, estructuras macroscópicas altamente ordenadas pueden emerger de dichas interacciones. El problema de identificar los mecanismos que activan el orden microscópico en sistemas en dos dimensiones ha sido tema de estudios teóricos y experimentales. Hace varias décadas se demostró que sistemas bidimensionales con interacciones de alcance suficientemente corto y parámetros de orden continuos están desprovistos de orden de largo alcance (no tiene fase sólida). Por otro lado, estudios numéricos en sistemas desprovistos de orden posicional mostraron que dichos sistemas podían exhibir transiciones de fase. Esta contradicción aparente en sistemas de dos dimensiones fue explicada en la transición KT (Kosterlitz-Thouless) propuesta para el modelo XY. Desde entonces quedó en evidencia que sistemas posicionalmente isotrópicos podían mostrar transiciones de fase siempre que tuvieran orden de semi-largo alcance (OSLA). Dicho tipo de orden es asociado al orden orientacional del sistema, el cuál se pierde cuando defectos topológicos activados por fluctuaciones térmicas se dividen en pares produciendo una transición. Por otra parte, sistemas bidimensionales con orden posicional a temperatura T=0 pueden fundirse en un escenario que incluye tres fases sólida/hexática/líquida cuyas transiciones se deben a la división en dos etapas de defectos topológicos a dos temperaturas distintas como predice la teoría KTHNY (Kosterlitz-Thouless-Halperin-Nelson-Young). Este trabajo se enfoca en el estudio del plasma de un componente en dos dimensiones (PUC2d), un sistema clásico de N cargas puntuales idénticas interactuando mediante un potencial eléctrico e inmersas en una superficie bidimensional con fondo neutralizante.Les systèmes de nombreuses particules peuvent présenter des comportements variés en fonction du type d'interaction entre ses composants. Dans certaines situations, des structures macroscopiques hautement ordonnées peuvent émerger de telles interactions. Le problème de l'identification des mécanismes qui activent l'ordre microscopique dans les systèmes bidimensionnels a fait l'objet d'études théoriques et expérimentales. Il y a plusieurs décennies, il a été montré que les systèmes bidimensionnels avec des interactions de paramètres d'ordre suffisamment court et d'ordre continu n'ont pas d'ordre à longue portée (ils n'ont pas de phase solide). D'autre part, des études numériques sur des systèmes sans ordre positionnel ont montré que de tels systèmes pourraient présenter des transitions de phase. Cette contradiction apparente dans les systèmes bidimensionnels a été expliquée dans la transition KT (Kosterlitz-Thouless) proposée pour le modèle XY. Depuis lors, on a commencé à observer que les systèmes sans ordre positionnel pouvaient montrer des transitions de phase quand ils avaient un ordre de demi-longue portée (ODLP). Ce type d'ordre est associé à l'ordre d¿orientation du système qui est perdu lorsque les défauts topologiques activés par les fluctuations thermiques sont divisés en paires produisant une transition. D'autre part, les systèmes bidimensionnels avec ordre de position à la température T = 0 peuvent être fusionnés dans un scénario comprenant trois phases : solide / hexatique / liquide dont les transitions sont dues à la division en deux étapes de défauts topologiques à deux températures différentes (Théorie de Kosterlitz-Thouless-Halperin-Nelson-Young KTHNY). Ce travail se concentre sur l'étude du plasma d'un composant bidimensionnel (PUC2d), un système classique de N charges ponctuelles identiques qui interagissent à travers un potentiel électrique et immergées dans une surface bidimensionnelle avec densité de charge opposée. Le système est un cristal à T = 0 qui commence à fondre si T est suffisamment élevé. Si le potentiel d'interaction entre les particules est logarithmique, alors le système dans le plan et la sphère a une solution exacte pour une valeur spéciale de T située dans la phase fluide. Dans cette étude, un formalisme analytique est utilisé pour déterminer exactement les propriétés thermodynamiques et structurelles qui permettent de suivre le comportement du PUC2d en la phase désordonnée jusqu'à ce que celui-ci cristallise avec la restriction de N pas très grand. Par le formalisme, nous trouvons des connexions intéressantes avec l'ensemble de Ginibre défini dans la théorie des matrices aléatoires. Nous avons effectué des simulations de Monte Carlo pour modéliser le PUC2d avec des interactions potentiel en inverse de distance et des conditions aux limites périodiques dans le plan. Trois phases sont identifiées incluant la phase hexatique pour des systèmes suffisamment grands. Nous avons déterminé par l'analyse de taille finie et la méthode multi-histogramme que la transition hexatique/ liquide est de premier ordre faible. Finalement, une étude statistique sur les arrangements de défauts (clusters) lors de la fusion cristalline est effectuée, confirmant en détail la théorie de KTHNY et décrivant des alternatives pour la détection de transitions en deux dimensions.Doctor en Ciencias - FísicaDoctorado216 hojasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaExact results and melting theories in two-dimensional systemsResultados exactos y mecanismos de fusión en sistemas bidimensionalesRésultats exacts et mécanismes de fusion pour les systèmes bidimensionnelsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDConfinamiento del plasmaTransición de faseExcitación de CoulombMétodo de MontecarloTeoría reticularFísicaPublicationTEXTu806988.pdf.txtu806988.pdf.txtExtracted texttext/plain469044https://repositorio.uniandes.edu.co/bitstreams/607f4f07-c40e-4543-b69b-0048ca4d323c/download5c745a7003fa11d424efe227b8931246MD54ORIGINALu806988.pdfapplication/pdf24560907https://repositorio.uniandes.edu.co/bitstreams/db339cc4-1ad7-4205-ba2b-77dd641b3236/download921660be91e57cc21703149c64d759fbMD51THUMBNAILu806988.pdf.jpgu806988.pdf.jpgIM Thumbnailimage/jpeg20019https://repositorio.uniandes.edu.co/bitstreams/074cd5d7-3637-44db-b580-c99008ca4c5b/download171e18b839a48aced3372ad970180b2bMD551992/38751oai:repositorio.uniandes.edu.co:1992/387512024-08-26 15:25:25.887http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |