MusicGen Music generation model as a tool for artistic creation

The current work is an exploration on how to re purpose AI driven technologies to generate music, in a way that prioritizes the artistic endeavour of musical composition. A particular concept, which is hereby addressed, is the idea of agency of decision in the creative process. The study will center...

Full description

Autores:
Tovar García, Diego Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73824
Acceso en línea:
https://hdl.handle.net/1992/73824
Palabra clave:
AI
Music
Generative Music
Deep Learning
Machine Learning
Convolusional Autoencoder
Art
Ingeniería
Arte
Música
Rights
embargoedAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_e25263777e4494737ec368ab490d1114
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73824
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv MusicGen Music generation model as a tool for artistic creation
title MusicGen Music generation model as a tool for artistic creation
spellingShingle MusicGen Music generation model as a tool for artistic creation
AI
Music
Generative Music
Deep Learning
Machine Learning
Convolusional Autoencoder
Art
Ingeniería
Arte
Música
title_short MusicGen Music generation model as a tool for artistic creation
title_full MusicGen Music generation model as a tool for artistic creation
title_fullStr MusicGen Music generation model as a tool for artistic creation
title_full_unstemmed MusicGen Music generation model as a tool for artistic creation
title_sort MusicGen Music generation model as a tool for artistic creation
dc.creator.fl_str_mv Tovar García, Diego Alejandro
dc.contributor.advisor.none.fl_str_mv Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Tovar García, Diego Alejandro
dc.subject.keyword.none.fl_str_mv AI
Music
Generative Music
Deep Learning
Machine Learning
Convolusional Autoencoder
Art
topic AI
Music
Generative Music
Deep Learning
Machine Learning
Convolusional Autoencoder
Art
Ingeniería
Arte
Música
dc.subject.themes.none.fl_str_mv Ingeniería
Arte
Música
description The current work is an exploration on how to re purpose AI driven technologies to generate music, in a way that prioritizes the artistic endeavour of musical composition. A particular concept, which is hereby addressed, is the idea of agency of decision in the creative process. The study will center on the execution of a spatial intervention where the sound experience will be built from user-given-prompts describing the space they roam. The code for the project can be found at https://github.com/Didage/spatial-music-gen.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-02T18:13:35Z
dc.date.issued.none.fl_str_mv 2024-02-01
dc.date.accepted.none.fl_str_mv 2024-02-01
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73824
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73824
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve, G.,
Adi, Y., D ́efossez, A.: Simple and controllable music generation (6 2023), http://arxiv.org/abs/2306.05284
Copland, A.: What to listen for in music. New American Library, New York (1953)
D ́efossez, A., Copet, J., Synnaeve, G., Adi, Y.: High fidelity neural audio compres-sion (10 2022), http://arxiv.org/abs/2210.13438
Hadjeres, G., Pachet, F., Nielsen, F.: Deepbach: a steerable model for bach chorales generation (12 2016), http://arxiv.org/abs/1612.01010
Hernandez-Olivan, C., Beltran, J.R.: Music composition with deep learning: A review (8 2021), http://arxiv.org/abs/2108.12290
Huang, A., Wu, R.: Deep learning for music (6 2016), http://arxiv.org/abs/1606.04930
Iosafat, D.: On sonification of place: Psychosonography and urban portrait (4 2009). https://doi.org/10.1017/S1355771809000077
Klein, G.: Site-sounds: On strategies of sound art in public space (4 2009). https://doi.org/10.1017/S1355771809000132
Maurer, J.: A brief history of algorithmic composition (1999), https://ccrma.stanford.edu/ blackrse/algorithm.html
Tittel, C.: Sound art as sonification, and the artistic treatment of features in our surroundings (4 2009). https://doi.org/10.1017/S1355771809000089
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e0b8324c-c12e-473a-a53f-5283467e7952/download
https://repositorio.uniandes.edu.co/bitstreams/c16e4b53-ee2c-44d3-b874-bed8334b38fb/download
https://repositorio.uniandes.edu.co/bitstreams/162fde18-6555-499e-9872-74926da45cb5/download
https://repositorio.uniandes.edu.co/bitstreams/d1a758dc-24b4-4352-87e7-a6276b4328a2/download
https://repositorio.uniandes.edu.co/bitstreams/6f6c9d18-43c5-4c4c-8a65-561fdbf042f7/download
https://repositorio.uniandes.edu.co/bitstreams/9d415a3f-7ba1-4f5c-ba6b-46aaeba71f3b/download
https://repositorio.uniandes.edu.co/bitstreams/62f6acb1-9a4f-4e47-b253-263c380a244b/download
bitstream.checksum.fl_str_mv 2b3efb77e8d8214af333310430a0d591
f7fe6225cb3c074f675c56308ff87ed2
ae9e573a68e7f92501b6913cc846c39f
88a11192bb2f14bc42c683527f79c774
615f4dbc9bcf3f9e6171459d5c32df31
5cbf9017ceba6dd44bacfa0364aecdaa
da9b191a7b511896a20e705ca84be23d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133820762161152
spelling Manrique Piramanrique, Rubén FranciscoTovar García, Diego Alejandro2024-02-02T18:13:35Z2024-02-012024-02-01https://hdl.handle.net/1992/73824instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The current work is an exploration on how to re purpose AI driven technologies to generate music, in a way that prioritizes the artistic endeavour of musical composition. A particular concept, which is hereby addressed, is the idea of agency of decision in the creative process. The study will center on the execution of a spatial intervention where the sound experience will be built from user-given-prompts describing the space they roam. The code for the project can be found at https://github.com/Didage/spatial-music-gen.Ingeniero de Sistemas y ComputaciónPregrado14 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y Computaciónhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfMusicGen Music generation model as a tool for artistic creationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAIMusicGenerative MusicDeep LearningMachine LearningConvolusional AutoencoderArtIngenieríaArteMúsicaCopet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve, G.,Adi, Y., D ́efossez, A.: Simple and controllable music generation (6 2023), http://arxiv.org/abs/2306.05284Copland, A.: What to listen for in music. New American Library, New York (1953)D ́efossez, A., Copet, J., Synnaeve, G., Adi, Y.: High fidelity neural audio compres-sion (10 2022), http://arxiv.org/abs/2210.13438Hadjeres, G., Pachet, F., Nielsen, F.: Deepbach: a steerable model for bach chorales generation (12 2016), http://arxiv.org/abs/1612.01010Hernandez-Olivan, C., Beltran, J.R.: Music composition with deep learning: A review (8 2021), http://arxiv.org/abs/2108.12290Huang, A., Wu, R.: Deep learning for music (6 2016), http://arxiv.org/abs/1606.04930Iosafat, D.: On sonification of place: Psychosonography and urban portrait (4 2009). https://doi.org/10.1017/S1355771809000077Klein, G.: Site-sounds: On strategies of sound art in public space (4 2009). https://doi.org/10.1017/S1355771809000132Maurer, J.: A brief history of algorithmic composition (1999), https://ccrma.stanford.edu/ blackrse/algorithm.htmlTittel, C.: Sound art as sonification, and the artistic treatment of features in our surroundings (4 2009). https://doi.org/10.1017/S1355771809000089201512531PublicationORIGINALMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdfMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdfRestricción de acceso indefinida.application/pdf806009https://repositorio.uniandes.edu.co/bitstreams/e0b8324c-c12e-473a-a53f-5283467e7952/download2b3efb77e8d8214af333310430a0d591MD51autorizacion tesis_alejandro.pdfautorizacion tesis_alejandro.pdfHIDEapplication/pdf375006https://repositorio.uniandes.edu.co/bitstreams/c16e4b53-ee2c-44d3-b874-bed8334b38fb/downloadf7fe6225cb3c074f675c56308ff87ed2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/162fde18-6555-499e-9872-74926da45cb5/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdf.txtMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdf.txtExtracted texttext/plain20030https://repositorio.uniandes.edu.co/bitstreams/d1a758dc-24b4-4352-87e7-a6276b4328a2/download88a11192bb2f14bc42c683527f79c774MD54autorizacion tesis_alejandro.pdf.txtautorizacion tesis_alejandro.pdf.txtExtracted texttext/plain2034https://repositorio.uniandes.edu.co/bitstreams/6f6c9d18-43c5-4c4c-8a65-561fdbf042f7/download615f4dbc9bcf3f9e6171459d5c32df31MD56THUMBNAILMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdf.jpgMusicGenMusicGenerationModelAsAToolForArtisticCreation.pdf.jpgGenerated Thumbnailimage/jpeg9547https://repositorio.uniandes.edu.co/bitstreams/9d415a3f-7ba1-4f5c-ba6b-46aaeba71f3b/download5cbf9017ceba6dd44bacfa0364aecdaaMD55autorizacion tesis_alejandro.pdf.jpgautorizacion tesis_alejandro.pdf.jpgGenerated Thumbnailimage/jpeg11136https://repositorio.uniandes.edu.co/bitstreams/62f6acb1-9a4f-4e47-b253-263c380a244b/downloadda9b191a7b511896a20e705ca84be23dMD571992/73824oai:repositorio.uniandes.edu.co:1992/738242024-02-16 14:40:55.387https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K