Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data
Documento final de tesis para recibir el grado de Doctorado en Ciencias - Física
- Autores:
-
Suárez Pérez, John Fredy
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/68996
- Acceso en línea:
- http://hdl.handle.net/1992/68996
- Palabra clave:
- Artificial Intelligence
Astrophysics
Cosmology
Machine learning
Deep learning
Física
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_df8d7351cf13dfe319c3216d52232e4d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/68996 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
title |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
spellingShingle |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data Artificial Intelligence Astrophysics Cosmology Machine learning Deep learning Física |
title_short |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
title_full |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
title_fullStr |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
title_full_unstemmed |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
title_sort |
Artificial Intelligence in astronomy: machine learning and deep learning approaches to DESI data |
dc.creator.fl_str_mv |
Suárez Pérez, John Fredy |
dc.contributor.advisor.none.fl_str_mv |
Forero Romero, Jaime Ernesto |
dc.contributor.author.none.fl_str_mv |
Suárez Pérez, John Fredy |
dc.contributor.jury.none.fl_str_mv |
Villaescusa Navarro, Francisco Sabogal Martínez, Beatriz Eugenia |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Grupo de investigación de Astrofísica |
dc.subject.keyword.none.fl_str_mv |
Artificial Intelligence Astrophysics Cosmology Machine learning Deep learning |
topic |
Artificial Intelligence Astrophysics Cosmology Machine learning Deep learning Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
Documento final de tesis para recibir el grado de Doctorado en Ciencias - Física |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-01T16:28:42Z |
dc.date.available.none.fl_str_mv |
2023-08-01T16:28:42Z |
dc.date.issued.none.fl_str_mv |
2023-07-11 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/68996 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/68996 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/68996 |
identifier_str_mv |
10.57784/1992/68996 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Abbott, B. P., R. Abbott, T. D. Abbott et collab. 2016, ¿Observation of gravitational waves from a binary black hole merger¿, Physical Review Letters, vol. 116, 6, doi:10.1103/PhysRevLett.116. 061102, ISSN 10797114. URL http://arxiv.org/abs/1602.03837http://dx.doi.org/10. 1103/PhysRevLett.116.061102. Ade, P. A., N. Aghanim, M. Arnaud et collab. 2016, ¿Planck 2015 results: XIII. Cosmological parameters¿, Astron. Astrophys., vol. 594, doi:10.1051/0004-6361/201525830, p. A13, ISSN 14320746. URL http://www.aanda.org/10.1051/0004-6361/201525830. Aghanim, N., Y. Akrami, M. Ashdown et collab. 2020, ¿Planck 2018 results: V. CMB power spectra and likelihoods¿, Astron. Astrophys., vol. 641, doi:10.1051/0004-6361/201936386, ISSN 14320746. URL https://arxiv.org/abs/1907.12875. Aikio, J. et P. Mahonen. 1998, ¿A Simple Void-searching Algorithm¿, The Astrophysical Journal, vol. 497, 2, doi:10.1086/305509, p. 534¿540, ISSN 0004-637X. URL https://iopscience. iop.org/article/10.1086/305509. Akiyama, K., A. Alberdi, W. Alef et collab. 2019, ¿First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole¿, Astrophys. J., vol. 875, 1, doi:10.3847/2041-8213/ab0ec7, p. L1, ISSN 20418213. URL http://arxiv.org/abs/1906. 11238http://dx.doi.org/10.3847/2041-8213/ab0ec7. Albareti, F. D., C. A. Prieto, A. Almeida et collab. 2017, ¿The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory¿, The Astrophysical Journal Supplement Series, vol. 233, doi:10.3847/1538-4365/aa8992, p. 25, ISSN 1538-4365. URL https://iopscience.iop.org/ article/10.3847/1538-4365/aa8992. Albrecht, A., G. Bernstein, R. Cahn et collab. 2006, ¿Report of the dark energy task force¿, doi: 10.48550/ARXIV.ASTRO-PH/0609591. URL https://arxiv.org/abs/astro-ph/0609591. Allam, T. et J. D. McEwen. 2021, ¿Paying Attention to Astronomical Transients: Photometric Classification with the Time-Series Transformer¿, doi:10.48550/arxiv.2105.06178. URL http://arxiv.org/abs/2105.06178. Aragón-Calvo, M. A., E. Platen, R. Van De Weygaert et collab. 2010, ¿The spine of the cosmic web¿, Astrophysical Journal, vol. 723, 1, doi:10.1088/0004-637X/723/1/364, p. 364¿382, ISSN 15384357. URL http://arxiv.org/abs/0809.5104http://dx.doi.org/10. 1088/0004-637X/723/1/364. Amendola, L., S. Appleby, A. Avgoustidis et collab. 2016, ¿Cosmology and Fundamental Physics with the Euclid Satellite¿, doi:10.1007/s41114-017-0010-3. URL http://arxiv.org/ abs/1606.00180http://dx.doi.org/10.1007/s41114-017-0010-3. Ball, N. M. et R. J. Brunner. 2010, ¿Data mining and machine learning in astronomy¿, Int. J. Mod. Phys. D, vol. 19, 7, doi:10.1142/S0218271810017160, p. 1049¿1106, ISSN 02182718. URL https://arxiv.org/abs/0906.2173. Baron, D. 2019, ¿Machine Learning in Astronomy: a practical overview¿, URL http: //arxiv.org/abs/1904.07248. Beck, R., L. Dobos, T. Budav ¿ari et collab. 2016, ¿Photometric redshifts for the SDSS Data Release 12¿, Monthly Notices of the Royal Astronomical Society, vol. 460, doi:10.1093/mnras/stw1009, p. 1371¿1381, ISSN 13652966. URL http://arxiv.org/abs/1603.09708http://dx.doi. org/10.1093/mnras/stw1009. Bellm, E. C., S. R. Kulkarni, M. J. Graham et collab. 2019, ¿The zwicky transient facility: System overview, performance, and first results¿, Publications of the Astronomical Society of the Pacific, vol. 131, 995, doi:10.1088/1538-3873/aaecbe, p. 018 002, ISSN 00046280. URL https://doi.org/10.1088/1538-3873/aaecbe. Bhatia, N. et Vandana. 2010, ¿Survey of nearest neighbor techniques¿, URL http://arxiv. org/abs/1007.0085. Bishop, C. M. 2006, Pattern Recoginiton and Machine Learning, Springer, ISBN 978-0-387-31073-2, 738 p.. URL https://www.springer.com/gp/book/ 9780387310732{%}0Ahttp://users.isr.ist.utl.pt/{ ¿}wurmd/Livros/school/ Bishop-PatternRecognitionAndMachineLearning-Springer2006.pdf. Bond, J. R., L. Kofman et D. Pogosyan. 1996, ¿How filaments of galaxies are woven into the cosmic web¿, Nature, vol. 380, 6575, doi:10.1038/380603a0, p. 603¿606, ISSN 00280836. URL https://arxiv.org/abs/astro-ph/9512141. Bonnaire, T., N. Aghanim, A. Decelle et collab. 2020, ¿T-ReX: A graph-based filament detection method¿, Astronomy and Astrophysics, vol. 637, doi:10.1051/0004-6361/201936859, ISSN 14320746. URL http://arxiv.org/abs/1912.00732http://dx.doi.org/10.1051/ 0004-6361/201936859. Breiman, L. 2001, ¿Random Forests¿, Machine Learning, vol. 45, p. 5¿32. Bustamante, S. et J. E. Forero-Romero. 2015, ¿Tensor anisotropy as a tracer of cosmic voids¿, Mon. Not. R. Astron. Soc., vol. 453, 1, doi:10.1093/mnras/stv1637, p. 497¿506, ISSN 13652966. Cappellaro, E., R. Evans et M. Turatto. 1999, ¿A new determination of supernova rates and a comparison with indicators for galactic star formation¿, URL http://arxiv.org/abs/ astro-ph/9904225. Carrasco-Davis, R., G. Cabrera-Vives, F. Förster et collab. 2019, ¿Deep learning for image sequence classification of astronomical events¿, Publications of the Astronomical Society of the Pacific, vol. 131, 1004, doi:10.1088/1538-3873/aaef12, ISSN 00046280. Cassan, A., D. Kubas, J. P. Beaulieu et collab. 2012, ¿One or more bound planets per Milky Way star from microlensing observations¿, Nature, vol. 481, 7380, doi:10.1038/nature10684, p. 167¿169, ISSN 00280836. URL http://arxiv.org/abs/1202.0903http://dx.doi.org/ 10.1038/nature10684. Cautun, M., R. Van De Weygaert, B. J. Jones et collab. 2014, ¿Evolution of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 441, 4, doi:10.1093/mnras/stu768, p. 2923¿2973, ISSN 13652966. Cautun, M., R. van de Weygaert et B. J. Jones. 2013, ¿Nexus: Tracing the cosmic web connection¿, Monthly Notices of the Royal Astronomical Society, vol. 429, 2, doi:10.1093/mnras/ sts416, p. 1286¿1308, ISSN 00358711. Chambers, K. C., E. A. Magnier, N. Metcalfe et collab. 2016, ¿The Pan-STARRS1 Surveys¿, cahier de recherche. URL http://arxiv.org/abs/1612.05560. Chaussidon, E., C. Yèche, N. Palanque-Delabrouille et collab. 2022, ¿Target selection and validation of desi quasars¿, doi:10.48550/arxiv.2208.08511. URL https://arxiv.org/abs/ 2208.08511. Chawla, N. V., K. W. Bowyer, L. O. Hall et collab. 2002, ¿Smote: Synthetic minority over- sampling technique¿, Journal of Artificial Intelligence Research, vol. 16, doi:10.1613/jair.953, ISSN 10769757. Chen, T. et C. Guestrin. 2016, ¿XGBoost: A scalable tree boosting system¿, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 13-17-August-2016, doi:10.1145/2939672.2939785, p. 785¿794. URL http://dx.doi.org/10. 1145/2939672.2939785. Chen, X., C. Dvorkin, Z. Huang et collab. 2016, ¿The Future of Primordial Features with Large-Scale Structure Surveys¿, doi:10.1088/1475-7516/2016/11/014. URL http://arxiv. org/abs/1605.09365http://dx.doi.org/10.1088/1475-7516/2016/11/014. Chen, Y. C., S. Ho, P. E. Freeman et collab. 2015, ¿Cosmic web reconstruction through density ridges: Method and algorithm¿, Mon. Not. R. Astron. Soc., vol. 454, 1, doi: 10.1093/mnras/stv1996, p. 1140¿1156, ISSN 13652966. Coil, A. L. 2013, ¿The large-scale structure of the universe¿, Planets, Stars Stellar Syst. Vol. 6 Extragalactic Astron. Cosmol., doi:10.1007/978-94-007-5609-0 8, p. 387¿421, ISSN 0038-6308. URL http://arxiv.org/abs/1202.6633http://dx.doi.org/10.1007/ 978-94-007-5609-0{_}8. Cooper, A. P., S. E. Koposov, C. A. Prieto et collab. 2022, ¿Overview of the desi milky way survey¿, doi:10.48550/arxiv.2208.08514. URL https://arxiv.org/abs/2208.08514. Cover, T. M. et P. E. Hart. 1967, ¿Nearest neighbor pattern classification¿, IEEE Transactions on Information Theory, vol. 13, doi:10.1109/TIT.1967.1053964, ISSN 15579654. Cristianini, N. et J. Shawe-Taylor. 2013, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge Univ. Press, doi:10.1017/cbo9780511801389. DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016a, ¿The DESI Experiment Part I: Science,Targeting, and Survey Design¿, arXiv, p. arXiv:1611.00 036. URL http: //arxiv.org/abs/1611.00036. DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016b, ¿The DESI Experiment Part II: Instrument Design¿, arXiv, p. arXiv:1611.00 037. URL http://arxiv.org/abs/1611.00037 Dey, A., D. J. Schlegel, D. Lang et collab. 2018, ¿Overview of the desi legacy imaging surveys¿, doi:10.3847/1538-3881/ab089d. URL http://arxiv.org/abs/1804.08657http: //dx.doi.org/10.3847/1538-3881/ab089d. Dey, B., B. H. Andrews, J. A. Newman et collab. 2021, ¿Photometric Redshifts from SDSS Images with an Interpretable Deep Capsule Network¿, vol. 18, doi:10.48550/arxiv.2112.03939, p. 1¿18. URL http://arxiv.org/abs/2112.03939. D¿Isanto, A., S. Cavuoti, M. Brescia et collab. 2016, ¿An analysis of feature relevance in the classification of astronomical transients with machine learning methods¿, Monthly Notices of the Royal Astronomical Society, vol. 457, doi:10.1093/mnras/stw157, p. 3119¿3132. Djorgovski, S. G., A. A. Mahabal, C. Donalek et collab. 2012, ¿Flashes in a star stream: Automated classification of astronomical transient events¿, dans 2012 IEEE 8th International Conference on E-Science, IEEE, doi:10.1109/escience.2012.6404437. URL https://doi.org/ 10.1109%2Fescience.2012.6404437. Dosovitskiy, A., L. Beyer, A. Kolesnikov et collab. 2020, ¿An image is worth 16x16 words: Transformers for image recognition at scale¿, URL http://arxiv.org/abs/2010.11929. Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2009, ¿First results from the Catalina Real- Time Transient Survey¿, Astrophysical Journal, vol. 696, 1, doi:10.1088/0004-637X/696/1/870, p. 870¿884, ISSN 15384357. URL http://palquest.org. Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿The Catalina Real-time Transient Survey¿, dans New Horizons in Time Domain Astronomy, IAU Symposium, vol. 285, édité par E. Griffin, R. Hanisch et R. Seaman, p. 306¿308, doi:10.1017/S1743921312000889. Dyer, M. J., D. Steeghs, D. K. Galloway et collab. 2020, ¿The Gravitational-wave Optical Transient Observer (GOTO)¿, cahier de recherche, doi:10.1117/12.2561008. Elyiv, A., F. Marulli, G. Pollina et collab. 2015, ¿Cosmic voids detection without density measurements¿, Monthly Notices of the Royal Astronomical Society, vol. 448, 1, doi:10.1093/ mnras/stv043, p. 642¿653, ISSN 13652966. URL http://arxiv.org/abs/1410.4559http: //dx.doi.org/10.1093/mnras/stv043. Fang, F., J. Forero-Romero, G. Rossi et collab. 2019, ¿¿-Skeleton analysis of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 485, 4, doi:10.1093/mnras/stz773, p. 5276¿5284, ISSN 13652966 Fix, E. et J. L. Hodges. 1989, ¿Discriminatory analysis. nonparametric discrimination: Consis- tency properties¿, International Statistical Review / Revue Internationale de Statistique, vol. 57, doi:10.2307/1403797, ISSN 03067734. Forero-Romero, J. E., Y. Hoffman, S. Gottlöber et collab. 2009, ¿A dynamical classification of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 396, 3, doi:10.1111/j.1365-2966.2009.14885.x, p. 1815¿1824, ISSN 00358711. Forgy, E. W. 1965, ¿Cluster analysis of multivariate data: efficiency versus interpretability of classifications¿, Biometrics, vol. 21. Garcia-Alvarado, M. V., X. D. Li et J. E. Forero-Romero. 2020, ¿The cosmic web through the lens of graph entropy¿, Monthly Notices of the Royal Astronomical Society: Letters, vol. 498, 1, doi:10.1093/mnrasl/slaa145, p. L145¿L149, ISSN 17453933. URL https://arxiv.org/abs/ 2008.08164. Gatti, M., A. Lamastra, N. Menci et collab. 2014, ¿The physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms¿, arXiv:1412.7660 [astro-ph]. Geary, D. N., G. J. McLachlan et K. E. Basford. 1989, ¿Mixture Models: Inference and Applications to Clustering.¿, Journal of the Royal Statistical Society. Series A (Statistics in Society), vol. 152, doi:10.2307/2982840, ISSN 09641998. Genel, S., M. Vogelsberger, V. Springel et collab. 2014, ¿Introducing the illustris project: the evolution of galaxy populations across cosmic time¿, MNRAS, vol. 445, doi:10.1093/ mnras/stu1654, p. 175¿200. URL https://academic.oup.com/mnras/article/445/1/175/ 985625. Gieseke, F., S. Bloemen, C. van den Bogaard et collab. 2017, ¿Convolutional neural networks for transient candidate vetting in large-scale surveys¿, Monthly Notices of the Royal Astro- nomical Society, vol. 472, 3, doi:10.1093/mnras/stx2161, p. 3101¿3114, ISSN 13652966. URL https://arxiv.org/abs/1708.08947. Glielmo, A., I. Macocco, D. Doimo et collab. 2022, ¿Dadapy: Distance-based analysis of data-manifolds in python¿, Patterns, doi:https://doi.org/10.1016/j.patter.2022.100589, p.100 589, ISSN 2666-3899. URL https://www.sciencedirect.com/science/article/pii/ S2666389922002070. Gómez, C., M. Neira, M. H. Hoyos et collab. 2020, ¿Classifying image sequences of astronomical transients with deep neural networks¿, Monthly Notices of the Royal Astronomi-cal Society, vol. 499, 3, doi:10.1093/mnras/staa2973, p. 3130¿3138, ISSN 13652966. URL http://arxiv.org/abs/2004.13877http://dx.doi.org/10.1093/mnras/staa2973. Goodfellow, I., J. Pouget-Abadie, M. Mirza et collab. 2020, ¿Generative Adversarial Networks¿, Communications of the ACM, vol. 63, doi:10.1145/3422622, p. 139¿144, ISSN 15577317. URL https://arxiv.org/abs/1406.2661. Graham, M. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿Data challenges of time domain astronomy¿, doi:10.1007/s10619-012-7101-7. URL http://arxiv.org/abs/1208.2480http: //dx.doi.org/10.1007/s10619-012-7101-7. Grogin, N. A., D. D. Kocevski, S. M. Faber et collab. 2011, ¿CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey¿, doi:10.1088/0067-0049/197/2/35. URL https://arxiv.org/abs/1105.3753. Guy, J., S. Bailey, A. Kremin et collab. 2022, ¿The spectroscopic data processing pipeline for the dark energy spectroscopic instrument¿, doi:10.48550/arxiv.2209.14482. URL http: //arxiv.org/abs/2209.14482. Génova-Santos, R. T. 2020, ¿The establishment of the Standard Cosmological Model through observations¿, doi:10.1007/978-3-030-38509-5 11. URL http://arxiv.org/abs/ 2001.08297http://dx.doi.org/10.1007/978-3-030-38509-5_11. Ha, J., M. Kambe et J. Pe. 2011, Data Mining: Concepts and Techniques, doi:10.1016/ C2009-0-61819-5. Hahn, C., M. J. Wilson, O. Ruiz-Macias et collab. 2022, ¿Desi bright galaxy survey: Final target selection, design, and validation¿, doi:10.48550/arxiv.2208.08512. URL http://arxiv. org/abs/2208.08512. Hahn, O., C. Porciani, C. M. Carollo et collab. 2007, ¿Properties of dark matter haloes in clusters, filaments, sheets and voids¿, Mon. Not. R. Astron. Soc., vol. 375, 2, doi:10.1111/j.1365-2966.2006.11318.x, p. 489¿499, ISSN 00358711. URL https://doi.org/10. 1111/j.1365-2966.2006.11318.x. He, K., X. Zhang, S. Ren et collab. 2015, ¿Deep Residual Learning for Image Recognition¿, URL http://arxiv.org/abs/1512.03385. Huchra, J. P. et M. J. Geller. 1982, ¿Groups of galaxies. i - nearby groups¿, The Astrophysical Journal, vol. 257, doi:10.1086/160000, p. 423, ISSN 0004-637X. Humphrey, A., P. A. C. Cunha, A. Paulino-Afonso et collab. 2023, ¿Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations¿, Monthly Notices of the Royal Astronomical Society, vol. 520, doi:10.1093/mnras/ stac3596, p. 305¿313, ISSN 0035-8711. URL http://arxiv.org/abs/2212.02537http:// dx.doi.org/10.1093/mnras/stac3596. Hotelling, H. 1933, ¿Analysis of a complex of statistical variables into principal components¿, J. Educ. Psychol., vol. 24, 6, doi:10.1037/h0071325, p. 417¿441, ISSN 00220663. URL /doiLanding?doi=10.1037{%}2Fh0071325. ¿eljko Ivezi¿, S. M. Kahn, J. A. Tyson et collab. 2008, ¿Lsst: from science drivers to reference design and anticipated data products¿, doi:10.3847/1538-4357/ab042c. URL http://arxiv.org/abs/0805.2366http://dx.doi.org/10.3847/1538-4357/ab042c. de Jong, R. S., O. Agertz, A. A. Berbel et collab. 2019, ¿4most: Project overview and information for the first call for proposals¿, doi:10.18727/0722-6691/5117. URL http: //arxiv.org/abs/1903.02464http://dx.doi.org/10.18727/0722-6691/5117. Kaiser, N. 2004, ¿Pan-STARRS: a wide-field optical survey telescope array¿, dans Ground-based Telescopes, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5489, édité par J. Oschmann, Jacobus M., p. 11¿22, doi:10.1117/12.552472. Kennicutt, J., Robert C., W. L. Freedman et J. R. Mould. 1995, ¿Measuring the Hubble Constant with the Hubble Space Telescope¿, , vol. 110, doi:10.1086/117621, p. 1476. Killestein, T. L., J. Lyman, D. Steeghs et collab. 2021, ¿Transient-optimized real-bogus classifi- cation with Bayesian convolutional neural networks ¿ sifting the GOTO candidate stream¿, cahier de recherche 4, doi:10.1093/mnras/stab633. URL https://wis-tns.weizmann.ac. il/. Knop, R. A., G. Aldering, R. Amanullah et collab. 2003, ¿New Constraints on ¿M, ¿¿ , and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope¿, , vol. 598, 1, doi:10.1086/378560, p. 102¿137. Konopacky, Q. M., J. Rameau, G. Duchêne et collab. 2016, ¿Discovery of a Substellar Companion To the Nearby Debris Disk Host Hr 2562¿, Astrophys. J., vol. 829, 1, doi:10.3847/ 2041-8205/829/1/l4, p. L4, ISSN 20418213. URL http://arxiv.org/abs/1608.06660http: //dx.doi.org/10.3847/2041-8205/829/1/L4. Koutroumbas, K. 2006, Pattern Recognition, doi:10.1016/B978-0-12-369531-4.X5000-8. Kruskal, J. B. 1964, ¿Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis¿, Psychometrika, vol. 29, 1, doi:10.1007/BF02289565, p. 1¿27, ISSN 00333123. URL https://link.springer.com/article/10.1007/BF02289565. Lamassa, S. M., T. M. Heckman, A. Ptak et collab. 2013, ¿On the star formation-AGN connection at z ¡ 0.3¿, Astrophysical Journal Letters, vol. 765, doi:10.1088/2041-8205/765/2/L33, ISSN 20418205. Laureijs, R., J. Amiaux, S. Arduini et collab. 2011, ¿Euclid definition study report¿, URL http://arxiv.org/abs/1110.3193. Law, N. M., S. R. Kulkarni, R. G. Dekany et collab. 2009, ¿The Palomar Transient Factory: System Overview, Performance, and First Results¿, cahier de recherche 886, doi:10.1086/ 648598. LeCun, Y., L. Bottou, Y. Bengio et collab. 1998, ¿Gradient-based learning applied to document recognition¿, Proceedings of the IEEE, vol. 86, doi:10.1109/5.726791, ISSN 00189219. Li, C., Y. Zhang, C. Cui et collab. 2022, ¿Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys¿, doi:10.1093/mnras/stac3037. URL http://arxiv.org/abs/ 2211.09492http://dx.doi.org/10.1093/mnras/stac3037. Li, H. et J.-Q. Xia. 2010, ¿Constraints on Dark Energy Parameters from Correlations of CMB with LSS¿, doi:10.1088/1475-7516/2010/04/026. URL http://arxiv.org/abs/1004. 2774http://dx.doi.org/10.1088/1475-7516/2010/04/026. Libeskind, N. I., R. van de Weygaert, M. Cautun et collab. 2018, ¿Tracing the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 473, 1, doi:10.1093/mnras/stx1976, p. 1195¿1217, ISSN 13652966. URL http://arxiv.org/abs/1705.03021http://dx.doi.org/10.1093/mnras/stx1976. Ling, R. F. 1972, ¿On the theory and construction of k-clusters¿, The Computer Journal, vol. 15, doi:10.1093/comjnl/15.4.326, ISSN 0010-4620. Lloyd, S. P. 1982, ¿Least Squares Quantization in PCM¿, IEEE Transactions on Information Theory, vol. 28, doi:10.1109/TIT.1982.1056489, ISSN 15579654. Lochner, M., J. D. McEwen, H. V. Peiris et collab. 2016, ¿Photometric Supernova Classification with Machine Learning¿, , vol. 225, doi:10.3847/0067-0049/225/2/31, 31. LSST Science Collaboration, P. A. Abell, J. Allison et collab. 2009, ¿LSST Science Book¿, URL http://arxiv.org/abs/0912.0201. Luber, N., J. H. van Gorkom, K. M. Hess et collab. 2019, ¿Large-scale Structure in CHILES Using DisPerSE¿, Astron. J., vol. 157, 6, doi:10.3847/1538-3881/ab1b6e, p. 254, ISSN 0004-6256. URL http://arxiv.org/abs/1904.10511. Mahabal, A. A., S. G. Djorgovski, A. J. Drake et collab. 2011, ¿Discovery, classiffcation, and scientiffc exploration of transient events from the Catalina Real-Time Transient Survey¿, Bulletin of the Astronomical Society of India, vol. 39, 3, p. 387¿408, ISSN 03049523. URL http://palquest.org/;. Marinacci, F., M. Vogelsberger, R. Pakmor et collab. 2018, ¿First results from the IllustrisTNG simulations: Radio haloes and magnetic fields¿, Monthly Notices of the Royal Astronomical Society, vol. 480, 4, doi:10.1093/mnras/sty2206, p. 5113¿5139, ISSN 13652966. URL http: //arxiv.org/abs/1707.03396http://dx.doi.org/10.1093/mnras/sty2206. Mart¿¿nez-Palomera, J., F. Förster, P. Protopapas et collab. 2018, ¿The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs¿, The Astronomical Journal, vol. 156, 5, doi:10.3847/1538-3881/aadfd8, p. 186, ISSN 1538-3881. URL http://astro.cmm.uchile.cl/HiTS/. McInnes, L., J. Healy et J. Melville. 2018, ¿UMAP: Uniform manifold approximation and projection for dimension reduction¿, arXiv, ISSN 23318422. URL http://arxiv.org/abs/ 1802.03426. McLachlan, G. J., S. X. Lee et S. I. Rathnayake. 2019, ¿Finite Mixture Models¿, Annual Review of Statistics and Its Application, vol. 6, doi:10.1146/annurev-statistics-031017-100325, ISSN 2326831X. Murtagh, F. et P. Contreras. 2012, ¿Algorithms for hierarchical clustering: An overview¿, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, doi:10.1002/ widm.53, ISSN 19424795. Muthukrishna, D., G. Narayan, K. S. Mandel et collab. 2019, ¿RAPID: Early Classification of Explosive Transients Using Deep Learning¿, doi:10.1088/1538-3873/ab1609. Myers, A. D., J. Moustakas, S. Bailey et collab. 2023, ¿The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument¿, , vol. 165, 2, doi:10.3847/1538-3881/aca5f9, 50. Naiman, J. P., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG simulations: A tale of two elements - Chemical evolution of magnesium and europium¿, Monthly Notices of the Royal Astronomical Society, vol. 477, 1, doi:10.1093/mnras/sty618, p. 1206¿1224, ISSN 13652966. URL http://arxiv.org/abs/1707.03401http://dx.doi. org/10.1093/mnras/sty618. Neira, M., C. Gómez, J. F. Suárez-Pérez et collab. 2020, ¿MANTRA: A Machine-learning Reference Light-curve Data Set for Astronomical Transient Event Recognition¿, , vol. 250, 1, doi:10.3847/1538-4365/aba267, 11. Nelson, D., A. Pillepich, S. Genel et collab. 2015, ¿The illustris simulation: Public data release¿, Astronomy and Computing, vol. 13, doi:10.1016/j.ascom.2015.09.003, p. 12¿37, ISSN 22131337. URL http://arxiv.org/abs/1504.00362http://dx.doi.org/10.1016/ j.ascom.2015.09.003. Nelson, D., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG simulations: The galaxy colour bimodality¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3040, p. 624¿647, ISSN 13652966. URL http: //arxiv.org/abs/1707.03395http://dx.doi.org/10.1093/mnras/stx3040. Nelson, D., V. Springel, A. Pillepich et collab. 2019, ¿The IllustrisTNG simulations: public data release¿, Comput. Astrophys. Cosmol., vol. 6, 1, doi:10.1186/s40668-019-0028-x, ISSN 2197-7909. URL https://arxiv.org/abs/1812.05609. Newman, J. A. et D. Gruen. 2022, ¿ Photometric Redshifts for Next- Generation Surveys¿, Annu. Rev. Astron. Astrophys., vol. 60, doi:10.1146/ annurev-astro-032122-014611. URL http://arxiv.org/abs/2206.13633http: //dx.doi.org/10.1146/annurev-astro-032122-014611. Neyrinck, M. C. 2008, ¿ Zobov: A parameter-free void-finding algorithm¿, Mon. Not. R. Astron. Soc., vol. 386, 4, doi:10.1111/j.1365-2966.2008.13180.x, p. 2101¿2109, ISSN 00358711. URL http://arxiv.org/abs/0712.3049http://dx.doi.org/10.1111/j. 1365-2966.2008.13180.x. Nidever, D. L., A. Dey, K. Fasbender et collab. 2021, ¿Second Data Release of the All-sky NOIRLab Source Catalog¿, cahier de recherche 4, doi:10.3847/1538-3881/abd6e1. URL https://www.noao.edu/noao/staff/fvaldes/CPDocPrelim. Novikov, D., S. Colombi et O. Doré. 2006, ¿Skeleton as a probe of the cosmic web: The two- dimensional case¿, Mon. Not. R. Astron. Soc., vol. 366, 4, doi:10.1111/j.1365-2966.2005.09925.x, p. 1201¿1216, ISSN 00358711. URL http://arxiv.org/abs/astro-ph/0307003http://dx. doi.org/10.1111/j.1365-2966.2005.09925.x. Padilla, N. D., L. Ceccarelli et D. G. Lambas. 2005, ¿Spatial and dynamical properties of voids in a ¿cold dark matter universe¿, Monthly Notices of the Royal Astronomical Society, vol. 363, 3, doi:10.1111/j.1365-2966.2005.09500.x, p. 977¿990, ISSN 00358711. URL http://arxiv. org/abs/astro-ph/0508297http://dx.doi.org/10.1111/j.1365-2966.2005.09500.x. Paszke, A., S. Gross, F. Massa et collab. 2019, ¿PyTorch: An imperative style, high-performance deep learning library¿, ISSN 10495258. Pearson, K. 1901, ¿ LIII. On lines and planes of closest fit to systems of points in space ¿, Lon- don, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 2, 11, doi:10.1080/14786440109462720, p. 559¿572, ISSN 1941-5982. URL https://www.tandfonline.com/doi/abs/10.1080/ 14786440109462720. Pedregosa, F., G. Varoquaux, A. Gramfort et collab. 2011, ¿Scikit-learn: Machine learning in Python¿, J. Mach. Learn. Res., vol. 12, p. 2825¿2830, ISSN 15324435. Percival, W. J. 2013, ¿Large Scale Structure Observations¿, URL http://arxiv.org/abs/ 1312.5490. Perlmutter, S., G. Aldering, G. Goldhaber et collab. 1999, ¿Measurements of ¿ and ¿ from 42 High-Redshift Supernovae¿, , vol. 517, 2, doi:10.1086/307221, p. 565¿586. Pillepich, A., D. Nelson, L. Hernquist et collab. 2018a, ¿First results from the illustristng simulations: The stellar mass content of groups and clusters of galaxies¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3112, p. 648¿675, ISSN 13652966. URL https://arxiv.org/abs/1707.03406. Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3, doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/ 1703.02970http://dx.doi.org/10.1093/mnras/stx2656. Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3, doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/ 1703.02970http://dx.doi.org/10.1093/mnras/stx2656. Planck Collaboration, N. Aghanim, Y. Akrami et collab. 2020, ¿Planck 2018 results. I. Overview and the cosmological legacy of Planck¿, , vol. 641, doi:10.1051/0004-6361/ 201833880, A1. Platen, E., R. Van De Weygaert et B. J. Jones. 2007, ¿A cosmic watershed: The WVF void detection technique¿, Mon. Not. R. Astron. Soc., vol. 380, 2, doi:10.1111/j.1365-2966.2007. 12125.x, p. 551¿570, ISSN 00358711. Prieto, C. A., A. P. Cooper, A. Dey et collab. 2020, ¿Preliminary target selection for the desi milky way survey (mws)¿, doi:10.3847/2515-5172/abc1dc. URL https://arxiv.org/abs/ 2010.11284. Quinlan, J. R. 1986, ¿Induction of decision trees¿, Machine Learning, vol. 1, doi:10.1023/A: 1022643204877, ISSN 15730565. Raichoor, A., D. J. Eisenstein, T. Karim et collab. 2020, ¿Preliminary target selection for the desi emission line galaxy (elg) sample¿, doi:10.3847/2515-5172/abc078. URL http: //arxiv.org/abs/2010.11281http://dx.doi.org/10.3847/2515-5172/abc078. Raichoor, A., J. Moustakas, J. A. Newman et collab. 2022, ¿Target selection and validation of desi emission line galaxies¿, doi:10.3847/1538-3881/acb213. URL http://arxiv.org/abs/ 2208.08513http://dx.doi.org/10.3847/1538-3881/acb213. Richards, J. W., D. L. Starr, N. R. Butler et collab. 2011, ¿On Machine-learned Classification of Variable Stars with Sparse and Noisy Time-series Data¿, , vol. 733, doi:10.1088/0004-637X/ 733/1/10, 10. Riess, A. G., A. V. Filippenko, P. Challis et collab. 1998, ¿Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant¿, The Astronomical Journal, vol. 116, doi:10.1086/300499, ISSN 00046256. van Roestel, J., D. A. Duev, A. A. Mahabal et collab. 2021, ¿The ZTF Source Classification Project. I. Methods and Infrastructure¿, The Astronomical Journal, vol. 161, 6, doi:10.3847/ 1538-3881/abe853, p. 267, ISSN 0004-6256. URL http://arxiv.org/abs/2102.11304. Ruiz-Macias, O., P. Zarrouk, S. Cole et collab. 2021, ¿Characterizing the target selection pipeline for the dark energy spectroscopic instrument bright galaxy survey¿, Monthly Notices of the Royal Astronomical Society, vol. 502, doi:10.1093/mnras/stab292, p. 4328¿4349, ISSN 13652966. URL https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.4328R/abstract. Russakovsky, O., J. Deng, H. Su et collab. 2015, ¿ImageNet Large Scale Visual Recognition Challenge¿, International Journal of Computer Vision, vol. 115, doi:10.1007/s11263-015-0816-y, ISSN 15731405. Sánchez-Sáez, P., H. Lira, L. Mart¿¿ et collab. 2021a, ¿Searching for Changing-state AGNs in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to Find AGNs with Anomalous Variability Behaviors¿, Astron. J., vol. 162, 5, doi:10.3847/ 1538-3881/ac1426, p. 206, ISSN 0004-6256. URL http://arxiv.org/abs/2106.07660http: //dx.doi.org/10.3847/1538-3881/ac1426. Sánchez-Sáez, P., I. Reyes, C. Valenzuela et collab. 2021b, ¿Alert Classification for the ALeRCE Broker System: The Light Curve Classifier¿, cahier de recherche 3, doi:10.3847/1538-3881/ abd5c1. URL https://zwickytransientfacility.github.io/. Schmalzing, J., T. Buchert, A. L. Melott et collab. 1999, ¿Disentangling the Cosmic Web. I. Morphology of Isodensity Contours¿, Astrophys. J., vol. 526, 2, doi:10.1086/308039, p. 568¿578, ISSN 0004-637X. Schneider, P. 2015, Extragalactic Astronomy and Cosmology, Springer, ISBN 978-3-642-54082-0 978-3-642-54083-7, doi:10.1007/978-3-642-54083-7. Schonlau, M. et R. Y. Zou. 2020, ¿The random forest algorithm for statistical learning¿, Stata Journal, vol. 20, doi:10.1177/1536867X20909688, ISSN 15368734. Schuldt, S., S. H. Suyu, R. Cañameras et collab. 2020, ¿Photometric Redshift Estimation with a Convolutional Neural Network: NetZ¿, doi:10.1051/0004-6361/202039945. URL http: //arxiv.org/abs/2011.12312http://dx.doi.org/10.1051/0004-6361/202039945. Scoville, N., H. Aussel, M. Brusa et collab. 2006, ¿The Cosmic Evolution Survey (COSMOS) ¿ Overview¿, doi:10.1086/516585. URL http://arxiv.org/abs/astro-ph/0612305http: //dx.doi.org/10.1086/516585. Sijacki, D., M. Vogelsberger, S. Genel et collab. 2015, ¿The illustris simulation: the evolving population of black holes across cosmic time¿, MNRAS, vol. 452, doi:10.1093/mnras/stv1340, p. 575¿596. URL https://academic.oup.com/mnras/article/452/1/575/1751371. Smartt, S. J., S. Valenti, M. Fraser et collab. 2015, ¿PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects¿, Astronomy and Astrophysics, vol. 579, doi:10.1051/0004-6361/201425237, p. 6, ISSN 14320746. URL www.pessto.org. Smoot, G. F., C. L. Bennett, A. Kogut et collab. 1992, ¿Structure in the COBE Differential Microwave Radiometer First-Year Maps¿, , vol. 396, doi:10.1086/186504, p. L1. Song, Y. Y. et Y. Lu. 2015, ¿Decision tree methods: applications for classification and prediction¿, Shanghai Archives of Psychiatry, vol. 27, doi:10.11919/j.issn.1002-0829.215044, ISSN 10020829 Sousbie, T. 2011, ¿The persistent cosmic web and its filamentary structure - I. Theory and implementation¿, Mon. Not. R. Astron. Soc., vol. 414, 1, doi:10.1111/j.1365-2966.2011.18394.x, p. 350¿383, ISSN 00358711. URL https://arxiv.org/abs/1009.4015. Spergel, D., N. Gehrels, C. Baltay et collab. 2015, ¿Wide-Field InfrarRed Survey Telescope- Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report¿, URL http://arxiv. org/abs/1503.03757. Spergel, D. N., L. Verde, H. V. Peiris et collab. 2003, ¿First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters¿, , vol. 148, 1, doi:10.1086/377226, p. 175¿194. Springel, V. 2011, ¿ Moving-mesh hydrodynamics with the AREPO code¿, Proc. Int. Astron. Union, vol. 6, S270, doi:10.1017/S1743921311000378, p. 203¿ 206, ISSN 17439213. URL https://www.cambridge.org/core/product/identifier/ S1743921311000378/type/journal{_}article. Springel, V., R. Pakmor, A. Pillepich et collab. 2018, ¿First results from the IllustrisTNG simulations: Matter and galaxy clustering¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3304, p. 676¿698, ISSN 13652966. URL http: //arxiv.org/abs/1707.03397http://dx.doi.org/10.1093/mnras/stx3304. Stetson, P. B. 1996, ¿On the Automatic Determination of Light-Curve Parameters for Cepheid Variables¿, Publications of the Astronomical Society of the Pacific, vol. 108, doi:10.1086/133808, p. 851, ISSN 0004-6280. URL http://iopscience.iop.org/article/10.1086/133808. Stoica, R. S., V. J. Mart¿¿nez et E. Saar. 2007, ¿A three-dimensional object point process for detection of cosmic filaments¿, Journal of the Royal Statistical Society. Series C: Applied Statistics, vol. 56, 4, doi:10.1111/j.1467-9876.2007.00587.x, p. 459¿477, ISSN 00359254. URL http://arxiv.org/abs/0809.4358. Suárez-Pérez, J. F., Forero-Romero, Jaime E. et DESI Collaboration. a, ¿Quality assessment of spectroscopic data reduction pipelines using unsupervised machine learning: a case study of the DESI survey¿, In Preparation. Suárez-Pérez, J. F., C. Gómez, M. Neira et collab. b, ¿Deep-TAO: The Deep Learning Transient Astronomical object data set for Astronomical Transient Event Classification¿, In Preparation. Suárez-Pérez, J. F., Sabiu, Cristiano et Forero-Romero, Jaime E. c, ¿Predicting photometric redshift of Bright Galaxies from the 1% DESI.¿, In Preparation. Sutter, P. M., G. Lavaux, N. Hamaus et collab. 2015, ¿VIDE: The Void IDentification and Examination toolkit¿, Astronomy and Computing, vol. 9, doi:10.1016/j.ascom.2014.10.002, p. 1¿9, ISSN 22131337. URL http://arxiv.org/abs/1406.1191. Suárez-Pérez, J. F., Y. Camargo, X.-D. Li et collab. 2021, ¿The four cosmic tidal web elements from the ¿-skeleton¿, The Astrophysical Journal, vol. 922, doi:10.3847/1538-4357/ac1fed, p. 204, ISSN 0004-637X. URL http://arxiv.org/abs/2108.10351. Tang, J., J. Liu, M. Zhang et collab. 2016, ¿Visualizing Large-scale and High-dimensional Data¿, doi:10.1145/2872427.2883041, p. 287¿297. URL http://dx.doi.org/10.1145/2872427. 2883041. Tegmark, M. 1997, ¿Measuring cosmological parameters with galaxy surveys¿, doi: 10.1103/PhysRevLett.79.3806. URL http://arxiv.org/abs/astro-ph/9706198http://dx. doi.org/10.1103/PhysRevLett.79.3806. Tenenbaum, J. B., V. De Silva et J. C. Langford. 2000, ¿A global geometric framework for nonlinear dimensionality reduction¿, Science (80-. )., vol. 290, 5500, doi:10.1126/science. 290.5500.2319, p. 2319¿2323, ISSN 00368075. URL https://www.science.org/doi/abs/10. 1126/science.290.5500.2319. The PLAsTiCC team, J. Allam, Tarek, A. Bahmanyar et collab. 2018, ¿The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set¿, arXiv e-prints, arXiv:1810.00001. Tonry, J. L., B. P. Schmidt, B. Barris et collab. 2003, ¿Cosmological Results from High-z Supernovae¿, , vol. 594, 1, doi:10.1086/376865, p. 1¿24. Tsizh, M., B. Novosyadlyj, Y. Holovatch et collab. 2020, ¿Large-scale structures in the ¿CDM Universe: network analysis and machine learning¿, Mon. Not. R. Astron. Soc., vol. 495, 1, doi:10.1093/mnras/staa1030, p. 1311¿1320, ISSN 0035-8711. URL http://arxiv.org/abs/ 1910.07868. Van Der Maaten, L., A. Courville, R. Fergus et collab. 2014, ¿Accelerating t-SNE using Tree-Based Algorithms¿, J. Mach. Learn. Res., vol. 15, 93, p. 3221¿3245, ISSN 1533-7928. URL http://jmlr.org/papers/v15/vandermaaten14a.html. Van Der Maaten, L. et G. Hinton. 2008, ¿Visualizing data using t-SNE¿, J. Mach. Learn. Res., vol. 9, p. 2579¿2625, ISSN 15324435. Vaswani, A., N. Shazeer, N. Parmar et collab. 2017, ¿Attention is all you need¿, URL https://arxiv.org/abs/1706.03762. Vogelsberger, M., S. Genel, V. Springel et collab. 2014, ¿Properties of galaxies reproduced by a hydrodynamic simulation¿, Nature, vol. 509, 7499, doi:10.1038/nature13316, p. 177¿182, ISSN 14764687. Way, M. J., J. D. Scargle, K. M. Ali et collab. 2012, Advances in Machine Learning and Data Mining for Astronomy, doi:10.1201/b11822. Wechsler, R. H. et J. L. Tinker. 2018, ¿The connection between galaxies and their dark matter halos¿, doi:10.1146/annurev-astro-081817-051756. URL http://arxiv.org/abs/ 1804.03097http://dx.doi.org/10.1146/annurev-astro-081817-051756. Weinberger, R., V. Springel, L. Hernquist et collab. 2017, ¿Simulating galaxy formation with black hole driven thermal and kinetic feedback¿, Monthly Notices of the Royal Astronomical Society, vol. 465, 3, doi:10.1093/mnras/stw2944, p. 3291¿3308, ISSN 13652966. URL http: //arxiv.org/abs/1607.03486http://dx.doi.org/10.1093/mnras/stw2944. White, S. D. M., C. S. Frenk, M. Davis et collab. 1987, ¿Clusters, filaments, and voids in a universe dominated by cold dark matter¿, Astrophys. J., vol. 313, doi:10.1086/164990, p. 505, ISSN 0004-637X. Witten, I. H., E. Frank, M. A. Hall et collab. 2016, Data Mining: Practical Machine Learning Tools and Techniques. Wyrzykowski, L., Z. Kostrzewa-Rutkowska, S. Kozlowski et collab. 2014, ¿OGLE-IV real-time transient search¿, cahier de recherche 3. Xu, X., J. Cisewski-Kehe, S. B. Green et collab. 2019, ¿Finding cosmic voids and filament loops using topological data analysis¿, Astronomy and Computing, vol. 27, doi:10.1016/j.ascom. 2019.02.003, p. 34¿52, ISSN 22131337. URL https://arxiv.org/abs/1811.08450. Yèche, C., N. Palanque-Delabrouille, C.-A. Claveau et collab. 2020, ¿Preliminary target selection for the desi quasar (qso) sample¿, doi:10.3847/2515-5172/abc01a. URL https: //arxiv.org/abs/2010.11280. Zel¿Dovich, Y., S. Shandarin et R. Sunyaev. 1970, ¿Gravitational Instability: An Approximate Theory for Large Density Perturbations. Commentary¿, Astron. Astrophys., vol. 500, 1, p. 13¿20, ISSN 0004-6361. Zhang, Y., X. Yang, A. Faltenbacher et collab. 2009, ¿The spin and orientation of dark matter halos within cosmic filaments¿, Astrophys. J., vol. 706, 1, doi:10.1088/0004-637X/706/1/747, p. 747¿761, ISSN 15384357. URL https://arxiv.org/abs/0906.1654. Zhou, R., B. Dey, J. A. Newman et collab. 2022, ¿Target selection and validation of DESI luminous red galaxies¿, doi:10.3847/1538-3881/aca5fb. URL http://arxiv.org/abs/2208. 08515http://dx.doi.org/10.3847/1538-3881/aca5fb. Zou, H., J. Sui, S. Xue et collab. 2022, ¿Photometric redshifts and Galaxy Clusters for DES DR2, DESI DR9, and HSC-SSP PDR3 Data¿, doi:10.1088/1674-4527/ac6416. URL http://arxiv.org/abs/2203.17035http://dx.doi.org/10.1088/1674-4527/ac6416. Zhou, R., J. A. Newman, K. S. Dawson et collab. 2020, ¿Preliminary target selection for the DESI luminous red galaxy (lrg) sample¿, doi:10.3847/2515-5172/abc0f4. URL https: //arxiv.org/abs/2010.11282. |
dc.rights.license.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
164 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Doctorado en Ciencias - Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/6e3870f1-dab5-4bfb-8d47-acd01c447a1d/download https://repositorio.uniandes.edu.co/bitstreams/8b17ba55-858a-4d0d-9ca1-98536e9b46e7/download https://repositorio.uniandes.edu.co/bitstreams/f04649ea-969a-4b13-9a1b-ec9892737bec/download https://repositorio.uniandes.edu.co/bitstreams/cf7d17da-1571-4e80-9bee-7d4e91630c88/download https://repositorio.uniandes.edu.co/bitstreams/d79f2d6d-f49f-4342-85bb-ecacf04b096e/download https://repositorio.uniandes.edu.co/bitstreams/d7192e88-1e19-40f7-b5c1-afba20df6bd3/download https://repositorio.uniandes.edu.co/bitstreams/6b0752ea-a22f-4201-90d4-af7befedf51f/download https://repositorio.uniandes.edu.co/bitstreams/ad67a121-1690-446a-ab76-ccc9e0f2a1e9/download |
bitstream.checksum.fl_str_mv |
4834a66613f36631c19024bdbee2b769 f86f4a3f5045ede06f71f8d5abc72ef3 2e6314e197c13a92dbe22d456b506fb0 68b329da9893e34099c7d8ad5cb9c940 5aa5c691a1ffe97abd12c2966efcb8d6 4460e5956bc1d1639be9ae6146a50347 110f2f19c2f85ba52d95adc8e7a5ffd1 0cc5b9434807c67a19b50ac160d5e3c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159245852344320 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Forero Romero, Jaime Ernestovirtual::3685-1Suárez Pérez, John Fredy26563600Villaescusa Navarro, FranciscoSabogal Martínez, Beatriz EugeniaGrupo de investigación de Astrofísica2023-08-01T16:28:42Z2023-08-01T16:28:42Z2023-07-11http://hdl.handle.net/1992/6899610.57784/1992/68996instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Documento final de tesis para recibir el grado de Doctorado en Ciencias - FísicaArtificial Intelligence (AI) has shown promise in advancing fundamental physics knowledge, from particle physics to cosmology. The significant advancements in AI over the last decade have been increasingly applied to solve problems in astronomy, primarily motivated by the large amount of data generated by state-of-the-art facilities. In this thesis, we explore to what extent AI techniques can be useful in tackling problems in observational cosmology. We focused our efforts on applying data mining, machine learning, and deep learning to handle and analyze the data coming from the ongoing observations of the Dark Energy Spectroscopic Instrument (DESI). DESI is an advanced spectroscopic experiment that has been operational since 2020 and aims to build the most detailed 3D map of the Universe. DESI is a massive undertaking, and over the course of five years, it will measure approximately 40 million spectra from stars, galaxies, and quasars, generating an enormous amount of data that can benefit from advanced AI techniques for analysis and interpretation. In this thesis, we successfully achieved using AI techniques in three important aspects for DESI: 1) assessing the quality of the data generated by the experiment, 2) describing the cosmic web pattern on the DESI maps, and 3) predicting the redshift observed by DESI from the features observed in imaging data. These three achievements will help improve our understanding of the Universe's evolution and the nature of dark energy, not only with the data coming from DESI but also from future facilities and experiments.JFSP and JEFR acknowledge the support of the INV-2022-133-2337, INV-2022-137-2394, and INV-2021-126-2256 projects of the Universidad de Los Andes, Facultad de Ciencias.JFSP and JEFR acknowledge the support by the LACEGAL network with support from the European Union¿s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement number 734374.Doctor en Ciencias - FísicaDoctoradoAstrofísica y cosmología computacional164 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaArtificial Intelligence in astronomy: machine learning and deep learning approaches to DESI dataTrabajo de grado - Doctoradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPArtificial IntelligenceAstrophysicsCosmologyMachine learningDeep learningFísicaAbbott, B. P., R. Abbott, T. D. Abbott et collab. 2016, ¿Observation of gravitational waves from a binary black hole merger¿, Physical Review Letters, vol. 116, 6, doi:10.1103/PhysRevLett.116. 061102, ISSN 10797114. URL http://arxiv.org/abs/1602.03837http://dx.doi.org/10. 1103/PhysRevLett.116.061102.Ade, P. A., N. Aghanim, M. Arnaud et collab. 2016, ¿Planck 2015 results: XIII. Cosmological parameters¿, Astron. Astrophys., vol. 594, doi:10.1051/0004-6361/201525830, p. A13, ISSN 14320746. URL http://www.aanda.org/10.1051/0004-6361/201525830.Aghanim, N., Y. Akrami, M. Ashdown et collab. 2020, ¿Planck 2018 results: V. CMB power spectra and likelihoods¿, Astron. Astrophys., vol. 641, doi:10.1051/0004-6361/201936386, ISSN 14320746. URL https://arxiv.org/abs/1907.12875.Aikio, J. et P. Mahonen. 1998, ¿A Simple Void-searching Algorithm¿, The Astrophysical Journal, vol. 497, 2, doi:10.1086/305509, p. 534¿540, ISSN 0004-637X. URL https://iopscience. iop.org/article/10.1086/305509.Akiyama, K., A. Alberdi, W. Alef et collab. 2019, ¿First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole¿, Astrophys. J., vol. 875, 1, doi:10.3847/2041-8213/ab0ec7, p. L1, ISSN 20418213. URL http://arxiv.org/abs/1906. 11238http://dx.doi.org/10.3847/2041-8213/ab0ec7.Albareti, F. D., C. A. Prieto, A. Almeida et collab. 2017, ¿The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory¿, The Astrophysical Journal Supplement Series, vol. 233, doi:10.3847/1538-4365/aa8992, p. 25, ISSN 1538-4365. URL https://iopscience.iop.org/ article/10.3847/1538-4365/aa8992.Albrecht, A., G. Bernstein, R. Cahn et collab. 2006, ¿Report of the dark energy task force¿, doi: 10.48550/ARXIV.ASTRO-PH/0609591. URL https://arxiv.org/abs/astro-ph/0609591.Allam, T. et J. D. McEwen. 2021, ¿Paying Attention to Astronomical Transients: Photometric Classification with the Time-Series Transformer¿, doi:10.48550/arxiv.2105.06178. URL http://arxiv.org/abs/2105.06178.Aragón-Calvo, M. A., E. Platen, R. Van De Weygaert et collab. 2010, ¿The spine of the cosmic web¿, Astrophysical Journal, vol. 723, 1, doi:10.1088/0004-637X/723/1/364, p. 364¿382, ISSN 15384357. URL http://arxiv.org/abs/0809.5104http://dx.doi.org/10. 1088/0004-637X/723/1/364.Amendola, L., S. Appleby, A. Avgoustidis et collab. 2016, ¿Cosmology and Fundamental Physics with the Euclid Satellite¿, doi:10.1007/s41114-017-0010-3. URL http://arxiv.org/ abs/1606.00180http://dx.doi.org/10.1007/s41114-017-0010-3.Ball, N. M. et R. J. Brunner. 2010, ¿Data mining and machine learning in astronomy¿, Int. J. Mod. Phys. D, vol. 19, 7, doi:10.1142/S0218271810017160, p. 1049¿1106, ISSN 02182718. URL https://arxiv.org/abs/0906.2173.Baron, D. 2019, ¿Machine Learning in Astronomy: a practical overview¿, URL http: //arxiv.org/abs/1904.07248.Beck, R., L. Dobos, T. Budav ¿ari et collab. 2016, ¿Photometric redshifts for the SDSS Data Release 12¿, Monthly Notices of the Royal Astronomical Society, vol. 460, doi:10.1093/mnras/stw1009, p. 1371¿1381, ISSN 13652966. URL http://arxiv.org/abs/1603.09708http://dx.doi. org/10.1093/mnras/stw1009.Bellm, E. C., S. R. Kulkarni, M. J. Graham et collab. 2019, ¿The zwicky transient facility: System overview, performance, and first results¿, Publications of the Astronomical Society of the Pacific, vol. 131, 995, doi:10.1088/1538-3873/aaecbe, p. 018 002, ISSN 00046280. URL https://doi.org/10.1088/1538-3873/aaecbe.Bhatia, N. et Vandana. 2010, ¿Survey of nearest neighbor techniques¿, URL http://arxiv. org/abs/1007.0085.Bishop, C. M. 2006, Pattern Recoginiton and Machine Learning, Springer, ISBN 978-0-387-31073-2, 738 p.. URL https://www.springer.com/gp/book/ 9780387310732{%}0Ahttp://users.isr.ist.utl.pt/{ ¿}wurmd/Livros/school/ Bishop-PatternRecognitionAndMachineLearning-Springer2006.pdf.Bond, J. R., L. Kofman et D. Pogosyan. 1996, ¿How filaments of galaxies are woven into the cosmic web¿, Nature, vol. 380, 6575, doi:10.1038/380603a0, p. 603¿606, ISSN 00280836. URL https://arxiv.org/abs/astro-ph/9512141.Bonnaire, T., N. Aghanim, A. Decelle et collab. 2020, ¿T-ReX: A graph-based filament detection method¿, Astronomy and Astrophysics, vol. 637, doi:10.1051/0004-6361/201936859, ISSN 14320746. URL http://arxiv.org/abs/1912.00732http://dx.doi.org/10.1051/ 0004-6361/201936859.Breiman, L. 2001, ¿Random Forests¿, Machine Learning, vol. 45, p. 5¿32.Bustamante, S. et J. E. Forero-Romero. 2015, ¿Tensor anisotropy as a tracer of cosmic voids¿, Mon. Not. R. Astron. Soc., vol. 453, 1, doi:10.1093/mnras/stv1637, p. 497¿506, ISSN 13652966.Cappellaro, E., R. Evans et M. Turatto. 1999, ¿A new determination of supernova rates and a comparison with indicators for galactic star formation¿, URL http://arxiv.org/abs/ astro-ph/9904225.Carrasco-Davis, R., G. Cabrera-Vives, F. Förster et collab. 2019, ¿Deep learning for image sequence classification of astronomical events¿, Publications of the Astronomical Society of the Pacific, vol. 131, 1004, doi:10.1088/1538-3873/aaef12, ISSN 00046280.Cassan, A., D. Kubas, J. P. Beaulieu et collab. 2012, ¿One or more bound planets per Milky Way star from microlensing observations¿, Nature, vol. 481, 7380, doi:10.1038/nature10684, p. 167¿169, ISSN 00280836. URL http://arxiv.org/abs/1202.0903http://dx.doi.org/ 10.1038/nature10684.Cautun, M., R. Van De Weygaert, B. J. Jones et collab. 2014, ¿Evolution of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 441, 4, doi:10.1093/mnras/stu768, p. 2923¿2973, ISSN 13652966.Cautun, M., R. van de Weygaert et B. J. Jones. 2013, ¿Nexus: Tracing the cosmic web connection¿, Monthly Notices of the Royal Astronomical Society, vol. 429, 2, doi:10.1093/mnras/ sts416, p. 1286¿1308, ISSN 00358711.Chambers, K. C., E. A. Magnier, N. Metcalfe et collab. 2016, ¿The Pan-STARRS1 Surveys¿, cahier de recherche. URL http://arxiv.org/abs/1612.05560.Chaussidon, E., C. Yèche, N. Palanque-Delabrouille et collab. 2022, ¿Target selection and validation of desi quasars¿, doi:10.48550/arxiv.2208.08511. URL https://arxiv.org/abs/ 2208.08511.Chawla, N. V., K. W. Bowyer, L. O. Hall et collab. 2002, ¿Smote: Synthetic minority over- sampling technique¿, Journal of Artificial Intelligence Research, vol. 16, doi:10.1613/jair.953, ISSN 10769757.Chen, T. et C. Guestrin. 2016, ¿XGBoost: A scalable tree boosting system¿, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 13-17-August-2016, doi:10.1145/2939672.2939785, p. 785¿794. URL http://dx.doi.org/10. 1145/2939672.2939785.Chen, X., C. Dvorkin, Z. Huang et collab. 2016, ¿The Future of Primordial Features with Large-Scale Structure Surveys¿, doi:10.1088/1475-7516/2016/11/014. URL http://arxiv. org/abs/1605.09365http://dx.doi.org/10.1088/1475-7516/2016/11/014.Chen, Y. C., S. Ho, P. E. Freeman et collab. 2015, ¿Cosmic web reconstruction through density ridges: Method and algorithm¿, Mon. Not. R. Astron. Soc., vol. 454, 1, doi: 10.1093/mnras/stv1996, p. 1140¿1156, ISSN 13652966.Coil, A. L. 2013, ¿The large-scale structure of the universe¿, Planets, Stars Stellar Syst. Vol. 6 Extragalactic Astron. Cosmol., doi:10.1007/978-94-007-5609-0 8, p. 387¿421, ISSN 0038-6308. URL http://arxiv.org/abs/1202.6633http://dx.doi.org/10.1007/ 978-94-007-5609-0{_}8.Cooper, A. P., S. E. Koposov, C. A. Prieto et collab. 2022, ¿Overview of the desi milky way survey¿, doi:10.48550/arxiv.2208.08514. URL https://arxiv.org/abs/2208.08514.Cover, T. M. et P. E. Hart. 1967, ¿Nearest neighbor pattern classification¿, IEEE Transactions on Information Theory, vol. 13, doi:10.1109/TIT.1967.1053964, ISSN 15579654.Cristianini, N. et J. Shawe-Taylor. 2013, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge Univ. Press, doi:10.1017/cbo9780511801389.DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016a, ¿The DESI Experiment Part I: Science,Targeting, and Survey Design¿, arXiv, p. arXiv:1611.00 036. URL http: //arxiv.org/abs/1611.00036.DESI Collaboration, A. Aghamousa, J. Aguilar et collab. 2016b, ¿The DESI Experiment Part II: Instrument Design¿, arXiv, p. arXiv:1611.00 037. URL http://arxiv.org/abs/1611.00037Dey, A., D. J. Schlegel, D. Lang et collab. 2018, ¿Overview of the desi legacy imaging surveys¿, doi:10.3847/1538-3881/ab089d. URL http://arxiv.org/abs/1804.08657http: //dx.doi.org/10.3847/1538-3881/ab089d.Dey, B., B. H. Andrews, J. A. Newman et collab. 2021, ¿Photometric Redshifts from SDSS Images with an Interpretable Deep Capsule Network¿, vol. 18, doi:10.48550/arxiv.2112.03939, p. 1¿18. URL http://arxiv.org/abs/2112.03939.D¿Isanto, A., S. Cavuoti, M. Brescia et collab. 2016, ¿An analysis of feature relevance in the classification of astronomical transients with machine learning methods¿, Monthly Notices of the Royal Astronomical Society, vol. 457, doi:10.1093/mnras/stw157, p. 3119¿3132.Djorgovski, S. G., A. A. Mahabal, C. Donalek et collab. 2012, ¿Flashes in a star stream: Automated classification of astronomical transient events¿, dans 2012 IEEE 8th International Conference on E-Science, IEEE, doi:10.1109/escience.2012.6404437. URL https://doi.org/ 10.1109%2Fescience.2012.6404437.Dosovitskiy, A., L. Beyer, A. Kolesnikov et collab. 2020, ¿An image is worth 16x16 words: Transformers for image recognition at scale¿, URL http://arxiv.org/abs/2010.11929.Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2009, ¿First results from the Catalina Real- Time Transient Survey¿, Astrophysical Journal, vol. 696, 1, doi:10.1088/0004-637X/696/1/870, p. 870¿884, ISSN 15384357. URL http://palquest.org.Drake, A. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿The Catalina Real-time Transient Survey¿, dans New Horizons in Time Domain Astronomy, IAU Symposium, vol. 285, édité par E. Griffin, R. Hanisch et R. Seaman, p. 306¿308, doi:10.1017/S1743921312000889.Dyer, M. J., D. Steeghs, D. K. Galloway et collab. 2020, ¿The Gravitational-wave Optical Transient Observer (GOTO)¿, cahier de recherche, doi:10.1117/12.2561008.Elyiv, A., F. Marulli, G. Pollina et collab. 2015, ¿Cosmic voids detection without density measurements¿, Monthly Notices of the Royal Astronomical Society, vol. 448, 1, doi:10.1093/ mnras/stv043, p. 642¿653, ISSN 13652966. URL http://arxiv.org/abs/1410.4559http: //dx.doi.org/10.1093/mnras/stv043.Fang, F., J. Forero-Romero, G. Rossi et collab. 2019, ¿¿-Skeleton analysis of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 485, 4, doi:10.1093/mnras/stz773, p. 5276¿5284, ISSN 13652966Fix, E. et J. L. Hodges. 1989, ¿Discriminatory analysis. nonparametric discrimination: Consis- tency properties¿, International Statistical Review / Revue Internationale de Statistique, vol. 57, doi:10.2307/1403797, ISSN 03067734.Forero-Romero, J. E., Y. Hoffman, S. Gottlöber et collab. 2009, ¿A dynamical classification of the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 396, 3, doi:10.1111/j.1365-2966.2009.14885.x, p. 1815¿1824, ISSN 00358711.Forgy, E. W. 1965, ¿Cluster analysis of multivariate data: efficiency versus interpretability of classifications¿, Biometrics, vol. 21.Garcia-Alvarado, M. V., X. D. Li et J. E. Forero-Romero. 2020, ¿The cosmic web through the lens of graph entropy¿, Monthly Notices of the Royal Astronomical Society: Letters, vol. 498, 1, doi:10.1093/mnrasl/slaa145, p. L145¿L149, ISSN 17453933. URL https://arxiv.org/abs/ 2008.08164.Gatti, M., A. Lamastra, N. Menci et collab. 2014, ¿The physical properties of AGN host galaxies as a probe of SMBH feeding mechanisms¿, arXiv:1412.7660 [astro-ph].Geary, D. N., G. J. McLachlan et K. E. Basford. 1989, ¿Mixture Models: Inference and Applications to Clustering.¿, Journal of the Royal Statistical Society. Series A (Statistics in Society), vol. 152, doi:10.2307/2982840, ISSN 09641998.Genel, S., M. Vogelsberger, V. Springel et collab. 2014, ¿Introducing the illustris project: the evolution of galaxy populations across cosmic time¿, MNRAS, vol. 445, doi:10.1093/ mnras/stu1654, p. 175¿200. URL https://academic.oup.com/mnras/article/445/1/175/ 985625.Gieseke, F., S. Bloemen, C. van den Bogaard et collab. 2017, ¿Convolutional neural networks for transient candidate vetting in large-scale surveys¿, Monthly Notices of the Royal Astro- nomical Society, vol. 472, 3, doi:10.1093/mnras/stx2161, p. 3101¿3114, ISSN 13652966. URL https://arxiv.org/abs/1708.08947.Glielmo, A., I. Macocco, D. Doimo et collab. 2022, ¿Dadapy: Distance-based analysis of data-manifolds in python¿, Patterns, doi:https://doi.org/10.1016/j.patter.2022.100589, p.100 589, ISSN 2666-3899. URL https://www.sciencedirect.com/science/article/pii/ S2666389922002070.Gómez, C., M. Neira, M. H. Hoyos et collab. 2020, ¿Classifying image sequences of astronomical transients with deep neural networks¿, Monthly Notices of the Royal Astronomi-cal Society, vol. 499, 3, doi:10.1093/mnras/staa2973, p. 3130¿3138, ISSN 13652966. URL http://arxiv.org/abs/2004.13877http://dx.doi.org/10.1093/mnras/staa2973.Goodfellow, I., J. Pouget-Abadie, M. Mirza et collab. 2020, ¿Generative Adversarial Networks¿, Communications of the ACM, vol. 63, doi:10.1145/3422622, p. 139¿144, ISSN 15577317. URL https://arxiv.org/abs/1406.2661.Graham, M. J., S. G. Djorgovski, A. Mahabal et collab. 2012, ¿Data challenges of time domain astronomy¿, doi:10.1007/s10619-012-7101-7. URL http://arxiv.org/abs/1208.2480http: //dx.doi.org/10.1007/s10619-012-7101-7.Grogin, N. A., D. D. Kocevski, S. M. Faber et collab. 2011, ¿CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey¿, doi:10.1088/0067-0049/197/2/35. URL https://arxiv.org/abs/1105.3753.Guy, J., S. Bailey, A. Kremin et collab. 2022, ¿The spectroscopic data processing pipeline for the dark energy spectroscopic instrument¿, doi:10.48550/arxiv.2209.14482. URL http: //arxiv.org/abs/2209.14482.Génova-Santos, R. T. 2020, ¿The establishment of the Standard Cosmological Model through observations¿, doi:10.1007/978-3-030-38509-5 11. URL http://arxiv.org/abs/ 2001.08297http://dx.doi.org/10.1007/978-3-030-38509-5_11.Ha, J., M. Kambe et J. Pe. 2011, Data Mining: Concepts and Techniques, doi:10.1016/ C2009-0-61819-5.Hahn, C., M. J. Wilson, O. Ruiz-Macias et collab. 2022, ¿Desi bright galaxy survey: Final target selection, design, and validation¿, doi:10.48550/arxiv.2208.08512. URL http://arxiv. org/abs/2208.08512.Hahn, O., C. Porciani, C. M. Carollo et collab. 2007, ¿Properties of dark matter haloes in clusters, filaments, sheets and voids¿, Mon. Not. R. Astron. Soc., vol. 375, 2, doi:10.1111/j.1365-2966.2006.11318.x, p. 489¿499, ISSN 00358711. URL https://doi.org/10. 1111/j.1365-2966.2006.11318.x.He, K., X. Zhang, S. Ren et collab. 2015, ¿Deep Residual Learning for Image Recognition¿, URL http://arxiv.org/abs/1512.03385.Huchra, J. P. et M. J. Geller. 1982, ¿Groups of galaxies. i - nearby groups¿, The Astrophysical Journal, vol. 257, doi:10.1086/160000, p. 423, ISSN 0004-637X.Humphrey, A., P. A. C. Cunha, A. Paulino-Afonso et collab. 2023, ¿Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations¿, Monthly Notices of the Royal Astronomical Society, vol. 520, doi:10.1093/mnras/ stac3596, p. 305¿313, ISSN 0035-8711. URL http://arxiv.org/abs/2212.02537http:// dx.doi.org/10.1093/mnras/stac3596.Hotelling, H. 1933, ¿Analysis of a complex of statistical variables into principal components¿, J. Educ. Psychol., vol. 24, 6, doi:10.1037/h0071325, p. 417¿441, ISSN 00220663. URL /doiLanding?doi=10.1037{%}2Fh0071325.¿eljko Ivezi¿, S. M. Kahn, J. A. Tyson et collab. 2008, ¿Lsst: from science drivers to reference design and anticipated data products¿, doi:10.3847/1538-4357/ab042c. URL http://arxiv.org/abs/0805.2366http://dx.doi.org/10.3847/1538-4357/ab042c.de Jong, R. S., O. Agertz, A. A. Berbel et collab. 2019, ¿4most: Project overview and information for the first call for proposals¿, doi:10.18727/0722-6691/5117. URL http: //arxiv.org/abs/1903.02464http://dx.doi.org/10.18727/0722-6691/5117.Kaiser, N. 2004, ¿Pan-STARRS: a wide-field optical survey telescope array¿, dans Ground-based Telescopes, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5489, édité par J. Oschmann, Jacobus M., p. 11¿22, doi:10.1117/12.552472.Kennicutt, J., Robert C., W. L. Freedman et J. R. Mould. 1995, ¿Measuring the Hubble Constant with the Hubble Space Telescope¿, , vol. 110, doi:10.1086/117621, p. 1476.Killestein, T. L., J. Lyman, D. Steeghs et collab. 2021, ¿Transient-optimized real-bogus classifi- cation with Bayesian convolutional neural networks ¿ sifting the GOTO candidate stream¿, cahier de recherche 4, doi:10.1093/mnras/stab633. URL https://wis-tns.weizmann.ac. il/.Knop, R. A., G. Aldering, R. Amanullah et collab. 2003, ¿New Constraints on ¿M, ¿¿ , and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope¿, , vol. 598, 1, doi:10.1086/378560, p. 102¿137.Konopacky, Q. M., J. Rameau, G. Duchêne et collab. 2016, ¿Discovery of a Substellar Companion To the Nearby Debris Disk Host Hr 2562¿, Astrophys. J., vol. 829, 1, doi:10.3847/ 2041-8205/829/1/l4, p. L4, ISSN 20418213. URL http://arxiv.org/abs/1608.06660http: //dx.doi.org/10.3847/2041-8205/829/1/L4.Koutroumbas, K. 2006, Pattern Recognition, doi:10.1016/B978-0-12-369531-4.X5000-8.Kruskal, J. B. 1964, ¿Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis¿, Psychometrika, vol. 29, 1, doi:10.1007/BF02289565, p. 1¿27, ISSN 00333123. URL https://link.springer.com/article/10.1007/BF02289565.Lamassa, S. M., T. M. Heckman, A. Ptak et collab. 2013, ¿On the star formation-AGN connection at z ¡ 0.3¿, Astrophysical Journal Letters, vol. 765, doi:10.1088/2041-8205/765/2/L33, ISSN 20418205.Laureijs, R., J. Amiaux, S. Arduini et collab. 2011, ¿Euclid definition study report¿, URL http://arxiv.org/abs/1110.3193.Law, N. M., S. R. Kulkarni, R. G. Dekany et collab. 2009, ¿The Palomar Transient Factory: System Overview, Performance, and First Results¿, cahier de recherche 886, doi:10.1086/ 648598.LeCun, Y., L. Bottou, Y. Bengio et collab. 1998, ¿Gradient-based learning applied to document recognition¿, Proceedings of the IEEE, vol. 86, doi:10.1109/5.726791, ISSN 00189219.Li, C., Y. Zhang, C. Cui et collab. 2022, ¿Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys¿, doi:10.1093/mnras/stac3037. URL http://arxiv.org/abs/ 2211.09492http://dx.doi.org/10.1093/mnras/stac3037.Li, H. et J.-Q. Xia. 2010, ¿Constraints on Dark Energy Parameters from Correlations of CMB with LSS¿, doi:10.1088/1475-7516/2010/04/026. URL http://arxiv.org/abs/1004. 2774http://dx.doi.org/10.1088/1475-7516/2010/04/026.Libeskind, N. I., R. van de Weygaert, M. Cautun et collab. 2018, ¿Tracing the cosmic web¿, Mon. Not. R. Astron. Soc., vol. 473, 1, doi:10.1093/mnras/stx1976, p. 1195¿1217, ISSN 13652966. URL http://arxiv.org/abs/1705.03021http://dx.doi.org/10.1093/mnras/stx1976.Ling, R. F. 1972, ¿On the theory and construction of k-clusters¿, The Computer Journal, vol. 15, doi:10.1093/comjnl/15.4.326, ISSN 0010-4620.Lloyd, S. P. 1982, ¿Least Squares Quantization in PCM¿, IEEE Transactions on Information Theory, vol. 28, doi:10.1109/TIT.1982.1056489, ISSN 15579654.Lochner, M., J. D. McEwen, H. V. Peiris et collab. 2016, ¿Photometric Supernova Classification with Machine Learning¿, , vol. 225, doi:10.3847/0067-0049/225/2/31, 31.LSST Science Collaboration, P. A. Abell, J. Allison et collab. 2009, ¿LSST Science Book¿, URL http://arxiv.org/abs/0912.0201.Luber, N., J. H. van Gorkom, K. M. Hess et collab. 2019, ¿Large-scale Structure in CHILES Using DisPerSE¿, Astron. J., vol. 157, 6, doi:10.3847/1538-3881/ab1b6e, p. 254, ISSN 0004-6256. URL http://arxiv.org/abs/1904.10511.Mahabal, A. A., S. G. Djorgovski, A. J. Drake et collab. 2011, ¿Discovery, classiffcation, and scientiffc exploration of transient events from the Catalina Real-Time Transient Survey¿, Bulletin of the Astronomical Society of India, vol. 39, 3, p. 387¿408, ISSN 03049523. URL http://palquest.org/;.Marinacci, F., M. Vogelsberger, R. Pakmor et collab. 2018, ¿First results from the IllustrisTNG simulations: Radio haloes and magnetic fields¿, Monthly Notices of the Royal Astronomical Society, vol. 480, 4, doi:10.1093/mnras/sty2206, p. 5113¿5139, ISSN 13652966. URL http: //arxiv.org/abs/1707.03396http://dx.doi.org/10.1093/mnras/sty2206.Mart¿¿nez-Palomera, J., F. Förster, P. Protopapas et collab. 2018, ¿The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs¿, The Astronomical Journal, vol. 156, 5, doi:10.3847/1538-3881/aadfd8, p. 186, ISSN 1538-3881. URL http://astro.cmm.uchile.cl/HiTS/.McInnes, L., J. Healy et J. Melville. 2018, ¿UMAP: Uniform manifold approximation and projection for dimension reduction¿, arXiv, ISSN 23318422. URL http://arxiv.org/abs/ 1802.03426.McLachlan, G. J., S. X. Lee et S. I. Rathnayake. 2019, ¿Finite Mixture Models¿, Annual Review of Statistics and Its Application, vol. 6, doi:10.1146/annurev-statistics-031017-100325, ISSN 2326831X.Murtagh, F. et P. Contreras. 2012, ¿Algorithms for hierarchical clustering: An overview¿, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, doi:10.1002/ widm.53, ISSN 19424795.Muthukrishna, D., G. Narayan, K. S. Mandel et collab. 2019, ¿RAPID: Early Classification of Explosive Transients Using Deep Learning¿, doi:10.1088/1538-3873/ab1609.Myers, A. D., J. Moustakas, S. Bailey et collab. 2023, ¿The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument¿, , vol. 165, 2, doi:10.3847/1538-3881/aca5f9, 50.Naiman, J. P., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG simulations: A tale of two elements - Chemical evolution of magnesium and europium¿, Monthly Notices of the Royal Astronomical Society, vol. 477, 1, doi:10.1093/mnras/sty618, p. 1206¿1224, ISSN 13652966. URL http://arxiv.org/abs/1707.03401http://dx.doi. org/10.1093/mnras/sty618.Neira, M., C. Gómez, J. F. Suárez-Pérez et collab. 2020, ¿MANTRA: A Machine-learning Reference Light-curve Data Set for Astronomical Transient Event Recognition¿, , vol. 250, 1, doi:10.3847/1538-4365/aba267, 11.Nelson, D., A. Pillepich, S. Genel et collab. 2015, ¿The illustris simulation: Public data release¿, Astronomy and Computing, vol. 13, doi:10.1016/j.ascom.2015.09.003, p. 12¿37, ISSN 22131337. URL http://arxiv.org/abs/1504.00362http://dx.doi.org/10.1016/ j.ascom.2015.09.003.Nelson, D., A. Pillepich, V. Springel et collab. 2018, ¿First results from the IllustrisTNG simulations: The galaxy colour bimodality¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3040, p. 624¿647, ISSN 13652966. URL http: //arxiv.org/abs/1707.03395http://dx.doi.org/10.1093/mnras/stx3040.Nelson, D., V. Springel, A. Pillepich et collab. 2019, ¿The IllustrisTNG simulations: public data release¿, Comput. Astrophys. Cosmol., vol. 6, 1, doi:10.1186/s40668-019-0028-x, ISSN 2197-7909. URL https://arxiv.org/abs/1812.05609.Newman, J. A. et D. Gruen. 2022, ¿ Photometric Redshifts for Next- Generation Surveys¿, Annu. Rev. Astron. Astrophys., vol. 60, doi:10.1146/ annurev-astro-032122-014611. URL http://arxiv.org/abs/2206.13633http: //dx.doi.org/10.1146/annurev-astro-032122-014611.Neyrinck, M. C. 2008, ¿ Zobov: A parameter-free void-finding algorithm¿, Mon. Not. R. Astron. Soc., vol. 386, 4, doi:10.1111/j.1365-2966.2008.13180.x, p. 2101¿2109, ISSN 00358711. URL http://arxiv.org/abs/0712.3049http://dx.doi.org/10.1111/j. 1365-2966.2008.13180.x.Nidever, D. L., A. Dey, K. Fasbender et collab. 2021, ¿Second Data Release of the All-sky NOIRLab Source Catalog¿, cahier de recherche 4, doi:10.3847/1538-3881/abd6e1. URL https://www.noao.edu/noao/staff/fvaldes/CPDocPrelim.Novikov, D., S. Colombi et O. Doré. 2006, ¿Skeleton as a probe of the cosmic web: The two- dimensional case¿, Mon. Not. R. Astron. Soc., vol. 366, 4, doi:10.1111/j.1365-2966.2005.09925.x, p. 1201¿1216, ISSN 00358711. URL http://arxiv.org/abs/astro-ph/0307003http://dx. doi.org/10.1111/j.1365-2966.2005.09925.x.Padilla, N. D., L. Ceccarelli et D. G. Lambas. 2005, ¿Spatial and dynamical properties of voids in a ¿cold dark matter universe¿, Monthly Notices of the Royal Astronomical Society, vol. 363, 3, doi:10.1111/j.1365-2966.2005.09500.x, p. 977¿990, ISSN 00358711. URL http://arxiv. org/abs/astro-ph/0508297http://dx.doi.org/10.1111/j.1365-2966.2005.09500.x.Paszke, A., S. Gross, F. Massa et collab. 2019, ¿PyTorch: An imperative style, high-performance deep learning library¿, ISSN 10495258.Pearson, K. 1901, ¿ LIII. On lines and planes of closest fit to systems of points in space ¿, Lon- don, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 2, 11, doi:10.1080/14786440109462720, p. 559¿572, ISSN 1941-5982. URL https://www.tandfonline.com/doi/abs/10.1080/ 14786440109462720.Pedregosa, F., G. Varoquaux, A. Gramfort et collab. 2011, ¿Scikit-learn: Machine learning in Python¿, J. Mach. Learn. Res., vol. 12, p. 2825¿2830, ISSN 15324435.Percival, W. J. 2013, ¿Large Scale Structure Observations¿, URL http://arxiv.org/abs/ 1312.5490.Perlmutter, S., G. Aldering, G. Goldhaber et collab. 1999, ¿Measurements of ¿ and ¿ from 42 High-Redshift Supernovae¿, , vol. 517, 2, doi:10.1086/307221, p. 565¿586.Pillepich, A., D. Nelson, L. Hernquist et collab. 2018a, ¿First results from the illustristng simulations: The stellar mass content of groups and clusters of galaxies¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3112, p. 648¿675, ISSN 13652966. URL https://arxiv.org/abs/1707.03406.Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3, doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/ 1703.02970http://dx.doi.org/10.1093/mnras/stx2656.Pillepich, A., V. Springel, D. Nelson et collab. 2018b, ¿Simulating galaxy formation with the IllustrisTNG model¿, Monthly Notices of the Royal Astronomical Society, vol. 473, 3, doi:10.1093/mnras/stx2656, p. 4077¿4106, ISSN 13652966. URL http://arxiv.org/abs/ 1703.02970http://dx.doi.org/10.1093/mnras/stx2656.Planck Collaboration, N. Aghanim, Y. Akrami et collab. 2020, ¿Planck 2018 results. I. Overview and the cosmological legacy of Planck¿, , vol. 641, doi:10.1051/0004-6361/ 201833880, A1.Platen, E., R. Van De Weygaert et B. J. Jones. 2007, ¿A cosmic watershed: The WVF void detection technique¿, Mon. Not. R. Astron. Soc., vol. 380, 2, doi:10.1111/j.1365-2966.2007. 12125.x, p. 551¿570, ISSN 00358711.Prieto, C. A., A. P. Cooper, A. Dey et collab. 2020, ¿Preliminary target selection for the desi milky way survey (mws)¿, doi:10.3847/2515-5172/abc1dc. URL https://arxiv.org/abs/ 2010.11284.Quinlan, J. R. 1986, ¿Induction of decision trees¿, Machine Learning, vol. 1, doi:10.1023/A: 1022643204877, ISSN 15730565.Raichoor, A., D. J. Eisenstein, T. Karim et collab. 2020, ¿Preliminary target selection for the desi emission line galaxy (elg) sample¿, doi:10.3847/2515-5172/abc078. URL http: //arxiv.org/abs/2010.11281http://dx.doi.org/10.3847/2515-5172/abc078.Raichoor, A., J. Moustakas, J. A. Newman et collab. 2022, ¿Target selection and validation of desi emission line galaxies¿, doi:10.3847/1538-3881/acb213. URL http://arxiv.org/abs/ 2208.08513http://dx.doi.org/10.3847/1538-3881/acb213.Richards, J. W., D. L. Starr, N. R. Butler et collab. 2011, ¿On Machine-learned Classification of Variable Stars with Sparse and Noisy Time-series Data¿, , vol. 733, doi:10.1088/0004-637X/ 733/1/10, 10.Riess, A. G., A. V. Filippenko, P. Challis et collab. 1998, ¿Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant¿, The Astronomical Journal, vol. 116, doi:10.1086/300499, ISSN 00046256.van Roestel, J., D. A. Duev, A. A. Mahabal et collab. 2021, ¿The ZTF Source Classification Project. I. Methods and Infrastructure¿, The Astronomical Journal, vol. 161, 6, doi:10.3847/ 1538-3881/abe853, p. 267, ISSN 0004-6256. URL http://arxiv.org/abs/2102.11304.Ruiz-Macias, O., P. Zarrouk, S. Cole et collab. 2021, ¿Characterizing the target selection pipeline for the dark energy spectroscopic instrument bright galaxy survey¿, Monthly Notices of the Royal Astronomical Society, vol. 502, doi:10.1093/mnras/stab292, p. 4328¿4349, ISSN 13652966. URL https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.4328R/abstract.Russakovsky, O., J. Deng, H. Su et collab. 2015, ¿ImageNet Large Scale Visual Recognition Challenge¿, International Journal of Computer Vision, vol. 115, doi:10.1007/s11263-015-0816-y, ISSN 15731405.Sánchez-Sáez, P., H. Lira, L. Mart¿¿ et collab. 2021a, ¿Searching for Changing-state AGNs in Massive Data Sets. I. Applying Deep Learning and Anomaly-detection Techniques to Find AGNs with Anomalous Variability Behaviors¿, Astron. J., vol. 162, 5, doi:10.3847/ 1538-3881/ac1426, p. 206, ISSN 0004-6256. URL http://arxiv.org/abs/2106.07660http: //dx.doi.org/10.3847/1538-3881/ac1426.Sánchez-Sáez, P., I. Reyes, C. Valenzuela et collab. 2021b, ¿Alert Classification for the ALeRCE Broker System: The Light Curve Classifier¿, cahier de recherche 3, doi:10.3847/1538-3881/ abd5c1. URL https://zwickytransientfacility.github.io/.Schmalzing, J., T. Buchert, A. L. Melott et collab. 1999, ¿Disentangling the Cosmic Web. I. Morphology of Isodensity Contours¿, Astrophys. J., vol. 526, 2, doi:10.1086/308039, p. 568¿578, ISSN 0004-637X.Schneider, P. 2015, Extragalactic Astronomy and Cosmology, Springer, ISBN 978-3-642-54082-0 978-3-642-54083-7, doi:10.1007/978-3-642-54083-7.Schonlau, M. et R. Y. Zou. 2020, ¿The random forest algorithm for statistical learning¿, Stata Journal, vol. 20, doi:10.1177/1536867X20909688, ISSN 15368734.Schuldt, S., S. H. Suyu, R. Cañameras et collab. 2020, ¿Photometric Redshift Estimation with a Convolutional Neural Network: NetZ¿, doi:10.1051/0004-6361/202039945. URL http: //arxiv.org/abs/2011.12312http://dx.doi.org/10.1051/0004-6361/202039945.Scoville, N., H. Aussel, M. Brusa et collab. 2006, ¿The Cosmic Evolution Survey (COSMOS) ¿ Overview¿, doi:10.1086/516585. URL http://arxiv.org/abs/astro-ph/0612305http: //dx.doi.org/10.1086/516585.Sijacki, D., M. Vogelsberger, S. Genel et collab. 2015, ¿The illustris simulation: the evolving population of black holes across cosmic time¿, MNRAS, vol. 452, doi:10.1093/mnras/stv1340, p. 575¿596. URL https://academic.oup.com/mnras/article/452/1/575/1751371.Smartt, S. J., S. Valenti, M. Fraser et collab. 2015, ¿PESSTO: Survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects¿, Astronomy and Astrophysics, vol. 579, doi:10.1051/0004-6361/201425237, p. 6, ISSN 14320746. URL www.pessto.org.Smoot, G. F., C. L. Bennett, A. Kogut et collab. 1992, ¿Structure in the COBE Differential Microwave Radiometer First-Year Maps¿, , vol. 396, doi:10.1086/186504, p. L1.Song, Y. Y. et Y. Lu. 2015, ¿Decision tree methods: applications for classification and prediction¿, Shanghai Archives of Psychiatry, vol. 27, doi:10.11919/j.issn.1002-0829.215044, ISSN 10020829Sousbie, T. 2011, ¿The persistent cosmic web and its filamentary structure - I. Theory and implementation¿, Mon. Not. R. Astron. Soc., vol. 414, 1, doi:10.1111/j.1365-2966.2011.18394.x, p. 350¿383, ISSN 00358711. URL https://arxiv.org/abs/1009.4015.Spergel, D., N. Gehrels, C. Baltay et collab. 2015, ¿Wide-Field InfrarRed Survey Telescope- Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report¿, URL http://arxiv. org/abs/1503.03757.Spergel, D. N., L. Verde, H. V. Peiris et collab. 2003, ¿First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters¿, , vol. 148, 1, doi:10.1086/377226, p. 175¿194.Springel, V. 2011, ¿ Moving-mesh hydrodynamics with the AREPO code¿, Proc. Int. Astron. Union, vol. 6, S270, doi:10.1017/S1743921311000378, p. 203¿ 206, ISSN 17439213. URL https://www.cambridge.org/core/product/identifier/ S1743921311000378/type/journal{_}article.Springel, V., R. Pakmor, A. Pillepich et collab. 2018, ¿First results from the IllustrisTNG simulations: Matter and galaxy clustering¿, Monthly Notices of the Royal Astronomical Society, vol. 475, 1, doi:10.1093/mnras/stx3304, p. 676¿698, ISSN 13652966. URL http: //arxiv.org/abs/1707.03397http://dx.doi.org/10.1093/mnras/stx3304.Stetson, P. B. 1996, ¿On the Automatic Determination of Light-Curve Parameters for Cepheid Variables¿, Publications of the Astronomical Society of the Pacific, vol. 108, doi:10.1086/133808, p. 851, ISSN 0004-6280. URL http://iopscience.iop.org/article/10.1086/133808.Stoica, R. S., V. J. Mart¿¿nez et E. Saar. 2007, ¿A three-dimensional object point process for detection of cosmic filaments¿, Journal of the Royal Statistical Society. Series C: Applied Statistics, vol. 56, 4, doi:10.1111/j.1467-9876.2007.00587.x, p. 459¿477, ISSN 00359254. URL http://arxiv.org/abs/0809.4358.Suárez-Pérez, J. F., Forero-Romero, Jaime E. et DESI Collaboration. a, ¿Quality assessment of spectroscopic data reduction pipelines using unsupervised machine learning: a case study of the DESI survey¿, In Preparation.Suárez-Pérez, J. F., C. Gómez, M. Neira et collab. b, ¿Deep-TAO: The Deep Learning Transient Astronomical object data set for Astronomical Transient Event Classification¿, In Preparation.Suárez-Pérez, J. F., Sabiu, Cristiano et Forero-Romero, Jaime E. c, ¿Predicting photometric redshift of Bright Galaxies from the 1% DESI.¿, In Preparation.Sutter, P. M., G. Lavaux, N. Hamaus et collab. 2015, ¿VIDE: The Void IDentification and Examination toolkit¿, Astronomy and Computing, vol. 9, doi:10.1016/j.ascom.2014.10.002, p. 1¿9, ISSN 22131337. URL http://arxiv.org/abs/1406.1191.Suárez-Pérez, J. F., Y. Camargo, X.-D. Li et collab. 2021, ¿The four cosmic tidal web elements from the ¿-skeleton¿, The Astrophysical Journal, vol. 922, doi:10.3847/1538-4357/ac1fed, p. 204, ISSN 0004-637X. URL http://arxiv.org/abs/2108.10351.Tang, J., J. Liu, M. Zhang et collab. 2016, ¿Visualizing Large-scale and High-dimensional Data¿, doi:10.1145/2872427.2883041, p. 287¿297. URL http://dx.doi.org/10.1145/2872427. 2883041.Tegmark, M. 1997, ¿Measuring cosmological parameters with galaxy surveys¿, doi: 10.1103/PhysRevLett.79.3806. URL http://arxiv.org/abs/astro-ph/9706198http://dx. doi.org/10.1103/PhysRevLett.79.3806.Tenenbaum, J. B., V. De Silva et J. C. Langford. 2000, ¿A global geometric framework for nonlinear dimensionality reduction¿, Science (80-. )., vol. 290, 5500, doi:10.1126/science. 290.5500.2319, p. 2319¿2323, ISSN 00368075. URL https://www.science.org/doi/abs/10. 1126/science.290.5500.2319.The PLAsTiCC team, J. Allam, Tarek, A. Bahmanyar et collab. 2018, ¿The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set¿, arXiv e-prints, arXiv:1810.00001.Tonry, J. L., B. P. Schmidt, B. Barris et collab. 2003, ¿Cosmological Results from High-z Supernovae¿, , vol. 594, 1, doi:10.1086/376865, p. 1¿24.Tsizh, M., B. Novosyadlyj, Y. Holovatch et collab. 2020, ¿Large-scale structures in the ¿CDM Universe: network analysis and machine learning¿, Mon. Not. R. Astron. Soc., vol. 495, 1, doi:10.1093/mnras/staa1030, p. 1311¿1320, ISSN 0035-8711. URL http://arxiv.org/abs/ 1910.07868.Van Der Maaten, L., A. Courville, R. Fergus et collab. 2014, ¿Accelerating t-SNE using Tree-Based Algorithms¿, J. Mach. Learn. Res., vol. 15, 93, p. 3221¿3245, ISSN 1533-7928. URL http://jmlr.org/papers/v15/vandermaaten14a.html.Van Der Maaten, L. et G. Hinton. 2008, ¿Visualizing data using t-SNE¿, J. Mach. Learn. Res., vol. 9, p. 2579¿2625, ISSN 15324435.Vaswani, A., N. Shazeer, N. Parmar et collab. 2017, ¿Attention is all you need¿, URL https://arxiv.org/abs/1706.03762.Vogelsberger, M., S. Genel, V. Springel et collab. 2014, ¿Properties of galaxies reproduced by a hydrodynamic simulation¿, Nature, vol. 509, 7499, doi:10.1038/nature13316, p. 177¿182, ISSN 14764687.Way, M. J., J. D. Scargle, K. M. Ali et collab. 2012, Advances in Machine Learning and Data Mining for Astronomy, doi:10.1201/b11822.Wechsler, R. H. et J. L. Tinker. 2018, ¿The connection between galaxies and their dark matter halos¿, doi:10.1146/annurev-astro-081817-051756. URL http://arxiv.org/abs/ 1804.03097http://dx.doi.org/10.1146/annurev-astro-081817-051756.Weinberger, R., V. Springel, L. Hernquist et collab. 2017, ¿Simulating galaxy formation with black hole driven thermal and kinetic feedback¿, Monthly Notices of the Royal Astronomical Society, vol. 465, 3, doi:10.1093/mnras/stw2944, p. 3291¿3308, ISSN 13652966. URL http: //arxiv.org/abs/1607.03486http://dx.doi.org/10.1093/mnras/stw2944.White, S. D. M., C. S. Frenk, M. Davis et collab. 1987, ¿Clusters, filaments, and voids in a universe dominated by cold dark matter¿, Astrophys. J., vol. 313, doi:10.1086/164990, p. 505, ISSN 0004-637X.Witten, I. H., E. Frank, M. A. Hall et collab. 2016, Data Mining: Practical Machine Learning Tools and Techniques.Wyrzykowski, L., Z. Kostrzewa-Rutkowska, S. Kozlowski et collab. 2014, ¿OGLE-IV real-time transient search¿, cahier de recherche 3.Xu, X., J. Cisewski-Kehe, S. B. Green et collab. 2019, ¿Finding cosmic voids and filament loops using topological data analysis¿, Astronomy and Computing, vol. 27, doi:10.1016/j.ascom. 2019.02.003, p. 34¿52, ISSN 22131337. URL https://arxiv.org/abs/1811.08450.Yèche, C., N. Palanque-Delabrouille, C.-A. Claveau et collab. 2020, ¿Preliminary target selection for the desi quasar (qso) sample¿, doi:10.3847/2515-5172/abc01a. URL https: //arxiv.org/abs/2010.11280.Zel¿Dovich, Y., S. Shandarin et R. Sunyaev. 1970, ¿Gravitational Instability: An Approximate Theory for Large Density Perturbations. Commentary¿, Astron. Astrophys., vol. 500, 1, p. 13¿20, ISSN 0004-6361.Zhang, Y., X. Yang, A. Faltenbacher et collab. 2009, ¿The spin and orientation of dark matter halos within cosmic filaments¿, Astrophys. J., vol. 706, 1, doi:10.1088/0004-637X/706/1/747, p. 747¿761, ISSN 15384357. URL https://arxiv.org/abs/0906.1654.Zhou, R., B. Dey, J. A. Newman et collab. 2022, ¿Target selection and validation of DESI luminous red galaxies¿, doi:10.3847/1538-3881/aca5fb. URL http://arxiv.org/abs/2208. 08515http://dx.doi.org/10.3847/1538-3881/aca5fb.Zou, H., J. Sui, S. Xue et collab. 2022, ¿Photometric redshifts and Galaxy Clusters for DES DR2, DESI DR9, and HSC-SSP PDR3 Data¿, doi:10.1088/1674-4527/ac6416. URL http://arxiv.org/abs/2203.17035http://dx.doi.org/10.1088/1674-4527/ac6416.Zhou, R., J. A. Newman, K. S. Dawson et collab. 2020, ¿Preliminary target selection for the DESI luminous red galaxy (lrg) sample¿, doi:10.3847/2515-5172/abc0f4. URL https: //arxiv.org/abs/2010.11282.201522367Publicationhttps://scholar.google.es/citations?user=TLTK6WgAAAAJvirtual::3685-10000-0002-2890-3725virtual::3685-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000337102virtual::3685-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::3685-1d34cd5a0-50f5-42ea-825e-b51f5368f321virtual::3685-1THUMBNAILPhD_FinalDocument.pdf.jpgPhD_FinalDocument.pdf.jpgIM Thumbnailimage/jpeg23249https://repositorio.uniandes.edu.co/bitstreams/6e3870f1-dab5-4bfb-8d47-acd01c447a1d/download4834a66613f36631c19024bdbee2b769MD510Formato_Autorización.pdf.jpgFormato_Autorización.pdf.jpgIM Thumbnailimage/jpeg16114https://repositorio.uniandes.edu.co/bitstreams/8b17ba55-858a-4d0d-9ca1-98536e9b46e7/downloadf86f4a3f5045ede06f71f8d5abc72ef3MD512TEXTPhD_FinalDocument.pdf.txtPhD_FinalDocument.pdf.txtExtracted texttext/plain299351https://repositorio.uniandes.edu.co/bitstreams/f04649ea-969a-4b13-9a1b-ec9892737bec/download2e6314e197c13a92dbe22d456b506fb0MD59Formato_Autorización.pdf.txtFormato_Autorización.pdf.txtExtracted texttext/plain1https://repositorio.uniandes.edu.co/bitstreams/cf7d17da-1571-4e80-9bee-7d4e91630c88/download68b329da9893e34099c7d8ad5cb9c940MD511LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/d79f2d6d-f49f-4342-85bb-ecacf04b096e/download5aa5c691a1ffe97abd12c2966efcb8d6MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/d7192e88-1e19-40f7-b5c1-afba20df6bd3/download4460e5956bc1d1639be9ae6146a50347MD56ORIGINALPhD_FinalDocument.pdfPhD_FinalDocument.pdfDocumento Final de Trabajo de Gradoapplication/pdf12884772https://repositorio.uniandes.edu.co/bitstreams/6b0752ea-a22f-4201-90d4-af7befedf51f/download110f2f19c2f85ba52d95adc8e7a5ffd1MD54Formato_Autorización.pdfFormato_Autorización.pdfHIDEapplication/pdf54671https://repositorio.uniandes.edu.co/bitstreams/ad67a121-1690-446a-ab76-ccc9e0f2a1e9/download0cc5b9434807c67a19b50ac160d5e3c0MD581992/68996oai:repositorio.uniandes.edu.co:1992/689962024-08-26 15:21:27.988http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |