Dynamics of self-interacting von Willebrand factor chains in shear flows
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that performs an essential function during hemostasis. This function includes platelet immobilization, which initiates the platelet plug formation at the primary hemostasis. That immobilization requires both activation and adhesion of...
- Autores:
-
Amaya Espinosa, Helman Alirio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74205
- Acceso en línea:
- https://hdl.handle.net/1992/74205
- Palabra clave:
- Von Willebrand factor
Coarse-grained modelling
Brownian dynamics
Computational biophysics
Bioengineering
Self-aggregation
Specific interactions
Adsorption mechanism
Hemostasis
Cooperativity
Polymer physics
Ingeniería
Física
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_e080e2cc06733a222307a39ce5bf39b3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74205 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
title |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
spellingShingle |
Dynamics of self-interacting von Willebrand factor chains in shear flows Von Willebrand factor Coarse-grained modelling Brownian dynamics Computational biophysics Bioengineering Self-aggregation Specific interactions Adsorption mechanism Hemostasis Cooperativity Polymer physics Ingeniería Física Biología |
title_short |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
title_full |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
title_fullStr |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
title_full_unstemmed |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
title_sort |
Dynamics of self-interacting von Willebrand factor chains in shear flows |
dc.creator.fl_str_mv |
Amaya Espinosa, Helman Alirio |
dc.contributor.advisor.none.fl_str_mv |
Aponte SantaMaría, Camilo Andrés Briceño Triana, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Amaya Espinosa, Helman Alirio |
dc.contributor.jury.none.fl_str_mv |
Alexander-Katz, Alfredo Pedraza Leal, Juan Manuel Cruz Jiménez, Juan Carlos |
dc.subject.keyword.eng.fl_str_mv |
Von Willebrand factor Coarse-grained modelling Brownian dynamics Computational biophysics Bioengineering Self-aggregation Specific interactions Adsorption mechanism Hemostasis Cooperativity Polymer physics |
topic |
Von Willebrand factor Coarse-grained modelling Brownian dynamics Computational biophysics Bioengineering Self-aggregation Specific interactions Adsorption mechanism Hemostasis Cooperativity Polymer physics Ingeniería Física Biología |
dc.subject.themes.none.fl_str_mv |
Ingeniería Física Biología |
description |
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that performs an essential function during hemostasis. This function includes platelet immobilization, which initiates the platelet plug formation at the primary hemostasis. That immobilization requires both activation and adhesion of VWF on the subendothelial surface, exposed during a vascular injury. VWF is mechanosensitive, and its activation depends on the blood flow velocity. VWF also forms self-aggregates, which are crucial during the immobilization of platelets, but the dynamics of the formation of these self-aggregates remain poorly understood. This thesis theoretically studies how self-interactions affect the flow-induced non-equilibrium conformational dynamics of single or multiple low molecular weight (LMW) VWF multimers. For this purpose, we implemented Brownian dynamics simulations at a coarse-grained (CG) resolution of a bead per VWF domain. First, we study the role of intra-chain interactions in the conformational dynamics of single VWF chains under a shear flow. We contrasted the tuning effect of specific and cohesion interactions on the conformational dynamics of single VWF-like biopolymers. We observe that the impact of cohesion on single chain dynamics was more intense than the effect of the specific interactions despite the equal scale of energies of both interactions. However, introducing a random distribution of specifically interacting domains and increasing the number of these domains improve the tunning effect of these specific interactions in the chain conformational dynamics. We also obtained phase diagrams that show the dependence of chain extension probability on each intra-chain interaction energy and external shear rate for different values of the density of specific interacting domains. Second, we examined a system consisting of multiple VWF-like self-interacting chains interacting under a shear flow and able to interact with a surface. Instead of specific A1-A2 interactions, we introduced a surface interaction that enhances the adhesion of a bead that mimics one of the VWF domains (A3), which adheres to the subendothelial surface of a blood vessel. Our systematic analysis reveals that chain-chain and chain-surface interactions coexist non-trivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and propensity to form shear-assisted functional adsorbed aggregates. Our data highlights VWF self-interacting chains' collective behavior when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay between adsorption, cohesion, and shear forces and the relevance of that interplay for the adhesive hemostatic function of VWF. Third, we simulate the entire unfolding process of the VWF A2 domain in a CG GoMARTINI approach with beads of the size of chemical functional groups. Next, we use the same approach to study VWF A2-A2 interactions between three A2 domains using constant pulling forces miming shear flow conditions. Low pulling forces are enough to create a protrusion in one of the A2 domains and to start an interaction with another collapsed A2 domain. In contrast, higher pulling forces completely elongate all the A2 domains, making the simultaneous interaction between one domain and the other two domains possible. We could express this new information about A2-A2 specific interactions and A2-unfolding in a resolution of one bead per VWF domain to introduce both effects in our modeling of VWF self-interacting multimers. However, we leave that improvement in our model for later studies. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-23 |
dc.date.accessioned.none.fl_str_mv |
2024-04-15T14:01:57Z |
dc.date.available.none.fl_str_mv |
2024-04-15T14:01:57Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74205 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/74205 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74205 |
identifier_str_mv |
10.57784/1992/74205 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
J. E. Hall, M. E. Hall, and A. C. Guyton, Guyton and Hall Textbook of Medical Physiology.Philadelphia, PA: Elsevier, 14th edition ed., 2021. L. B. Nicholson, “The immune system,” Essays in Biochemistry, vol. 60, pp. 275–301, Oct.2016. F. Mantile, A. Capasso, P. De Berardinis, and A. Prisco, “Analysis of the Consolidation Phase of Immunological Memory within the IgG Response to a B Cell Epitope Displayed on a Filamentous Bacteriophage,” Microorganisms, vol. 8, p. 564, Apr. 2020. O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin Thromb Hemost, vol. 29, no. 5, pp. 435–450, 2003. H. A. Krebs, “Chemical Composition of Blood Plasma and Serum,” Annu. Rev. Biochem., vol. 19, pp. 409–430, June 1950. Ch. Weiss and W. Jelkmann, “Functions of the Blood,” in Human Physiology (R. F. Schmidt and G. Thews, eds.), pp. 402–438, Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. J. K. Lloyd and A. S. Fosbrooke, “Plasma Lipoproteins,” in Structure and Function of Plasma Proteins (A. C. Allison, ed.), pp. 1–33, Boston, MA: Springer US, 1974. L. Bertholim, A. F. A. Chaves, A. K. Oliveira, M. C. Menezes, A. F. Asega, A. K. Tashima, A. Zelanis, and S. M. T. Serrano, “Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins,” Toxins, vol. 13, p. 764, Oct. 2021. H. Eagle, “The coagulation of blood by snake venoms and its pysiologic significance,” Journal of Experimental Medicine, vol. 65, pp. 613–639, May 1937. U. Dinnar, Cardiovascular Fluid Dynamics. Boca Raton, Fla.: CRC Press, 2019. K. Rack, V. Huck, M. Hoore, D. A. Fedosov, S. W. Schneider, and G. Gompper, “Margination and stretching of von Willebrand factor in the blood stream enable adhesion,” Sci Rep, vol. 7, p. 14278, Dec. 2017. D. A. Fedosov and G. Gompper, “White blood cell margination in microcirculation,” Soft Matter, vol. 10, no. 17, pp. 2961–2970, 2014. S. Palta, R. Saroa, and A. Palta, “Overview of the coagulation system,” Indian J Anaesth, vol. 58, no. 5, p. 515, 2014.8586 A. C. d. O. Gonzalez, T. F. Costa, Z. d. A. Andrade, and A. R. A. P. Medrado, “Wound healing - A literature review,” An. Bras. Dermatol., vol. 91, pp. 614–620, Oct. 2016. S. Margetic, “Inflammation and haemostasis,” Biochem Med (Zagreb), vol. 22, no. 1, pp. 49–62, 2012. B. Ciszek, R. Hudák, D. Kachlík, and O. Volný, eds., Memorix Anatomy. Wrocław: Edra Urban & Partner, 2016. M. M. Zdanowicz, Essentials of Pathophysiology for Pharmacy. London: Routledge, 1st ed., 2019. A. Alexander-Katz, M. F. Schneider, S. W. Schneider, A. Wixforth, and R. R. Netz, “Shear-Flow-Induced Unfolding of Polymeric Globules,” Phys. Rev. Lett., vol. 97, p. 138101, Sept. 2006. S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, “Shear-induced unfolding triggers adhesion of von Willebrand factor fibers,” Proceedings of the National Academy of Sciences, vol. 104, pp. 7899–7903, May 2007. T. A. Springer, “Von Willebrand factor, Jedi knight of the bloodstream,” Blood, vol. 124, pp. 1412–1425, Aug. 2014. G.-P. Luo, B. Ni, X. Yang, and Y.-Z. Wu, “Von Willebrand Factor: More Than a Regulator of Hemostasis and Thrombosis,” Acta Haematol, vol. 128, no. 3, pp. 158–169, 2012. D. D. Wagner, “Cell Biology of von Willebrand Factor,” Annu. Rev. Cell. Biol., vol. 6, pp. 217-242, Nov. 1990. R. Schneppenheim and U. Budde, “Von Willebrand factor: The complex molecular genetics of a multidomain and multifunctional protein: Molecular genetics of a multidomain and multifunctional protein,” Journal of Thrombosis and Haemostasis, vol. 9, pp. 209–215, July 2011. M. Kroll, J. Hellums, L. McIntire, A. Schafer, and J. Moake, “Platelets and shear stress,” Blood, vol. 88, pp. 1525–1541, Sept. 1996. R. K. Andrews and M. C. Berndt, “Platelet physiology and thrombosis,” Thrombosis Research, vol. 114, pp. 447–453, Jan. 2004. S.-H. Yun, E.-H. Sim, R.-Y. Goh, J.-I. Park, and J.-Y. Han, “Platelet Activation: The Mechanisms and Potential Biomarkers,” BioMed Research International, vol. 2016, pp. 1–5, 2016. C. Pallister and M. Watson, Haematology. Banbury: Scion, 2nd ed ed., 2011. D. Lasne, B. Jude, and S. Susen, “From normal to pathological hemostasis,” Can J Anesth/J Can Anesth, vol. 53, pp. S2–S11, June 2006. N. Mackman and M. Taubman, “Tissue Factor: Past, Present, and Future,” ATVB, vol. 29, pp. 1986-1988, Dec. 2009. V. Terraube, J. S. O’Donnell, and P. V. Jenkins, “Factor VIII and von Willebrand factor interaction: Biological, clinical and therapeutic importance,” Haemophilia, vol. 16, pp. 3–13, Jan. 2010. P. J. Lenting, O. D. Christophe, and C. V. Denis, “Von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends,” Blood, vol. 125, pp. 2019–2028, Mar. 2015. J. P. Müller, S. Mielke, A. Löf, T. Obser, C. Beer, L. K. Bruetzel, D. A. Pippig, W. Vanderlinden, J. Lipfert, R. Schneppenheim, and M. Benoit, “Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction,” Proc Natl Acad Sci USA, vol. 113, pp. 1208–1213, Feb. 2016. S. Lippok, T. Obser, J. P. Müller, V. K. Stierle, M. Benoit, U. Budde, R. Schneppenheim, and J. O. Rädler, “Exponential Size Distribution of von Willebrand Factor,” Biophysical Journal, vol. 105, pp. 1208–1216, Sept. 2013. R. Hoffman, E. J. Benz, L. E. Silberstein, H. E. Heslop, J. I. Weitz, M. E. Salama, and S. A. Abutalib, eds., Hematology: Basic Principles and Practice. Philadelphia, PA: Elsevier, eighth edition ed., 2023. H. Gritsch, G. Schrenk, N. Weinhappl, B. Mellgård, B. Ewenstein, and P. L. Turecek, “Structure and Function of Recombinant versus Plasma-Derived von Willebrand Factor and Impact on Multimer Pharmacokinetics in von Willebrand Disease,” JBM, vol. Volume 13, pp. 649–662, Nov. 2022. X. L. Zheng, “ADAMTS13 and von Willebrand Factor in Thrombotic Thrombocytopenic Purpura,” Annu. Rev. Med., vol. 66, pp. 211–225, Jan. 2015. B. Huisman, M. Hoore, G. Gompper, and D. A. Fedosov, “Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow,” Medical Engineering & Physics, vol. 48, pp. 14–22, Oct. 2017. C. Baldauf, R. Schneppenheim, W. Stacklies, T. Obser, A. Pieconka, S. Schneppenheim, U. Budde, J. Zhou, and F. Gräter, “Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis,” Journal of Thrombosis and Haemostasis, vol. 7, pp. 2096–2105, Dec. 2009. S. Lippok, M. Radtke, T. Obser, L. Kleemeier, R. Schneppenheim, U. Budde, R. R. Netz, and J. O. Raedler, “Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers,” Biophysical Journal, vol. 110, pp. 545–554, Feb. 2016. H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer, “Flow-induced elongation of von Willebrand factor precedes tension-dependent activation,” Nat Commun, vol. 8, p. 324, Dec. 2017. S. Posch, T. Obser, G. König, R. Schneppenheim, R. Tampé, and P. Hinterdorfer, “Interaction of von Willebrand factor domains with collagen investigated by single molecule force spectroscopy,” The Journal of Chemical Physics, vol. 148, p. 123310, Mar. 2018. T. H. C. Brondijk, D. Bihan, R. W. Farndale, and E. G. Huizinga, “Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex,” Proceedings of the National Academy of Sciences, vol. 109, pp. 5253–5258, Apr. 2012. V. H. Flood, A. C. Schlauderaff, S. L. Haberichter, T. L. Slobodianuk, P. M. Jacobi, D. B. Bellissimo, P. A. Christopherson, K. D. Friedman, J. C. Gill, R. G. Hoffmann, R. R. Montgomery, and the Zimmerman Program Investigators, “Crucial role for the VWF A1 domain in binding to type IV collagen,” Blood, vol. 125, pp. 2297–2304, Apr. 2015.88 M. A. Cruz, H. Yuan, J. R. Lee, R. J. Wise, and R. I. Handin, “Interaction of the von Willebrand Factor (vWF) with Collagen,” Journal of Biological Chemistry, vol. 270, pp. 10822–10827, May 1995. Y.-F. Zhou, E. T. Eng, J. Zhu, C. Lu, T. Walz, and T. A. Springer, “Sequence and structure relationships within von Willebrand factor,” Blood, vol. 120, pp. 449–458, July 2012. M. Bryckaert, J.-P. Rosa, C. V. Denis, and P. J. Lenting, “Of von Willebrand factor and platelets,” Cell. Mol. Life Sci., vol. 72, pp. 307–326, Jan. 2015. J. E. Sadler, “Biochemistry and genetics of von Willebrand Factor,” Annu. Rev. Biochem., vol. 67, pp. 395–424, June 1998. C. H. Miller, “Laboratory Diagnosis of Inherited von Willebrand Disease,” in Transfusion Medicine and Hemostasis, pp. 799–805, Elsevier, 2019. J.-f. Dong, J. L. Moake, L. Nolasco, A. Bernardo, W. Arceneaux, C. N. Shrimpton, A. J. Schade, L. V. McIntire, K. Fujikawa, and J. A. López, “ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions,” Blood, vol. 100, pp. 4033–4039, Dec. 2002. V. Huck, M. Schneider, C. Gorzelanny, and S. Schneider, “The various states of von Willebrand factor and their function in physiology and pathophysiology,” Thromb Haemost, vol. 111, no. 04, pp. 598–609, 2014. T. Chiasakul and A. Cuker, “Clinical and laboratory diagnosis of TTP: An integrated approach,” Hematology, vol. 2018, pp. 530–538, Nov. 2018. S. Giannini, L. Cecchetti, A. M. Mezzasoma, and P. Gresele, “Diagnosis of platelet-type von Willebrand disease by flow cytometry,” Haematologica, vol. 95, pp. 1021–1024, June 2010. J. Charlebois, G.-É. Rivard, and J. St-Louis, “Management of acquired von Willebrand syndrome," Transfusion and Apheresis Science, vol. 57, pp. 721–723, Dec. 2018. M. F. Schneider, M. A. Fallah, C. Mess, T. Obser, R. Schneppenheim, A. Alexander-Katz, S. W. Schneider, and V. Huck, “Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF,” BMC Mol and Cell Biol, vol. 21, p. 64, Dec. 2020. H. T. Bergal, Y. Jiang, D. Yang, T. A. Springer, and W. P. Wong, “Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging,” Blood, vol. 140, pp. 2490–2499, Dec. 2022. Q. M. Qi, E. Dunne, I. Oglesby, I. Schoen, A. J. Ricco, D. Kenny, and E. S. Shaqfeh, “In Vitro Measurement and Modeling of Platelet Adhesion on VWF-Coated Surfaces in Channel Flow,” Biophysical Journal, vol. 116, pp. 1136–1151, Mar. 2019. Y. Wang, M. Morabito, X. F. Zhang, E. Webb, A. Oztekin, and X. Cheng, “Shear-Induced Extensional Response Behaviors of Tethered von Willebrand Factor,” Biophysical Journal, vol. 116, pp. 2092–2102, June 2019. J. Ying, Y. Ling, L. A. Westfield, J. E. Sadler, and J.-Y. Shao, “Unfolding the A2 Domain of Von Willebrand Factor with the Optical Trap,” Biophysical Journal, vol. 98, pp. 1685–1693, Apr. 2010. A. Löf, P. U. Walker, S. M. Sedlak, S. Gruber, T. Obser, M. A. Brehm, M. Benoit, and J. Lipfert, "Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor,” Proc Natl Acad Sci USA, vol. 116,pp. 18798–18807, Sept. 2019. Y. K. Kushchenko and A. V. Belyaev, “Effects of hydrophobicity, tethering and size on flow-induced activation of von Willebrand factor multimers,” Journal of Theoretical Biology, vol. 485, p. 110050, Jan. 2020. M. Radtke, S. Lippok, J. O. Rädler, and R. R. Netz, “Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor,” Eur. Phys. J. E, vol. 39, p. 32, Mar. 2016. H. Chen, M. A. Fallah, V. Huck, J. I. Angerer, A. J. Reininger, S. W. Schneider, M. F. Schneider, and A. Alexander-Katz, “Blood-clotting-inspired reversible polymer-colloid composite assembly in flow,” Nat Commun, vol. 4, p. 1333, June 2013. M. Radtke, M. Radtke, and R. Netz, “Shear-induced dynamics of polymeric globules at adsorbing homogeneous and inhomogeneous surfaces,” Eur. Phys. J. E, vol. 37, p. 20, Mar. 2014. M. Radtke and R. R. Netz, “Shear-enhanced adsorption of a homopolymeric globule mediated by surface catch bonds,” Eur. Phys. J. E, vol. 38, p. 69, June 2015. M. Hoore, K. Rack, D. A. Fedosov, and G. Gompper, “Flow-induced adhesion of shearactivated polymers to a substrate,” J. Phys.: Condens. Matter, vol. 30, p. 064001, Feb. 2018. M. Heidari, M. Mehrbod, M. R. Ejtehadi, and M. R. K. Mofrad, “Cooperation within von Willebrand factors enhances adsorption mechanism,” Journal of The Royal Society Interface, vol. 12, p. 20150334, Aug. 2015. S. Kania, A. Oztekin, X. Cheng, X. F. Zhang, and E. Webb, “Predicting pathological von Willebrand factor unraveling in elongational flow,” Biophysical Journal, vol. 120, pp. 1903–1915, May 2021. W. Wei, C. Dong, M. Morabito, X. Cheng, X. F. Zhang, E. B. Webb, and A. Oztekin, “Coarse-Grain Modeling of Shear-Induced Binding between von Willebrand Factor and Collagen,” Biophysical Journal, vol. 114, pp. 1816–1829, Apr. 2018. M. Morabito, C. Dong, W. Wei, X. Cheng, X. F. Zhang, A. Oztekin, and E. Webb, “Internal Tensile Force and A2 Domain Unfolding of von Willebrand Factor Multimers in Shear Flow,” Biophysical Journal, vol. 115, pp. 1860–1871, Nov. 2018. C. Dong, S. Kania, M. Morabito, X. F. Zhang, W. Im, A. Oztekin, X. Cheng, and E. B. Webb, “A mechano-reactive coarse-grained model of the blood-clotting agent von Willebrand factor,” J. Chem. Phys., vol. 151, p. 124905, Sept. 2019. M. J. Morabito, M. Usta, X. Cheng, X. F. Zhang, A. Oztekin, and E. B. Webb, “Prediction of Sub-Monomer A2 Domain Dynamics of the von Willebrand Factor by Machine Learning Algorithm and Coarse-Grained Molecular Dynamics Simulation,” Sci Rep, vol. 9, p. 9037, Dec. 2019. A. V. Belyaev, “Intradimer forces and their implication for conformations of von Willebrand factor multimers,” Biophysical Journal, vol. 120, pp. 899–911, Mar. 2021.90 C. Aponte-Santamaría, S. Lippok, J. J. Mittag, T. Obser, R. Schneppenheim, C. Baldauf, F. Gräter, U. Budde, and J. O. Rädler, “Mutation G1629E Increases von Willebrand Factor Cleavage via a Cooperative Destabilization Mechanism,” Biophysical Journal, vol. 112, pp. 57–65, Jan. 2017. C. Aponte-Santamaría, V. Huck, S. Posch, A. K. Bronowska, S. Grässle, M. A. Brehm, T. Obser, R. Schneppenheim, P. Hinterdorfer, S. W. Schneider, C. Baldauf, and F. Gräter, “Force-Sensitive Autoinhibition of the von Willebrand Factor Is Mediated by Interdomain Interactions,” Biophysical Journal, vol. 108, pp. 2312–2321, May 2015. S. Posch, C. Aponte-Santamaría, R. Schwarzl, A. Karner, M. Radtke, F. Gräter, T. Obser, G. König, M. A. Brehm, H. J. Gruber, R. R. Netz, C. Baldauf, R. Schneppenheim, R. Tampé, and P. Hinterdorfer, “Mutual A domain interactions in the force sensing protein von Willebrand factor,” Journal of Structural Biology, vol. 197, pp. 57–64, Jan. 2017. C. Martin, L. D. Morales, and M. A. Cruz, “Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibα,” J Thromb Haemost, vol. 5, pp. 1363–1370, July 2007. D. Butera, F. Passam, L. Ju, K. M. Cook, H. Woon, C. Aponte-Santamaría, E. Gardiner, A. K. Davis, D. A. Murphy, A. Bronowska, B. M. Luken, C. Baldauf, S. Jackson, R. Andrews, F. Gräter, and P. J. Hogg, “Autoregulation of von Willebrand factor function by a disulfide bond switch,” Sci. Adv., vol. 4, p. eaaq1477, Feb. 2018. B. Savage, J. J. Sixma, and Z. M. Ruggeri, “Functional self-association of von Willebrand factor during platelet adhesion under flow,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 425–430, Jan. 2002. H. Shankaran, P. Alexandridis, and S. Neelamegham, “Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension,” Blood, vol. 101, pp. 2637–2645, Apr. 2003. A. Barg, R. Ossig, T. Goerge, M. Schneider, H. Schillers, H. Oberleithner, and S. Schneider, “Soluble plasma-derived von Willebrand factor assembles to a haemostatically active filamentous network,” Thromb Haemost, vol. 97, no. 04, pp. 514–526, 2007. K. M. Dayananda, I. Singh, N. Mondal, and S. Neelamegham, “Von Willebrand factor self-association on platelet GpIbα under hydrodynamic shear: Effect on shear-induced platelet activation,” Blood, vol. 116, pp. 3990–3998, Nov. 2010. J. A. López and D. W. Chung, “VWF self-association: More bands for the buck,” Blood, vol. 116, pp. 3693–3694, Nov. 2010. C. Zhang, A. Kelkar, and S. Neelamegham, “Von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain,” Blood Advances, vol. 3, pp. 957–968, Apr. 2019. H. Fu, Y. Jiang, W. P. Wong, and T. A. Springer, “Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association,” Blood, vol. 138, pp. 2425–2434, Dec. 2021. G. Allen, Comprehensive Polymer Science and Supplements. New York.: Elsevier, 1996. D. L. Ermak and J. A. McCammon, “Brownian dynamics with hydrodynamic interactions,”The Journal of Chemical Physics, vol. 69, pp. 1352–1360, Aug. 1978. M. Doi, S. F. Edwards, and S. F. Edwards, The Theory of Polymer Dynamics. No. 73 in International Series of Monographs on Physics, Oxford: Clarendon Press, 1. publ. in paperback (with corr.) ed., 1988. H. R. Warner, “Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells,” Ind. Eng. Chem. Fund., vol. 11, pp. 379–387, Aug. 1972. M. L. Connolly, “Analytical molecular surface calculation,” J Appl Crystallogr, vol. 16, pp. 548–558, Oct. 1983. A. Shrake and J. Rupley, “Environment and exposure to solvent of protein atoms. Lysozyme and insulin,” Journal of Molecular Biology, vol. 79, pp. 351–371, Sept. 1973. B. Lee and F. Richards, “The interpretation of protein structures: Estimation of static accessibility,” Journal of Molecular Biology, vol. 55, pp. 379–IN4, Feb. 1971. F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf, “The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies,” J. Comput. Chem., vol. 16, pp. 273–284, Mar. 1995. E. Durham, B. Dorr, N. Woetzel, R. Staritzbichler, and J. Meiler, “Solvent accessible surface area approximations for rapid and accurate protein structure prediction,” J Mol Model, vol. 15, pp. 1093–1108, Sept. 2009. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” J. Chem. Theory Comput., vol. 4, pp. 435–447, Mar. 2008. M. Rubinstein and R. H. Colby, Polymer Physics. Oxford ; New York: Oxford University Press, 2003. J. Jin, A. J. Pak, and G. A. Voth, “Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability,” J. Phys. Chem. Lett., vol. 10, pp. 4549–4557, Aug. 2019. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide. No. 21 in Inter-disciplinary Applied Mathematics, New York Heidelberg: Springer, 2. ed ed., 2010. N. Goga, A. J. Rzepiela, A. H. De Vries, S. J. Marrink, and H. J. C. Berendsen, “Efficient Algorithms for Langevin and DPD Dynamics,” J. Chem. Theory Comput., vol. 8, pp. 3637–3649, Oct. 2012. E. Wajnryb, K. A. Mizerski, P. J. Zuk, and P. Szymczak, “Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors,” J. Fluid Mech., vol. 731, p. R3, Sept. 2013. J. Rotne and S. Prager, “Variational Treatment of Hydrodynamic Interaction in Polymers,” The Journal of Chemical Physics, vol. 50, pp. 4831–4837, June 1969.92 R. L. Thompson and C. M. Oishi, “Reynolds and Weissenberg numbers in viscoelastic flows,”Journal of Non-Newtonian Fluid Mechanics, vol. 292, p. 104550, June 2021. G. Falkovich, Fluid Mechanics / Gregory Falkovich (Weizmann Institute of Science, Rehovot, Israel). Cambridge, United Kingdom ; New York, NY: Cambridge University Press, second edition ed., 2018. Y.-F. Zhou, E. T. Eng, N. Nishida, C. Lu, T. Walz, and T. A. Springer, “A pH-regulated dimeric bouquet in the structure of von Willebrand factor: A pH-regulated dimeric bouquet in VWF,”The EMBO Journal, vol. 30, pp. 4098–4111, Oct. 2011. E. T. Parker and P. Lollar, “Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow,” Journal of Biological Chemistry, vol. 296, p. 100420, Jan. 2021. H. Van Breugel, P. De Groot, R. Heethaar, and J. Sixma, “Role of plasma viscosity in platelet adhesion,” Blood, vol. 80, pp. 953–959, Aug. 1992. J. D. Bronzino and D. R. Peterson, The Biomedical Engineering Handbook. Boca Raton, FL:CRC : Taylor & Francis, fourth edition ed., 2015. C.-S. Jhun, L. Xu, C. Siedlecki, C. R. Bartoli, E. Yeager, B. Lukic, C. M. Scheib, R. Newswanger, J. P. Cysyk, C. Shen, K. Bohnenberger, W. J. Weiss, and G. Rosenberg, “Kinetic and Dynamic Effects on Degradation of von Willebrand Factor,” ASAIO Journal, vol. 69, pp. 467–474, May 2023. K. S. Sakariassen, L. Orning, and V. T. Turitto, “The impact of blood shear rate on arterial thrombus formation,” Future Science OA, vol. 1, p. fso.15.28, Nov. 2015. M. A. Panteleev, N. Korin, K. D. Reesink, D. L. Bark, J. M. Cosemans, E. E. Gardiner, and P. H. Mangin, “Wall shear rates in human and mouse arteries: Standardization of hemodynamics for in vitro blood flow assays: Communication from the ISTH SSC subcommittee on biorheology,” Journal of Thrombosis and Haemostasis, vol. 19, pp. 588–595, Feb. 2021. L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature,” Eye Contact Lens, vol. 42, pp. 135–140, Mar. 2016. G. W. Castellan, Physical Chemistry. Reading, Mass: Addison-Wesley, 3rd ed ed., 1983. M. Igarashi, F. Akagi, K. Yoshida, and Y. Nakatani, “Effect of angle dependent attempt frequency on Arrhenius-Neel thermal decay in thin film media,” IEEE Trans. Magn., vol. 36, no. 5, pp. 2459–2461, Sept./2000. G. Bell, “Models for the specific adhesion of cells to cells,” Science, vol. 200, pp. 618–627, May 1978. J. T. Bullerjahn, S. Sturm, and K. Kroy, “Theory of rapid force spectroscopy,” Nat Commun, vol. 5, p. 4463, Dec. 2014. X. Zhang, K. Halvorsen, C.-Z. Zhang, W. P. Wong, and T. A. Springer, “Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor,” Science, vol. 324, pp. 1330–1334, June 2009. N. Rolland, A. Y. Mehandzhiyski, M. Garg, M. Linares, and I. V. Zozoulenko, “New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal,” J. Chem. Theory Comput., p. acs.jctc.0c00259, May 2020. H. Ulrichts, K. Vanhoorelbeke, J. P. Girma, P. J. Lenting, S. Vauterin, and H. Deckmyn, “The von Willebrand factor self-association is modulated by a multiple domain interaction,” J Thromb Haemost, vol. 3, pp. 552–561, Mar. 2005. E. Forte, A. J. Haslam, G. Jackson, and E. A. Müller, “Effective coarse-grained solid–fluid potentials and their application to model adsorption of fluids on heterogeneous surfaces,” Phys. Chem. Chem. Phys., vol. 16, no. 36, pp. 19165–19180, 2014. C. Gaudet, W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, and J. Y. Wong, “Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility,” Biophysical Journal, vol. 85, pp. 3329–3335, Nov. 2003. R. Schwarzl and R. Netz, “Hydrodynamic Shear Effects on Grafted and Non-Grafted Collapsed Polymers,” Polymers, vol. 10, p. 926, Aug. 2018. A. Milchev and K. Binder, “Linear Dimensions of Adsorbed Semiflexible Polymers: What Can Be Learned about Their Persistence Length?,” Phys. Rev. Lett., vol. 123, p. 128003, Sept. 2019. A. M. Fiore, F. Balboa Usabiaga, A. Donev, and J. W. Swan, “Rapid sampling of stochastic displacements in Brownian dynamics simulations,” The Journal of Chemical Physics, vol. 146, p. 124116, Mar. 2017. M. P. Howard, A. Z. Panagiotopoulos, and A. Nikoubashman, “Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration,” Computer Physics Communications, vol. 230, pp. 10–20, Sept. 2018. R. Chelakkot, R. G. Winkler, and G. Gompper, “Migration of semiflexible polymers in microcapillary flow,” EPL, vol. 91, p. 14001, July 2010. S. Reddig and H. Stark, “Cross-streamline migration of a semiflexible polymer in a pressure driven flow,” The Journal of Chemical Physics, vol. 135, p. 165101, Oct. 2011. M. F. Hoylaerts, H. Yamamoto, K. Nuyts, I. Vreys, H. Deckmyn, and J. Vermylen, “Von Willebrand factor binds to native collagen VI primarily via its A1 domain,” Biochemical Journal, vol. 324, pp. 185–191, May 1997. J. J. Dumas, R. Kumar, T. McDonagh, F. Sullivan, M. L. Stahl, W. S. Somers, and L. Mosyak, “Crystal Structure of the Wild-type von Willebrand Factor A1-Glycoprotein Ibα Complex Reveals Conformation Differences with a Complex Bearing von Willebrand Disease Mutations,” Journal of Biological Chemistry, vol. 279, pp. 23327–23334, May 2004. E. G. Huizinga, S. Tsuji, R. A. P. Romijn, M. E. Schiphorst, P. G. de Groot, J. J. Sixma, and P. Gros, “Structures of Glycoprotein Ibα and Its Complex with von Willebrand Factor A1 Domain,” Science, vol. 297, pp. 1176–1179, Aug. 2002.94 H. Ulrichts, M. Udvardy, P. J. Lenting, I. Pareyn, N. Vandeputte, K. Vanhoorelbeke, and H. Deckmyn, “Shielding of the A1 Domain by the D’D3 Domains of von Willebrand Factor Modulates Its Interaction with Platelet Glycoprotein Ib-IX-V,” Journal of Biological Chemistry, vol. 281, pp. 4699–4707, Feb. 2006. M. Auton, K. E. Sowa, M. Behymer, and M. A. Cruz, “N-terminal Flanking Region of A1 Domain in von Willebrand Factor Stabilizes Structure of A1A2A3 Complex and Modulates Platelet Activation under Shear Stress,” Journal of Biological Chemistry, vol. 287, pp. 14579–14585, Apr. 2012. G. Interlandi, O. Yakovenko, A.-Y. Tu, J. Harris, J. Le, J. Chen, J. A. López, and W. E. Thomas, "Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets,” Journal of Biological Chemistry, vol. 292, pp. 18608–18617, Nov. 2017. N. A. Arce, W. Cao, A. K. Brown, E. R. Legan, M. S. Wilson, E.-R. Xu, M. C. Berndt, J. Emsley, X. F. Zhang, and R. Li, “Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module,” Nat Commun, vol. 12, p. 2360, Apr. 2021. W. A. Hassenpflug, U. Budde, T. Obser, D. Angerhaus, E. Drewke, S. Schneppenheim, and R. Schneppenheim, “Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis,” Blood, vol. 107, pp. 2339–2345, Mar. 2006. S. Kania, A. Oztekin, X. Cheng, X. F. Zhang, and E. B. Webb, “Long time-scale study of von Willebrand factor multimers in extensional flow,” preprint, Biophysics, Sept. 2020. Q. Zhang, Y.-F. Zhou, C.-Z. Zhang, X. Zhang, C. Lu, and T. A. Springer, “Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, pp. 9226–9231, June 2009. A. B. Poma, M. Cieplak, and P. E. Theodorakis, “Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins,” J. Chem. Theory Comput., vol. 13, pp. 1366–1374, Mar. 2017. X. Periole, M. Cavalli, S.-J. Marrink, and M. A. Ceruso, “Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition,” J. Chem. Theory Comput., vol. 5, pp. 2531–2543, Sept. 2009. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations,” J. Phys. Chem. B, vol. 111, pp. 7812–7824, July 2007. S. Takada, “Gō model revisited,” BIOPHYSICS, vol. 16, no. 0, pp. 248–255, 2019. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
112 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Biomédica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/05fc897c-4087-42c9-986f-e5c5037dad33/download https://repositorio.uniandes.edu.co/bitstreams/be87aef3-a87b-4e8e-82f4-e543995ff236/download https://repositorio.uniandes.edu.co/bitstreams/2dee1b20-43fa-4cba-a8ab-c505941743e5/download https://repositorio.uniandes.edu.co/bitstreams/a4052317-eeca-4f10-8a96-b929cf3e9cfa/download https://repositorio.uniandes.edu.co/bitstreams/88d4af6d-a11f-43f7-885d-24926fb275be/download https://repositorio.uniandes.edu.co/bitstreams/34dad512-149c-4ad5-b087-ac98a00d8620/download https://repositorio.uniandes.edu.co/bitstreams/35d916b0-aa04-4b73-94da-6db549f14a1c/download https://repositorio.uniandes.edu.co/bitstreams/a13b0ba5-ca3f-4ed4-8667-9a29eab0531a/download |
bitstream.checksum.fl_str_mv |
053f72d982ac9ac86c559309138bc3b4 6fad0fd7d4923faf9a7f955d20686b02 ae9e573a68e7f92501b6913cc846c39f 4460e5956bc1d1639be9ae6146a50347 20209532bb5e49f122ffef6b36168e2b 609add98f495e6d737897332ceb22d20 000e4b26d858618bbbbe4694699f746c 152a9e0bba9619a0edd6a14c6e7542e3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133974066069504 |
spelling |
Aponte SantaMaría, Camilo Andrésvirtual::17901-1Briceño Triana, Juan Carlosvirtual::17902-1Amaya Espinosa, Helman AlirioAlexander-Katz, AlfredoPedraza Leal, Juan Manuelvirtual::17903-1Cruz Jiménez, Juan Carlosvirtual::17904-12024-04-15T14:01:57Z2024-04-15T14:01:57Z2023-06-23https://hdl.handle.net/1992/7420510.57784/1992/74205instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Von Willebrand factor (VWF) is a giant extracellular glycoprotein that performs an essential function during hemostasis. This function includes platelet immobilization, which initiates the platelet plug formation at the primary hemostasis. That immobilization requires both activation and adhesion of VWF on the subendothelial surface, exposed during a vascular injury. VWF is mechanosensitive, and its activation depends on the blood flow velocity. VWF also forms self-aggregates, which are crucial during the immobilization of platelets, but the dynamics of the formation of these self-aggregates remain poorly understood. This thesis theoretically studies how self-interactions affect the flow-induced non-equilibrium conformational dynamics of single or multiple low molecular weight (LMW) VWF multimers. For this purpose, we implemented Brownian dynamics simulations at a coarse-grained (CG) resolution of a bead per VWF domain. First, we study the role of intra-chain interactions in the conformational dynamics of single VWF chains under a shear flow. We contrasted the tuning effect of specific and cohesion interactions on the conformational dynamics of single VWF-like biopolymers. We observe that the impact of cohesion on single chain dynamics was more intense than the effect of the specific interactions despite the equal scale of energies of both interactions. However, introducing a random distribution of specifically interacting domains and increasing the number of these domains improve the tunning effect of these specific interactions in the chain conformational dynamics. We also obtained phase diagrams that show the dependence of chain extension probability on each intra-chain interaction energy and external shear rate for different values of the density of specific interacting domains. Second, we examined a system consisting of multiple VWF-like self-interacting chains interacting under a shear flow and able to interact with a surface. Instead of specific A1-A2 interactions, we introduced a surface interaction that enhances the adhesion of a bead that mimics one of the VWF domains (A3), which adheres to the subendothelial surface of a blood vessel. Our systematic analysis reveals that chain-chain and chain-surface interactions coexist non-trivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and propensity to form shear-assisted functional adsorbed aggregates. Our data highlights VWF self-interacting chains' collective behavior when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay between adsorption, cohesion, and shear forces and the relevance of that interplay for the adhesive hemostatic function of VWF. Third, we simulate the entire unfolding process of the VWF A2 domain in a CG GoMARTINI approach with beads of the size of chemical functional groups. Next, we use the same approach to study VWF A2-A2 interactions between three A2 domains using constant pulling forces miming shear flow conditions. Low pulling forces are enough to create a protrusion in one of the A2 domains and to start an interaction with another collapsed A2 domain. In contrast, higher pulling forces completely elongate all the A2 domains, making the simultaneous interaction between one domain and the other two domains possible. We could express this new information about A2-A2 specific interactions and A2-unfolding in a resolution of one bead per VWF domain to introduce both effects in our modeling of VWF self-interacting multimers. However, we leave that improvement in our model for later studies.- Iniciativa Max Planck, Vicerrectoría de Investigaciones y creación, Universidad de los Andes. - MIT International Science and Technology Initiatives (MISTI) Global Seed Funds.Doctorado112 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería BiomédicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dynamics of self-interacting von Willebrand factor chains in shear flowsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDVon Willebrand factorCoarse-grained modellingBrownian dynamicsComputational biophysicsBioengineeringSelf-aggregationSpecific interactionsAdsorption mechanismHemostasisCooperativityPolymer physicsIngenieríaFísicaBiologíaJ. E. Hall, M. E. Hall, and A. C. Guyton, Guyton and Hall Textbook of Medical Physiology.Philadelphia, PA: Elsevier, 14th edition ed., 2021.L. B. Nicholson, “The immune system,” Essays in Biochemistry, vol. 60, pp. 275–301, Oct.2016.F. Mantile, A. Capasso, P. De Berardinis, and A. Prisco, “Analysis of the Consolidation Phase of Immunological Memory within the IgG Response to a B Cell Epitope Displayed on a Filamentous Bacteriophage,” Microorganisms, vol. 8, p. 564, Apr. 2020.O. K. Baskurt and H. J. Meiselman, “Blood Rheology and Hemodynamics,” Semin Thromb Hemost, vol. 29, no. 5, pp. 435–450, 2003.H. A. Krebs, “Chemical Composition of Blood Plasma and Serum,” Annu. Rev. Biochem., vol. 19, pp. 409–430, June 1950.Ch. Weiss and W. Jelkmann, “Functions of the Blood,” in Human Physiology (R. F. Schmidt and G. Thews, eds.), pp. 402–438, Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.J. K. Lloyd and A. S. Fosbrooke, “Plasma Lipoproteins,” in Structure and Function of Plasma Proteins (A. C. Allison, ed.), pp. 1–33, Boston, MA: Springer US, 1974.L. Bertholim, A. F. A. Chaves, A. K. Oliveira, M. C. Menezes, A. F. Asega, A. K. Tashima, A. Zelanis, and S. M. T. Serrano, “Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins,” Toxins, vol. 13, p. 764, Oct. 2021.H. Eagle, “The coagulation of blood by snake venoms and its pysiologic significance,” Journal of Experimental Medicine, vol. 65, pp. 613–639, May 1937.U. Dinnar, Cardiovascular Fluid Dynamics. Boca Raton, Fla.: CRC Press, 2019.K. Rack, V. Huck, M. Hoore, D. A. Fedosov, S. W. Schneider, and G. Gompper, “Margination and stretching of von Willebrand factor in the blood stream enable adhesion,” Sci Rep, vol. 7, p. 14278, Dec. 2017.D. A. Fedosov and G. Gompper, “White blood cell margination in microcirculation,” Soft Matter, vol. 10, no. 17, pp. 2961–2970, 2014.S. Palta, R. Saroa, and A. Palta, “Overview of the coagulation system,” Indian J Anaesth, vol. 58, no. 5, p. 515, 2014.8586A. C. d. O. Gonzalez, T. F. Costa, Z. d. A. Andrade, and A. R. A. P. Medrado, “Wound healing - A literature review,” An. Bras. Dermatol., vol. 91, pp. 614–620, Oct. 2016.S. Margetic, “Inflammation and haemostasis,” Biochem Med (Zagreb), vol. 22, no. 1, pp. 49–62, 2012.B. Ciszek, R. Hudák, D. Kachlík, and O. Volný, eds., Memorix Anatomy. Wrocław: Edra Urban & Partner, 2016.M. M. Zdanowicz, Essentials of Pathophysiology for Pharmacy. London: Routledge, 1st ed., 2019.A. Alexander-Katz, M. F. Schneider, S. W. Schneider, A. Wixforth, and R. R. Netz, “Shear-Flow-Induced Unfolding of Polymeric Globules,” Phys. Rev. Lett., vol. 97, p. 138101, Sept. 2006.S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, “Shear-induced unfolding triggers adhesion of von Willebrand factor fibers,” Proceedings of the National Academy of Sciences, vol. 104, pp. 7899–7903, May 2007.T. A. Springer, “Von Willebrand factor, Jedi knight of the bloodstream,” Blood, vol. 124, pp. 1412–1425, Aug. 2014.G.-P. Luo, B. Ni, X. Yang, and Y.-Z. Wu, “Von Willebrand Factor: More Than a Regulator of Hemostasis and Thrombosis,” Acta Haematol, vol. 128, no. 3, pp. 158–169, 2012.D. D. Wagner, “Cell Biology of von Willebrand Factor,” Annu. Rev. Cell. Biol., vol. 6, pp. 217-242, Nov. 1990.R. Schneppenheim and U. Budde, “Von Willebrand factor: The complex molecular genetics of a multidomain and multifunctional protein: Molecular genetics of a multidomain and multifunctional protein,” Journal of Thrombosis and Haemostasis, vol. 9, pp. 209–215, July 2011.M. Kroll, J. Hellums, L. McIntire, A. Schafer, and J. Moake, “Platelets and shear stress,” Blood, vol. 88, pp. 1525–1541, Sept. 1996.R. K. Andrews and M. C. Berndt, “Platelet physiology and thrombosis,” Thrombosis Research, vol. 114, pp. 447–453, Jan. 2004.S.-H. Yun, E.-H. Sim, R.-Y. Goh, J.-I. Park, and J.-Y. Han, “Platelet Activation: The Mechanisms and Potential Biomarkers,” BioMed Research International, vol. 2016, pp. 1–5, 2016.C. Pallister and M. Watson, Haematology. Banbury: Scion, 2nd ed ed., 2011.D. Lasne, B. Jude, and S. Susen, “From normal to pathological hemostasis,” Can J Anesth/J Can Anesth, vol. 53, pp. S2–S11, June 2006.N. Mackman and M. Taubman, “Tissue Factor: Past, Present, and Future,” ATVB, vol. 29, pp. 1986-1988, Dec. 2009.V. Terraube, J. S. O’Donnell, and P. V. Jenkins, “Factor VIII and von Willebrand factor interaction: Biological, clinical and therapeutic importance,” Haemophilia, vol. 16, pp. 3–13, Jan. 2010.P. J. Lenting, O. D. Christophe, and C. V. Denis, “Von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends,” Blood, vol. 125, pp. 2019–2028, Mar. 2015.J. P. Müller, S. Mielke, A. Löf, T. Obser, C. Beer, L. K. Bruetzel, D. A. Pippig, W. Vanderlinden, J. Lipfert, R. Schneppenheim, and M. Benoit, “Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction,” Proc Natl Acad Sci USA, vol. 113, pp. 1208–1213, Feb. 2016.S. Lippok, T. Obser, J. P. Müller, V. K. Stierle, M. Benoit, U. Budde, R. Schneppenheim, and J. O. Rädler, “Exponential Size Distribution of von Willebrand Factor,” Biophysical Journal, vol. 105, pp. 1208–1216, Sept. 2013.R. Hoffman, E. J. Benz, L. E. Silberstein, H. E. Heslop, J. I. Weitz, M. E. Salama, and S. A. Abutalib, eds., Hematology: Basic Principles and Practice. Philadelphia, PA: Elsevier, eighth edition ed., 2023.H. Gritsch, G. Schrenk, N. Weinhappl, B. Mellgård, B. Ewenstein, and P. L. Turecek, “Structure and Function of Recombinant versus Plasma-Derived von Willebrand Factor and Impact on Multimer Pharmacokinetics in von Willebrand Disease,” JBM, vol. Volume 13, pp. 649–662, Nov. 2022.X. L. Zheng, “ADAMTS13 and von Willebrand Factor in Thrombotic Thrombocytopenic Purpura,” Annu. Rev. Med., vol. 66, pp. 211–225, Jan. 2015.B. Huisman, M. Hoore, G. Gompper, and D. A. Fedosov, “Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow,” Medical Engineering & Physics, vol. 48, pp. 14–22, Oct. 2017.C. Baldauf, R. Schneppenheim, W. Stacklies, T. Obser, A. Pieconka, S. Schneppenheim, U. Budde, J. Zhou, and F. Gräter, “Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis,” Journal of Thrombosis and Haemostasis, vol. 7, pp. 2096–2105, Dec. 2009.S. Lippok, M. Radtke, T. Obser, L. Kleemeier, R. Schneppenheim, U. Budde, R. R. Netz, and J. O. Raedler, “Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers,” Biophysical Journal, vol. 110, pp. 545–554, Feb. 2016.H. Fu, Y. Jiang, D. Yang, F. Scheiflinger, W. P. Wong, and T. A. Springer, “Flow-induced elongation of von Willebrand factor precedes tension-dependent activation,” Nat Commun, vol. 8, p. 324, Dec. 2017.S. Posch, T. Obser, G. König, R. Schneppenheim, R. Tampé, and P. Hinterdorfer, “Interaction of von Willebrand factor domains with collagen investigated by single molecule force spectroscopy,” The Journal of Chemical Physics, vol. 148, p. 123310, Mar. 2018.T. H. C. Brondijk, D. Bihan, R. W. Farndale, and E. G. Huizinga, “Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex,” Proceedings of the National Academy of Sciences, vol. 109, pp. 5253–5258, Apr. 2012.V. H. Flood, A. C. Schlauderaff, S. L. Haberichter, T. L. Slobodianuk, P. M. Jacobi, D. B. Bellissimo, P. A. Christopherson, K. D. Friedman, J. C. Gill, R. G. Hoffmann, R. R. Montgomery, and the Zimmerman Program Investigators, “Crucial role for the VWF A1 domain in binding to type IV collagen,” Blood, vol. 125, pp. 2297–2304, Apr. 2015.88M. A. Cruz, H. Yuan, J. R. Lee, R. J. Wise, and R. I. Handin, “Interaction of the von Willebrand Factor (vWF) with Collagen,” Journal of Biological Chemistry, vol. 270, pp. 10822–10827, May 1995.Y.-F. Zhou, E. T. Eng, J. Zhu, C. Lu, T. Walz, and T. A. Springer, “Sequence and structure relationships within von Willebrand factor,” Blood, vol. 120, pp. 449–458, July 2012.M. Bryckaert, J.-P. Rosa, C. V. Denis, and P. J. Lenting, “Of von Willebrand factor and platelets,” Cell. Mol. Life Sci., vol. 72, pp. 307–326, Jan. 2015.J. E. Sadler, “Biochemistry and genetics of von Willebrand Factor,” Annu. Rev. Biochem., vol. 67, pp. 395–424, June 1998.C. H. Miller, “Laboratory Diagnosis of Inherited von Willebrand Disease,” in Transfusion Medicine and Hemostasis, pp. 799–805, Elsevier, 2019.J.-f. Dong, J. L. Moake, L. Nolasco, A. Bernardo, W. Arceneaux, C. N. Shrimpton, A. J. Schade, L. V. McIntire, K. Fujikawa, and J. A. López, “ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions,” Blood, vol. 100, pp. 4033–4039, Dec. 2002.V. Huck, M. Schneider, C. Gorzelanny, and S. Schneider, “The various states of von Willebrand factor and their function in physiology and pathophysiology,” Thromb Haemost, vol. 111, no. 04, pp. 598–609, 2014.T. Chiasakul and A. Cuker, “Clinical and laboratory diagnosis of TTP: An integrated approach,” Hematology, vol. 2018, pp. 530–538, Nov. 2018.S. Giannini, L. Cecchetti, A. M. Mezzasoma, and P. Gresele, “Diagnosis of platelet-type von Willebrand disease by flow cytometry,” Haematologica, vol. 95, pp. 1021–1024, June 2010.J. Charlebois, G.-É. Rivard, and J. St-Louis, “Management of acquired von Willebrand syndrome," Transfusion and Apheresis Science, vol. 57, pp. 721–723, Dec. 2018.M. F. Schneider, M. A. Fallah, C. Mess, T. Obser, R. Schneppenheim, A. Alexander-Katz, S. W. Schneider, and V. Huck, “Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF,” BMC Mol and Cell Biol, vol. 21, p. 64, Dec. 2020.H. T. Bergal, Y. Jiang, D. Yang, T. A. Springer, and W. P. Wong, “Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging,” Blood, vol. 140, pp. 2490–2499, Dec. 2022.Q. M. Qi, E. Dunne, I. Oglesby, I. Schoen, A. J. Ricco, D. Kenny, and E. S. Shaqfeh, “In Vitro Measurement and Modeling of Platelet Adhesion on VWF-Coated Surfaces in Channel Flow,” Biophysical Journal, vol. 116, pp. 1136–1151, Mar. 2019.Y. Wang, M. Morabito, X. F. Zhang, E. Webb, A. Oztekin, and X. Cheng, “Shear-Induced Extensional Response Behaviors of Tethered von Willebrand Factor,” Biophysical Journal, vol. 116, pp. 2092–2102, June 2019.J. Ying, Y. Ling, L. A. Westfield, J. E. Sadler, and J.-Y. Shao, “Unfolding the A2 Domain of Von Willebrand Factor with the Optical Trap,” Biophysical Journal, vol. 98, pp. 1685–1693, Apr. 2010.A. Löf, P. U. Walker, S. M. Sedlak, S. Gruber, T. Obser, M. A. Brehm, M. Benoit, and J. Lipfert, "Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor,” Proc Natl Acad Sci USA, vol. 116,pp. 18798–18807, Sept. 2019.Y. K. Kushchenko and A. V. Belyaev, “Effects of hydrophobicity, tethering and size on flow-induced activation of von Willebrand factor multimers,” Journal of Theoretical Biology, vol. 485, p. 110050, Jan. 2020.M. Radtke, S. Lippok, J. O. Rädler, and R. R. Netz, “Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor,” Eur. Phys. J. E, vol. 39, p. 32, Mar. 2016.H. Chen, M. A. Fallah, V. Huck, J. I. Angerer, A. J. Reininger, S. W. Schneider, M. F. Schneider, and A. Alexander-Katz, “Blood-clotting-inspired reversible polymer-colloid composite assembly in flow,” Nat Commun, vol. 4, p. 1333, June 2013.M. Radtke, M. Radtke, and R. Netz, “Shear-induced dynamics of polymeric globules at adsorbing homogeneous and inhomogeneous surfaces,” Eur. Phys. J. E, vol. 37, p. 20, Mar. 2014.M. Radtke and R. R. Netz, “Shear-enhanced adsorption of a homopolymeric globule mediated by surface catch bonds,” Eur. Phys. J. E, vol. 38, p. 69, June 2015.M. Hoore, K. Rack, D. A. Fedosov, and G. Gompper, “Flow-induced adhesion of shearactivated polymers to a substrate,” J. Phys.: Condens. Matter, vol. 30, p. 064001, Feb. 2018.M. Heidari, M. Mehrbod, M. R. Ejtehadi, and M. R. K. Mofrad, “Cooperation within von Willebrand factors enhances adsorption mechanism,” Journal of The Royal Society Interface, vol. 12, p. 20150334, Aug. 2015.S. Kania, A. Oztekin, X. Cheng, X. F. Zhang, and E. Webb, “Predicting pathological von Willebrand factor unraveling in elongational flow,” Biophysical Journal, vol. 120, pp. 1903–1915, May 2021.W. Wei, C. Dong, M. Morabito, X. Cheng, X. F. Zhang, E. B. Webb, and A. Oztekin, “Coarse-Grain Modeling of Shear-Induced Binding between von Willebrand Factor and Collagen,” Biophysical Journal, vol. 114, pp. 1816–1829, Apr. 2018.M. Morabito, C. Dong, W. Wei, X. Cheng, X. F. Zhang, A. Oztekin, and E. Webb, “Internal Tensile Force and A2 Domain Unfolding of von Willebrand Factor Multimers in Shear Flow,” Biophysical Journal, vol. 115, pp. 1860–1871, Nov. 2018.C. Dong, S. Kania, M. Morabito, X. F. Zhang, W. Im, A. Oztekin, X. Cheng, and E. B. Webb, “A mechano-reactive coarse-grained model of the blood-clotting agent von Willebrand factor,” J. Chem. Phys., vol. 151, p. 124905, Sept. 2019.M. J. Morabito, M. Usta, X. Cheng, X. F. Zhang, A. Oztekin, and E. B. Webb, “Prediction of Sub-Monomer A2 Domain Dynamics of the von Willebrand Factor by Machine Learning Algorithm and Coarse-Grained Molecular Dynamics Simulation,” Sci Rep, vol. 9, p. 9037, Dec. 2019.A. V. Belyaev, “Intradimer forces and their implication for conformations of von Willebrand factor multimers,” Biophysical Journal, vol. 120, pp. 899–911, Mar. 2021.90C. Aponte-Santamaría, S. Lippok, J. J. Mittag, T. Obser, R. Schneppenheim, C. Baldauf, F. Gräter, U. Budde, and J. O. Rädler, “Mutation G1629E Increases von Willebrand Factor Cleavage via a Cooperative Destabilization Mechanism,” Biophysical Journal, vol. 112, pp. 57–65, Jan. 2017.C. Aponte-Santamaría, V. Huck, S. Posch, A. K. Bronowska, S. Grässle, M. A. Brehm, T. Obser, R. Schneppenheim, P. Hinterdorfer, S. W. Schneider, C. Baldauf, and F. Gräter, “Force-Sensitive Autoinhibition of the von Willebrand Factor Is Mediated by Interdomain Interactions,” Biophysical Journal, vol. 108, pp. 2312–2321, May 2015.S. Posch, C. Aponte-Santamaría, R. Schwarzl, A. Karner, M. Radtke, F. Gräter, T. Obser, G. König, M. A. Brehm, H. J. Gruber, R. R. Netz, C. Baldauf, R. Schneppenheim, R. Tampé, and P. Hinterdorfer, “Mutual A domain interactions in the force sensing protein von Willebrand factor,” Journal of Structural Biology, vol. 197, pp. 57–64, Jan. 2017.C. Martin, L. D. Morales, and M. A. Cruz, “Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibα,” J Thromb Haemost, vol. 5, pp. 1363–1370, July 2007.D. Butera, F. Passam, L. Ju, K. M. Cook, H. Woon, C. Aponte-Santamaría, E. Gardiner, A. K. Davis, D. A. Murphy, A. Bronowska, B. M. Luken, C. Baldauf, S. Jackson, R. Andrews, F. Gräter, and P. J. Hogg, “Autoregulation of von Willebrand factor function by a disulfide bond switch,” Sci. Adv., vol. 4, p. eaaq1477, Feb. 2018.B. Savage, J. J. Sixma, and Z. M. Ruggeri, “Functional self-association of von Willebrand factor during platelet adhesion under flow,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 425–430, Jan. 2002.H. Shankaran, P. Alexandridis, and S. Neelamegham, “Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension,” Blood, vol. 101, pp. 2637–2645, Apr. 2003.A. Barg, R. Ossig, T. Goerge, M. Schneider, H. Schillers, H. Oberleithner, and S. Schneider, “Soluble plasma-derived von Willebrand factor assembles to a haemostatically active filamentous network,” Thromb Haemost, vol. 97, no. 04, pp. 514–526, 2007.K. M. Dayananda, I. Singh, N. Mondal, and S. Neelamegham, “Von Willebrand factor self-association on platelet GpIbα under hydrodynamic shear: Effect on shear-induced platelet activation,” Blood, vol. 116, pp. 3990–3998, Nov. 2010.J. A. López and D. W. Chung, “VWF self-association: More bands for the buck,” Blood, vol. 116, pp. 3693–3694, Nov. 2010.C. Zhang, A. Kelkar, and S. Neelamegham, “Von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain,” Blood Advances, vol. 3, pp. 957–968, Apr. 2019.H. Fu, Y. Jiang, W. P. Wong, and T. A. Springer, “Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association,” Blood, vol. 138, pp. 2425–2434, Dec. 2021.G. Allen, Comprehensive Polymer Science and Supplements. New York.: Elsevier, 1996.D. L. Ermak and J. A. McCammon, “Brownian dynamics with hydrodynamic interactions,”The Journal of Chemical Physics, vol. 69, pp. 1352–1360, Aug. 1978.M. Doi, S. F. Edwards, and S. F. Edwards, The Theory of Polymer Dynamics. No. 73 in International Series of Monographs on Physics, Oxford: Clarendon Press, 1. publ. in paperback (with corr.) ed., 1988.H. R. Warner, “Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells,” Ind. Eng. Chem. Fund., vol. 11, pp. 379–387, Aug. 1972.M. L. Connolly, “Analytical molecular surface calculation,” J Appl Crystallogr, vol. 16, pp. 548–558, Oct. 1983.A. Shrake and J. Rupley, “Environment and exposure to solvent of protein atoms. Lysozyme and insulin,” Journal of Molecular Biology, vol. 79, pp. 351–371, Sept. 1973.B. Lee and F. Richards, “The interpretation of protein structures: Estimation of static accessibility,” Journal of Molecular Biology, vol. 55, pp. 379–IN4, Feb. 1971.F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf, “The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies,” J. Comput. Chem., vol. 16, pp. 273–284, Mar. 1995.E. Durham, B. Dorr, N. Woetzel, R. Staritzbichler, and J. Meiler, “Solvent accessible surface area approximations for rapid and accurate protein structure prediction,” J Mol Model, vol. 15, pp. 1093–1108, Sept. 2009.B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” J. Chem. Theory Comput., vol. 4, pp. 435–447, Mar. 2008.M. Rubinstein and R. H. Colby, Polymer Physics. Oxford ; New York: Oxford University Press, 2003.J. Jin, A. J. Pak, and G. A. Voth, “Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability,” J. Phys. Chem. Lett., vol. 10, pp. 4549–4557, Aug. 2019.T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide. No. 21 in Inter-disciplinary Applied Mathematics, New York Heidelberg: Springer, 2. ed ed., 2010.N. Goga, A. J. Rzepiela, A. H. De Vries, S. J. Marrink, and H. J. C. Berendsen, “Efficient Algorithms for Langevin and DPD Dynamics,” J. Chem. Theory Comput., vol. 8, pp. 3637–3649, Oct. 2012.E. Wajnryb, K. A. Mizerski, P. J. Zuk, and P. Szymczak, “Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors,” J. Fluid Mech., vol. 731, p. R3, Sept. 2013.J. Rotne and S. Prager, “Variational Treatment of Hydrodynamic Interaction in Polymers,” The Journal of Chemical Physics, vol. 50, pp. 4831–4837, June 1969.92R. L. Thompson and C. M. Oishi, “Reynolds and Weissenberg numbers in viscoelastic flows,”Journal of Non-Newtonian Fluid Mechanics, vol. 292, p. 104550, June 2021.G. Falkovich, Fluid Mechanics / Gregory Falkovich (Weizmann Institute of Science, Rehovot, Israel). Cambridge, United Kingdom ; New York, NY: Cambridge University Press, second edition ed., 2018.Y.-F. Zhou, E. T. Eng, N. Nishida, C. Lu, T. Walz, and T. A. Springer, “A pH-regulated dimeric bouquet in the structure of von Willebrand factor: A pH-regulated dimeric bouquet in VWF,”The EMBO Journal, vol. 30, pp. 4098–4111, Oct. 2011.E. T. Parker and P. Lollar, “Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow,” Journal of Biological Chemistry, vol. 296, p. 100420, Jan. 2021.H. Van Breugel, P. De Groot, R. Heethaar, and J. Sixma, “Role of plasma viscosity in platelet adhesion,” Blood, vol. 80, pp. 953–959, Aug. 1992.J. D. Bronzino and D. R. Peterson, The Biomedical Engineering Handbook. Boca Raton, FL:CRC : Taylor & Francis, fourth edition ed., 2015.C.-S. Jhun, L. Xu, C. Siedlecki, C. R. Bartoli, E. Yeager, B. Lukic, C. M. Scheib, R. Newswanger, J. P. Cysyk, C. Shen, K. Bohnenberger, W. J. Weiss, and G. Rosenberg, “Kinetic and Dynamic Effects on Degradation of von Willebrand Factor,” ASAIO Journal, vol. 69, pp. 467–474, May 2023.K. S. Sakariassen, L. Orning, and V. T. Turitto, “The impact of blood shear rate on arterial thrombus formation,” Future Science OA, vol. 1, p. fso.15.28, Nov. 2015.M. A. Panteleev, N. Korin, K. D. Reesink, D. L. Bark, J. M. Cosemans, E. E. Gardiner, and P. H. Mangin, “Wall shear rates in human and mouse arteries: Standardization of hemodynamics for in vitro blood flow assays: Communication from the ISTH SSC subcommittee on biorheology,” Journal of Thrombosis and Haemostasis, vol. 19, pp. 588–595, Feb. 2021.L. Wang, J. Yuan, H. Jiang, W. Yan, H. R. Cintrón-Colón, V. L. Perez, D. C. DeBuc, W. J. Feuer, and J. Wang, “Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature,” Eye Contact Lens, vol. 42, pp. 135–140, Mar. 2016.G. W. Castellan, Physical Chemistry. Reading, Mass: Addison-Wesley, 3rd ed ed., 1983.M. Igarashi, F. Akagi, K. Yoshida, and Y. Nakatani, “Effect of angle dependent attempt frequency on Arrhenius-Neel thermal decay in thin film media,” IEEE Trans. Magn., vol. 36, no. 5, pp. 2459–2461, Sept./2000.G. Bell, “Models for the specific adhesion of cells to cells,” Science, vol. 200, pp. 618–627, May 1978.J. T. Bullerjahn, S. Sturm, and K. Kroy, “Theory of rapid force spectroscopy,” Nat Commun, vol. 5, p. 4463, Dec. 2014.X. Zhang, K. Halvorsen, C.-Z. Zhang, W. P. Wong, and T. A. Springer, “Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor,” Science, vol. 324, pp. 1330–1334, June 2009.N. Rolland, A. Y. Mehandzhiyski, M. Garg, M. Linares, and I. V. Zozoulenko, “New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal,” J. Chem. Theory Comput., p. acs.jctc.0c00259, May 2020.H. Ulrichts, K. Vanhoorelbeke, J. P. Girma, P. J. Lenting, S. Vauterin, and H. Deckmyn, “The von Willebrand factor self-association is modulated by a multiple domain interaction,” J Thromb Haemost, vol. 3, pp. 552–561, Mar. 2005.E. Forte, A. J. Haslam, G. Jackson, and E. A. Müller, “Effective coarse-grained solid–fluid potentials and their application to model adsorption of fluids on heterogeneous surfaces,” Phys. Chem. Chem. Phys., vol. 16, no. 36, pp. 19165–19180, 2014.C. Gaudet, W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, and J. Y. Wong, “Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility,” Biophysical Journal, vol. 85, pp. 3329–3335, Nov. 2003.R. Schwarzl and R. Netz, “Hydrodynamic Shear Effects on Grafted and Non-Grafted Collapsed Polymers,” Polymers, vol. 10, p. 926, Aug. 2018.A. Milchev and K. Binder, “Linear Dimensions of Adsorbed Semiflexible Polymers: What Can Be Learned about Their Persistence Length?,” Phys. Rev. Lett., vol. 123, p. 128003, Sept. 2019.A. M. Fiore, F. Balboa Usabiaga, A. Donev, and J. W. Swan, “Rapid sampling of stochastic displacements in Brownian dynamics simulations,” The Journal of Chemical Physics, vol. 146, p. 124116, Mar. 2017.M. P. Howard, A. Z. Panagiotopoulos, and A. Nikoubashman, “Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration,” Computer Physics Communications, vol. 230, pp. 10–20, Sept. 2018.R. Chelakkot, R. G. Winkler, and G. Gompper, “Migration of semiflexible polymers in microcapillary flow,” EPL, vol. 91, p. 14001, July 2010.S. Reddig and H. Stark, “Cross-streamline migration of a semiflexible polymer in a pressure driven flow,” The Journal of Chemical Physics, vol. 135, p. 165101, Oct. 2011.M. F. Hoylaerts, H. Yamamoto, K. Nuyts, I. Vreys, H. Deckmyn, and J. Vermylen, “Von Willebrand factor binds to native collagen VI primarily via its A1 domain,” Biochemical Journal, vol. 324, pp. 185–191, May 1997.J. J. Dumas, R. Kumar, T. McDonagh, F. Sullivan, M. L. Stahl, W. S. Somers, and L. Mosyak, “Crystal Structure of the Wild-type von Willebrand Factor A1-Glycoprotein Ibα Complex Reveals Conformation Differences with a Complex Bearing von Willebrand Disease Mutations,” Journal of Biological Chemistry, vol. 279, pp. 23327–23334, May 2004.E. G. Huizinga, S. Tsuji, R. A. P. Romijn, M. E. Schiphorst, P. G. de Groot, J. J. Sixma, and P. Gros, “Structures of Glycoprotein Ibα and Its Complex with von Willebrand Factor A1 Domain,” Science, vol. 297, pp. 1176–1179, Aug. 2002.94H. Ulrichts, M. Udvardy, P. J. Lenting, I. Pareyn, N. Vandeputte, K. Vanhoorelbeke, and H. Deckmyn, “Shielding of the A1 Domain by the D’D3 Domains of von Willebrand Factor Modulates Its Interaction with Platelet Glycoprotein Ib-IX-V,” Journal of Biological Chemistry, vol. 281, pp. 4699–4707, Feb. 2006.M. Auton, K. E. Sowa, M. Behymer, and M. A. Cruz, “N-terminal Flanking Region of A1 Domain in von Willebrand Factor Stabilizes Structure of A1A2A3 Complex and Modulates Platelet Activation under Shear Stress,” Journal of Biological Chemistry, vol. 287, pp. 14579–14585, Apr. 2012.G. Interlandi, O. Yakovenko, A.-Y. Tu, J. Harris, J. Le, J. Chen, J. A. López, and W. E. Thomas, "Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets,” Journal of Biological Chemistry, vol. 292, pp. 18608–18617, Nov. 2017.N. A. Arce, W. Cao, A. K. Brown, E. R. Legan, M. S. Wilson, E.-R. Xu, M. C. Berndt, J. Emsley, X. F. Zhang, and R. Li, “Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module,” Nat Commun, vol. 12, p. 2360, Apr. 2021.W. A. Hassenpflug, U. Budde, T. Obser, D. Angerhaus, E. Drewke, S. Schneppenheim, and R. Schneppenheim, “Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis,” Blood, vol. 107, pp. 2339–2345, Mar. 2006.S. Kania, A. Oztekin, X. Cheng, X. F. Zhang, and E. B. Webb, “Long time-scale study of von Willebrand factor multimers in extensional flow,” preprint, Biophysics, Sept. 2020.Q. Zhang, Y.-F. Zhou, C.-Z. Zhang, X. Zhang, C. Lu, and T. A. Springer, “Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, pp. 9226–9231, June 2009.A. B. Poma, M. Cieplak, and P. E. Theodorakis, “Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins,” J. Chem. Theory Comput., vol. 13, pp. 1366–1374, Mar. 2017.X. Periole, M. Cavalli, S.-J. Marrink, and M. A. Ceruso, “Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition,” J. Chem. Theory Comput., vol. 5, pp. 2531–2543, Sept. 2009.S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, “The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations,” J. Phys. Chem. B, vol. 111, pp. 7812–7824, July 2007.S. Takada, “Gō model revisited,” BIOPHYSICS, vol. 16, no. 0, pp. 248–255, 2019.201711228Publicationhttps://scholar.google.es/citations?user=x8-YWMsAAAAJvirtual::17903-10000-0002-1802-3337virtual::17903-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000008320virtual::17902-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000001817virtual::17903-14be1379a-8a61-47ce-9bba-30cf80c2aa5evirtual::17901-1a1afa9bf-acfa-4fd4-b002-806fa86cc367virtual::17902-14be1379a-8a61-47ce-9bba-30cf80c2aa5evirtual::17901-1a1afa9bf-acfa-4fd4-b002-806fa86cc367virtual::17902-1a4c0056f-ab75-4234-9297-925380d7633avirtual::17903-110c65e28-e393-4bfe-91e5-f3a7d32e6771virtual::17904-1a4c0056f-ab75-4234-9297-925380d7633avirtual::17903-110c65e28-e393-4bfe-91e5-f3a7d32e6771virtual::17904-1ORIGINALDynamics of self-interacting von Willebrand factor chains in shear flows.pdfDynamics of self-interacting von Willebrand factor chains in shear flows.pdfapplication/pdf24979384https://repositorio.uniandes.edu.co/bitstreams/05fc897c-4087-42c9-986f-e5c5037dad33/download053f72d982ac9ac86c559309138bc3b4MD52Formato_autorizacion_tesis_Helman_Amaya_firmado.pdfFormato_autorizacion_tesis_Helman_Amaya_firmado.pdfHIDEapplication/pdf247579https://repositorio.uniandes.edu.co/bitstreams/be87aef3-a87b-4e8e-82f4-e543995ff236/download6fad0fd7d4923faf9a7f955d20686b02MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/2dee1b20-43fa-4cba-a8ab-c505941743e5/downloadae9e573a68e7f92501b6913cc846c39fMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/a4052317-eeca-4f10-8a96-b929cf3e9cfa/download4460e5956bc1d1639be9ae6146a50347MD58TEXTDynamics of self-interacting von Willebrand factor chains in shear flows.pdf.txtDynamics of self-interacting von Willebrand factor chains in shear flows.pdf.txtExtracted texttext/plain101027https://repositorio.uniandes.edu.co/bitstreams/88d4af6d-a11f-43f7-885d-24926fb275be/download20209532bb5e49f122ffef6b36168e2bMD59Formato_autorizacion_tesis_Helman_Amaya_firmado.pdf.txtFormato_autorizacion_tesis_Helman_Amaya_firmado.pdf.txtExtracted texttext/plain1624https://repositorio.uniandes.edu.co/bitstreams/34dad512-149c-4ad5-b087-ac98a00d8620/download609add98f495e6d737897332ceb22d20MD511THUMBNAILDynamics of self-interacting von Willebrand factor chains in shear flows.pdf.jpgDynamics of self-interacting von Willebrand factor chains in shear flows.pdf.jpgGenerated Thumbnailimage/jpeg6480https://repositorio.uniandes.edu.co/bitstreams/35d916b0-aa04-4b73-94da-6db549f14a1c/download000e4b26d858618bbbbe4694699f746cMD510Formato_autorizacion_tesis_Helman_Amaya_firmado.pdf.jpgFormato_autorizacion_tesis_Helman_Amaya_firmado.pdf.jpgGenerated Thumbnailimage/jpeg11581https://repositorio.uniandes.edu.co/bitstreams/a13b0ba5-ca3f-4ed4-8667-9a29eab0531a/download152a9e0bba9619a0edd6a14c6e7542e3MD5121992/74205oai:repositorio.uniandes.edu.co:1992/742052024-08-26 15:24:15.586http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |