Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number

This work studies two physical effects derived from considering topological solutions to gauge theories. In particular, for the case of euclidean solutions (instantons), we analyze the singlet chiral anomaly, while for the solutions in Minkowski space (solitons), we clarify the link between kinks an...

Full description

Autores:
Morales Castellanos, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/54586
Acceso en línea:
http://hdl.handle.net/1992/54586
Palabra clave:
Quantum field theory
Gauge theory
Instanton
Soliton
Differential geometry
Fermiones
Quiralidad
Física
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_e117fe8fd2b380919f96720fed692801
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/54586
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
dc.title.alternative.none.fl_str_mv Aspectos topológicos en teorías Gauge: Anomalía quiral singlete y número fermiónico fraccionario
title Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
spellingShingle Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
Quantum field theory
Gauge theory
Instanton
Soliton
Differential geometry
Fermiones
Quiralidad
Física
Matemáticas
title_short Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
title_full Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
title_fullStr Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
title_full_unstemmed Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
title_sort Some topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion number
dc.creator.fl_str_mv Morales Castellanos, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Reyes Lega, Andrés Fernando
dc.contributor.author.none.fl_str_mv Morales Castellanos, Juan Sebastián
dc.contributor.jury.none.fl_str_mv Cardona Guio, Alexander
dc.contributor.researchgroup.es_CO.fl_str_mv Quantum Field Theory and Mathematical Physics
dc.subject.keyword.none.fl_str_mv Quantum field theory
Gauge theory
Instanton
Soliton
Differential geometry
topic Quantum field theory
Gauge theory
Instanton
Soliton
Differential geometry
Fermiones
Quiralidad
Física
Matemáticas
dc.subject.armarc.none.fl_str_mv Fermiones
Quiralidad
dc.subject.themes.es_CO.fl_str_mv Física
Matemáticas
description This work studies two physical effects derived from considering topological solutions to gauge theories. In particular, for the case of euclidean solutions (instantons), we analyze the singlet chiral anomaly, while for the solutions in Minkowski space (solitons), we clarify the link between kinks and fractional fermion number. Additionally, we present a review on the geometry of gauge theories, a discussion on the Fujikawa method for anomalies in the light of the Atiyah-Singer index theorem, and an investigation of the QCD vacua structure.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-08T20:27:39Z
dc.date.available.none.fl_str_mv 2022-02-08T20:27:39Z
dc.date.issued.none.fl_str_mv 2022-02-21
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/54586
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/54586
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv M. Nakahara, Geometry, Topology and Physics, Taylor and Francis Group (2003).
F. Atiyah. Geometry of Yang-Mills fields, pages 216¿221. Springer Berlin Heidel berg, Berlin, Heidelberg, (1978).
E. Kanso, J. Marsden, C. Rowley, and J. Melli-Huber, Locomotion of Articulated Bodies in a Perfect Fluid, J. Nonlinear Sci. 15 (2005).
Tazerenix. Wikimedia Commons: Images by Tazerenix, (2021).
R. A. Bertlmann, Anomalies in Quantum Field Theory, Oxford Science Publications (1996).
R. Feynman, A. Hibbs, and D. Styer, Quantum Mechanics and Path Integrals, Dover Publications (2010).
V. P. Nair, Quantum Field Theory: A Modern Perspective, Springer Science (2005).
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter, Basic Books (2011).
P. Bracken, Quantum mechanics in terms of an action principle, Canadian Journal of Physics 75, 261¿271 (2011).
A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Physics Letters B 59, 85¿87 (1975).
E. J. Weinberg, Classical Solutions in Quantum Field Theory: Solitons and In stantons in High Energy Physics, Cambridge University Press (2012).
S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177, 2426¿2438 (1969).
K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies (2004).
K. Fujikawa, Path-Integral Measure for Gauge-Invariant Fermion Theories, Phys. Rev. Lett. 42, 1195¿1198 (1979).
G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields, Springer Netherlands (2017).
E. Z. Hisham Sati, Silviu-Marian Udrescu, GJM 3, 60¿93 (2018).
H. Lawson and M. Michelsohn, Spin Geometry (PMS-38), Volume 38, Princeton University Press (1989).
P. Shanahan, The Atiyah-Singer Index Theorem: An Introduction, Springer (1978).
N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer Berlin Heidelberg (2003).
S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press (1988).
M. Shifman, Instantons in Gauge Theories, World Scientific (1994).
R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland Publishing Company (1982).
D. Spitz. Solitons with fractional fermion number, (2016).
R. Jackiw and C. Rebbi, Solitons with fermion number ½, Phys. Rev. D 13, 3398¿3409 (1976).
A. J. Niemi and G. W. Semenoff, Fermion Number Fractionization in Quantum Field Theory, Phys. Rept. 135, 99 (1986).
L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory (2012).
K. Rao, N. Sahu, and P. K. Panigrahi. Fermion Number Fractionization, (2007).
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 100 páginas
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e0aa35f3-2793-4393-8186-532a80fe6097/download
https://repositorio.uniandes.edu.co/bitstreams/b00710fb-d455-4f3a-a509-aab2d89066b1/download
https://repositorio.uniandes.edu.co/bitstreams/832988ac-96f9-4881-a058-263e2ad9d127/download
https://repositorio.uniandes.edu.co/bitstreams/fc63cbe9-fc0b-49c9-b330-072028bd18e8/download
bitstream.checksum.fl_str_mv 3cd0441f126fb560d79b355a4f07d9ae
088f7e8954b1ae5ff5f531c58ea5e091
5be403cae5510fb3f6bc2487098ee33a
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133945027854336
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Lega, Andrés Fernandovirtual::9238-1Morales Castellanos, Juan Sebastián4d97c638-c04c-4cda-b8fa-e7003c49e23d600Cardona Guio, AlexanderQuantum Field Theory and Mathematical Physics2022-02-08T20:27:39Z2022-02-08T20:27:39Z2022-02-21http://hdl.handle.net/1992/54586instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This work studies two physical effects derived from considering topological solutions to gauge theories. In particular, for the case of euclidean solutions (instantons), we analyze the singlet chiral anomaly, while for the solutions in Minkowski space (solitons), we clarify the link between kinks and fractional fermion number. Additionally, we present a review on the geometry of gauge theories, a discussion on the Fujikawa method for anomalies in the light of the Atiyah-Singer index theorem, and an investigation of the QCD vacua structure.En este trabajo estudiamos dos efectos físicos que se derivan de considerar soluciones topológicas a teorías gauge. En particular, para las soluciones en el espacio euclido (instantones) analizamos la anomalía quiral singlete, y para las soluciones en el espacio de Minkowski (solitones) esclarecemos el vínculo entre kinks y la fraccionalización del número fermiónico. Adicionalmente, presentamos una revisión de la geometría intrínseca de las teorías gauge, discutimos el método de Fujikawa para anomalías a la luz del teorema de Atiyah-Singer e investigamos la estructura del vacío en QCD.FísicoPregrado100 páginasengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaSome topological aspects in Gauge theories: Singlet chiral anomaly and fractional fermion numberAspectos topológicos en teorías Gauge: Anomalía quiral singlete y número fermiónico fraccionarioTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPQuantum field theoryGauge theoryInstantonSolitonDifferential geometryFermionesQuiralidadFísicaMatemáticasM. Nakahara, Geometry, Topology and Physics, Taylor and Francis Group (2003).F. Atiyah. Geometry of Yang-Mills fields, pages 216¿221. Springer Berlin Heidel berg, Berlin, Heidelberg, (1978).E. Kanso, J. Marsden, C. Rowley, and J. Melli-Huber, Locomotion of Articulated Bodies in a Perfect Fluid, J. Nonlinear Sci. 15 (2005).Tazerenix. Wikimedia Commons: Images by Tazerenix, (2021).R. A. Bertlmann, Anomalies in Quantum Field Theory, Oxford Science Publications (1996).R. Feynman, A. Hibbs, and D. Styer, Quantum Mechanics and Path Integrals, Dover Publications (2010).V. P. Nair, Quantum Field Theory: A Modern Perspective, Springer Science (2005).R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter, Basic Books (2011).P. Bracken, Quantum mechanics in terms of an action principle, Canadian Journal of Physics 75, 261¿271 (2011).A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Physics Letters B 59, 85¿87 (1975).E. J. Weinberg, Classical Solutions in Quantum Field Theory: Solitons and In stantons in High Energy Physics, Cambridge University Press (2012).S. L. Adler, Axial-Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177, 2426¿2438 (1969).K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies (2004).K. Fujikawa, Path-Integral Measure for Gauge-Invariant Fermion Theories, Phys. Rev. Lett. 42, 1195¿1198 (1979).G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields, Springer Netherlands (2017).E. Z. Hisham Sati, Silviu-Marian Udrescu, GJM 3, 60¿93 (2018).H. Lawson and M. Michelsohn, Spin Geometry (PMS-38), Volume 38, Princeton University Press (1989).P. Shanahan, The Atiyah-Singer Index Theorem: An Introduction, Springer (1978).N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer Berlin Heidelberg (2003).S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press (1988).M. Shifman, Instantons in Gauge Theories, World Scientific (1994).R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland Publishing Company (1982).D. Spitz. Solitons with fractional fermion number, (2016).R. Jackiw and C. Rebbi, Solitons with fermion number ½, Phys. Rev. D 13, 3398¿3409 (1976).A. J. Niemi and G. W. Semenoff, Fermion Number Fractionization in Quantum Field Theory, Phys. Rept. 135, 99 (1986).L. Alvarez-Gaume and M. A. Vazquez-Mozo, An Invitation to Quantum Field Theory (2012).K. Rao, N. Sahu, and P. K. Panigrahi. Fermion Number Fractionization, (2007).201615855Publicationhttps://scholar.google.es/citations?user=04V0g64AAAAJvirtual::9238-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::9238-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::9238-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::9238-1ORIGINALSome topological aspects in Gauge theories.pdfSome topological aspects in Gauge theories.pdfTrabajo de gradoapplication/pdf1313290https://repositorio.uniandes.edu.co/bitstreams/e0aa35f3-2793-4393-8186-532a80fe6097/download3cd0441f126fb560d79b355a4f07d9aeMD52TEXTSome topological aspects in Gauge theories.pdf.txtSome topological aspects in Gauge theories.pdf.txtExtracted texttext/plain160410https://repositorio.uniandes.edu.co/bitstreams/b00710fb-d455-4f3a-a509-aab2d89066b1/download088f7e8954b1ae5ff5f531c58ea5e091MD53THUMBNAILSome topological aspects in Gauge theories.pdf.jpgSome topological aspects in Gauge theories.pdf.jpgIM Thumbnailimage/jpeg9637https://repositorio.uniandes.edu.co/bitstreams/832988ac-96f9-4881-a058-263e2ad9d127/download5be403cae5510fb3f6bc2487098ee33aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/fc63cbe9-fc0b-49c9-b330-072028bd18e8/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/54586oai:repositorio.uniandes.edu.co:1992/545862024-03-13 13:52:59.958http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==