Detection of polarons in reduced vanadium oxide V2O(5-delta)

This project studied the change in magnetization of nanoparticles of pentoxide vanadium when subjected to controlled annealing. This study focuses on the induction of a stable net magnetic moment on the compound for applications such as spintronics and morphological computation. In addition, the stu...

Full description

Autores:
Esquivel Sánchez, Andrea Steffania
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/59389
Acceso en línea:
http://hdl.handle.net/1992/59389
Palabra clave:
pentoxide vanadium
polarons
oxygen vacancies
nanoparticles
Small polaron hopping
Física
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNIANDES2_dee9841d4596d4d207dd6fcbe78b75c6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/59389
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Detection of polarons in reduced vanadium oxide V2O(5-delta)
title Detection of polarons in reduced vanadium oxide V2O(5-delta)
spellingShingle Detection of polarons in reduced vanadium oxide V2O(5-delta)
pentoxide vanadium
polarons
oxygen vacancies
nanoparticles
Small polaron hopping
Física
title_short Detection of polarons in reduced vanadium oxide V2O(5-delta)
title_full Detection of polarons in reduced vanadium oxide V2O(5-delta)
title_fullStr Detection of polarons in reduced vanadium oxide V2O(5-delta)
title_full_unstemmed Detection of polarons in reduced vanadium oxide V2O(5-delta)
title_sort Detection of polarons in reduced vanadium oxide V2O(5-delta)
dc.creator.fl_str_mv Esquivel Sánchez, Andrea Steffania
dc.contributor.advisor.none.fl_str_mv Ramírez Rojas, Juan Gabriel
dc.contributor.author.none.fl_str_mv Esquivel Sánchez, Andrea Steffania
dc.contributor.jury.none.fl_str_mv Hernández Pico, Yenny Rocío
dc.contributor.researchgroup.es_CO.fl_str_mv Grupo de nanomagnetismo
dc.subject.keyword.none.fl_str_mv pentoxide vanadium
polarons
oxygen vacancies
nanoparticles
Small polaron hopping
topic pentoxide vanadium
polarons
oxygen vacancies
nanoparticles
Small polaron hopping
Física
dc.subject.themes.es_CO.fl_str_mv Física
description This project studied the change in magnetization of nanoparticles of pentoxide vanadium when subjected to controlled annealing. This study focuses on the induction of a stable net magnetic moment on the compound for applications such as spintronics and morphological computation. In addition, the study of the physical explanation of the change in magnetization is focused on the presence of polarons. These polarons in the sample were detected using a superconductor magnet. The project also includes studies of Raman spectroscopy, relaxation times, magnetization, and analysis of the presence of polarons on the crystal lattice.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-29T21:42:42Z
dc.date.available.none.fl_str_mv 2022-07-29T21:42:42Z
dc.date.issued.none.fl_str_mv 2022-07-29
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/59389
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/59389
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Vanadium pentoxide (v2o5): Their obtaining methods and wide applications. Transition Metal Compounds - Synthesis, Properties, and Application, 2021.
Dandan Chen, Jiangfeng Li, and Qingsheng Wu. Review of V2O5-based nanomaterials as electrode for supercapacitor, 2019.
Wenwu Zhong, Jingdong Huang, Shuquan Liang, Jun Liu, Yejing Li, Gemei Cai, Yong Jiang, and Jun Liu. New prelithiated V2O5 superstructure for Lithium-Ion batteries with Long Cycle Life and High Power. ACS Energy Letters, 5, 2020
Xunhui Xiong, Zhixing Wang, Guochun Yan, Huajun Guo, and Xinhai Li. Role of V2O5 coating on LiNiO2 based materials for lithium ion battery. Journal of Power Sources, 245, 2014.
Dipanwita Majumdar, Manas Mandal, and Swapan K. Bhattacharya. V2O5 and its carbon-based nanocomposites for supercapacitor applications, 2019.
B. Saravanakumar, Kamatchi K. Purushothaman, and G. Muralidharan. Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Applied Materials and Interfaces, 4, 2012.
P. Umadevi, C. L. Nagendra, and G. K.M. Thutupalli. Structural, electrical and infrared optical properties of vanadium pentoxide (V2O5) thick-film thermistors. Sensors and Actuators: A. Physical, 39, 1993.
Sergio Andrés Correal. Efecto del cambio estructural y de vacancias de oxígeno en las propiedades ópticas y electrónicas del V2O5 mediante primeros principios. Universidad de los Andes, 2020
R. P. Blum, H. Niehus, C. Hucho, R. Fortrie, M. V. Ganduglia-Pirovano, J. Sauer, S. Shaikhutdinov, and H. J. Freund. Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Physical Review Letters, 99, 2007
Tathagata Sarkar, Soumya Biswas, Sonali Kakkar, Appu Vengattoor Raghu, Chan dan Bera, and Vinayak B Kamble. Polaronic correlations in magnetic behavior of oxygen deficient V2O5, 2021.
Milan Gacic, Gerhard Jakob, Christian Herbort, Hermann Adrian, Thomas Tietze, Sebastian Br¨uck, and Eberhard Goering. Magnetism of Co-doped ZnO thin films. Physical Review B - Condensed Matter and Materials Physics, 75, 2007.
Zulfiqar, Muhammad Zubair, Aurangzeb Khan, Tang Hua, Nasir Ilyas, Simbarashe Fashu, Amir Muhammad Afzal, Main Akif Safeen, and Rajwali Khan. Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 32, 2021.
D. S. Volzhenskii and V. G. Savitskii. Polarons of small radius in vanadium pentoxide i. polaron absorption in vanadium pentoxide. Soviet Physics Journal, 18, 1975.
Vitaly V. Porsev, Andrei V. Bandura, and Robert A. Evarestov. Hybrid hartreefock-density functional theory study of V2O5 three phases: Comparison of bulk and layer stability, electron and phonon properties. Acta Materialia, 75, 2014.
Jason S. Lupoi, Erica Gjersing, and Mark F. Davis. Evaluating lignocellulosic biomass, its derivatives, and downstream products with raman spectroscopy. Frontiers in Bioengineering and Biotechnology, 3, 2015.
Edinburgh Instruments. What is Raman Spectroscopy?, url =https://www.edinst.com/blog/what-is-raman-spectroscopy/, note = Accessed:2022-05-09.
P. Balog, D. Orosel, Zeljko Cancarevic, and C. Sch¨on. V2o5 phase diagram revisited at high pressures and high temperatures. Journal of Alloys and Compounds, 05, 2007.
Daniel Hernandez. Confinamiento del pentóxido de vanadio v2o5 y la influencia del tamaño en sus propiedades ópticas. Universidad de Los Andes, 2021.
Arvids Stashans, Sheyla Serrano, and P. Medina. Estudio químico-cuántico de los defectos producidos por las vacancias de oxígeno en los cristales de titanato de plomo PbTiO3. Ingenius, 2008.
Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, 1953.
Oxygen vacancies: The (in)visible friend of oxide electronics, 2020.
Recent advances on spin-polarized two-dimensional electron gases at oxide interfaces, 2021.
Arumugam Venkatesan, Nagamuthu Raja Krishna Chandar, Arumugam Kandasamy, Madhu Karl Chinnu, Kalusalingam Nagappan Marimuthu, Rangasamy Mohan Kumar, and Ramasamy Jayavel. Luminescence and electrochemical properties of rare earth (Gd, Nd) doped V2O5 nanostructures synthesized by a non-aqueous sol-gel route. RSC Advances, 5, 2015.
Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials, 2021.
P. Mandal, B. Bandyopadhyay, and B. Ghosh. Resistivity anomaly in the vicinity of a structural phase transition in La1¿xSrxMnO3. Phys. Rev. B, 64:180405, Oct 2001.
J. BATES, C. HINMAN, and T. KAWADA. Electrical conductivity of uranium dioxide. Journal of the American Ceramic Society, 50:652 -656, 06 2006.
C. Crevecoeur and H.J. De Wit. Electrical conductivity of li doped mno. Journal of Physics and Chemistry of Solids, 31(4):783-791, 1970.
José De Teresa, M. Ibarra, Pedro Algarabel, C. Ritter, C. Marquina, Javier Blasco, J. García, A. Delmoral, and Zdenek Arnold. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature, 386:256-259, 03 1997.
Daniele Cortecchia, Jun Yin, Paola Lova, Subodh Mhaisalkar, Gagik Gurzadyan, Annalisa Bruno, and Cesare Soci. Polaron self-localization in white-light emitting hybrid perovskites. 03 2016.
Hyuntaek Rho, C Snow, S. Cooper, Zachary Fisk, A Comment, and Jean-Philippe Ansermet. Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in eu 1 x gd x o. Physical review letters, 88:127401, 03 2002.
David Emin. Small polarons. Physics Today, 35(6):34-40, 1982
F. A. Ibrahim. Influence of tungsten dopants on structural and electrical properties of solgel derived V2O5-MoO3 nanocrystalline films. Applied Physics A, 126(11):847, 2020.
Raktima Basu, Arun K. Prasad, Sandip Dhara, and A. Das. Role of vanadyl oxygen in understanding metallic behavior of VO(001) nanorods. The Journal of Physical Chemistry C, 120(46):26539-26543, November 2016.
Tathagata Sarkar, Soumya Biswas, Sonali Kakkar, Appu Vengattoor Raghu, Chan dan Bera, and Vinayak B Kamble. Polaronic correlations in magnetic behavior of oxygen deficient v2o5, 2021.
C Sanchez, M Henry, J C Grenet, and J Livage. Free and bound polarons in vanadium pentoxide. Journal of Physics C: Solid State Physics, 15(35):7133-7141, 1982.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 37 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0dc401d4-a3fc-4af1-811a-ff7be9aa2b10/download
https://repositorio.uniandes.edu.co/bitstreams/5424f485-44bb-41d5-89d5-4529fe6ca406/download
https://repositorio.uniandes.edu.co/bitstreams/bc6ac813-bb74-4cb4-a0fb-1009b7e3fd2a/download
https://repositorio.uniandes.edu.co/bitstreams/7f887895-3c64-4d06-a15f-354432087ca2/download
https://repositorio.uniandes.edu.co/bitstreams/9f76f2d9-4fff-4655-bbbd-238e02aa9034/download
https://repositorio.uniandes.edu.co/bitstreams/11e05330-19d7-48ff-8399-2199381afc22/download
https://repositorio.uniandes.edu.co/bitstreams/65638210-d6fc-4535-802e-2bd374e8a596/download
https://repositorio.uniandes.edu.co/bitstreams/67902c17-613c-4d8f-9246-4f951acd4ac1/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
66cacaa6e9f5547e14b745f883363da9
e6076600ce2a1ae68600b5996affffdf
2b6495c585cb69d66231bb3a254953da
4491fe1afb58beaaef41a73cf7ff2e27
934f4ca17e109e0a05eaeaba504d7ce4
9fc5f38079c20c17342ee4953c05e14e
374bf4bbea36e3ed2b2ebb5889a4d77d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133849350537216
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Rojas, Juan Gabrielvirtual::3445-1Esquivel Sánchez, Andrea Steffania62f2f8b4-4aca-4018-8ee5-c708012e049b600Hernández Pico, Yenny RocíoGrupo de nanomagnetismo2022-07-29T21:42:42Z2022-07-29T21:42:42Z2022-07-29http://hdl.handle.net/1992/59389instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This project studied the change in magnetization of nanoparticles of pentoxide vanadium when subjected to controlled annealing. This study focuses on the induction of a stable net magnetic moment on the compound for applications such as spintronics and morphological computation. In addition, the study of the physical explanation of the change in magnetization is focused on the presence of polarons. These polarons in the sample were detected using a superconductor magnet. The project also includes studies of Raman spectroscopy, relaxation times, magnetization, and analysis of the presence of polarons on the crystal lattice.FísicoPregradoNanomagnetismoFísica del estado sólido37 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaDetection of polarons in reduced vanadium oxide V2O(5-delta)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPpentoxide vanadiumpolaronsoxygen vacanciesnanoparticlesSmall polaron hoppingFísicaVanadium pentoxide (v2o5): Their obtaining methods and wide applications. Transition Metal Compounds - Synthesis, Properties, and Application, 2021.Dandan Chen, Jiangfeng Li, and Qingsheng Wu. Review of V2O5-based nanomaterials as electrode for supercapacitor, 2019.Wenwu Zhong, Jingdong Huang, Shuquan Liang, Jun Liu, Yejing Li, Gemei Cai, Yong Jiang, and Jun Liu. New prelithiated V2O5 superstructure for Lithium-Ion batteries with Long Cycle Life and High Power. ACS Energy Letters, 5, 2020Xunhui Xiong, Zhixing Wang, Guochun Yan, Huajun Guo, and Xinhai Li. Role of V2O5 coating on LiNiO2 based materials for lithium ion battery. Journal of Power Sources, 245, 2014.Dipanwita Majumdar, Manas Mandal, and Swapan K. Bhattacharya. V2O5 and its carbon-based nanocomposites for supercapacitor applications, 2019.B. Saravanakumar, Kamatchi K. Purushothaman, and G. Muralidharan. Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Applied Materials and Interfaces, 4, 2012.P. Umadevi, C. L. Nagendra, and G. K.M. Thutupalli. Structural, electrical and infrared optical properties of vanadium pentoxide (V2O5) thick-film thermistors. Sensors and Actuators: A. Physical, 39, 1993.Sergio Andrés Correal. Efecto del cambio estructural y de vacancias de oxígeno en las propiedades ópticas y electrónicas del V2O5 mediante primeros principios. Universidad de los Andes, 2020R. P. Blum, H. Niehus, C. Hucho, R. Fortrie, M. V. Ganduglia-Pirovano, J. Sauer, S. Shaikhutdinov, and H. J. Freund. Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Physical Review Letters, 99, 2007Tathagata Sarkar, Soumya Biswas, Sonali Kakkar, Appu Vengattoor Raghu, Chan dan Bera, and Vinayak B Kamble. Polaronic correlations in magnetic behavior of oxygen deficient V2O5, 2021.Milan Gacic, Gerhard Jakob, Christian Herbort, Hermann Adrian, Thomas Tietze, Sebastian Br¨uck, and Eberhard Goering. Magnetism of Co-doped ZnO thin films. Physical Review B - Condensed Matter and Materials Physics, 75, 2007.Zulfiqar, Muhammad Zubair, Aurangzeb Khan, Tang Hua, Nasir Ilyas, Simbarashe Fashu, Amir Muhammad Afzal, Main Akif Safeen, and Rajwali Khan. Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 32, 2021.D. S. Volzhenskii and V. G. Savitskii. Polarons of small radius in vanadium pentoxide i. polaron absorption in vanadium pentoxide. Soviet Physics Journal, 18, 1975.Vitaly V. Porsev, Andrei V. Bandura, and Robert A. Evarestov. Hybrid hartreefock-density functional theory study of V2O5 three phases: Comparison of bulk and layer stability, electron and phonon properties. Acta Materialia, 75, 2014.Jason S. Lupoi, Erica Gjersing, and Mark F. Davis. Evaluating lignocellulosic biomass, its derivatives, and downstream products with raman spectroscopy. Frontiers in Bioengineering and Biotechnology, 3, 2015.Edinburgh Instruments. What is Raman Spectroscopy?, url =https://www.edinst.com/blog/what-is-raman-spectroscopy/, note = Accessed:2022-05-09.P. Balog, D. Orosel, Zeljko Cancarevic, and C. Sch¨on. V2o5 phase diagram revisited at high pressures and high temperatures. Journal of Alloys and Compounds, 05, 2007.Daniel Hernandez. Confinamiento del pentóxido de vanadio v2o5 y la influencia del tamaño en sus propiedades ópticas. Universidad de Los Andes, 2021.Arvids Stashans, Sheyla Serrano, and P. Medina. Estudio químico-cuántico de los defectos producidos por las vacancias de oxígeno en los cristales de titanato de plomo PbTiO3. Ingenius, 2008.Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, 1953.Oxygen vacancies: The (in)visible friend of oxide electronics, 2020.Recent advances on spin-polarized two-dimensional electron gases at oxide interfaces, 2021.Arumugam Venkatesan, Nagamuthu Raja Krishna Chandar, Arumugam Kandasamy, Madhu Karl Chinnu, Kalusalingam Nagappan Marimuthu, Rangasamy Mohan Kumar, and Ramasamy Jayavel. Luminescence and electrochemical properties of rare earth (Gd, Nd) doped V2O5 nanostructures synthesized by a non-aqueous sol-gel route. RSC Advances, 5, 2015.Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in materials, 2021.P. Mandal, B. Bandyopadhyay, and B. Ghosh. Resistivity anomaly in the vicinity of a structural phase transition in La1¿xSrxMnO3. Phys. Rev. B, 64:180405, Oct 2001.J. BATES, C. HINMAN, and T. KAWADA. Electrical conductivity of uranium dioxide. Journal of the American Ceramic Society, 50:652 -656, 06 2006.C. Crevecoeur and H.J. De Wit. Electrical conductivity of li doped mno. Journal of Physics and Chemistry of Solids, 31(4):783-791, 1970.José De Teresa, M. Ibarra, Pedro Algarabel, C. Ritter, C. Marquina, Javier Blasco, J. García, A. Delmoral, and Zdenek Arnold. Evidence for magnetic polarons in the magnetoresistive perovskites. Nature, 386:256-259, 03 1997.Daniele Cortecchia, Jun Yin, Paola Lova, Subodh Mhaisalkar, Gagik Gurzadyan, Annalisa Bruno, and Cesare Soci. Polaron self-localization in white-light emitting hybrid perovskites. 03 2016.Hyuntaek Rho, C Snow, S. Cooper, Zachary Fisk, A Comment, and Jean-Philippe Ansermet. Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in eu 1 x gd x o. Physical review letters, 88:127401, 03 2002.David Emin. Small polarons. Physics Today, 35(6):34-40, 1982F. A. Ibrahim. Influence of tungsten dopants on structural and electrical properties of solgel derived V2O5-MoO3 nanocrystalline films. Applied Physics A, 126(11):847, 2020.Raktima Basu, Arun K. Prasad, Sandip Dhara, and A. Das. Role of vanadyl oxygen in understanding metallic behavior of VO(001) nanorods. The Journal of Physical Chemistry C, 120(46):26539-26543, November 2016.Tathagata Sarkar, Soumya Biswas, Sonali Kakkar, Appu Vengattoor Raghu, Chan dan Bera, and Vinayak B Kamble. Polaronic correlations in magnetic behavior of oxygen deficient v2o5, 2021.C Sanchez, M Henry, J C Grenet, and J Livage. Free and bound polarons in vanadium pentoxide. Journal of Physics C: Solid State Physics, 15(35):7133-7141, 1982.201812392Publication6ce2beec-157c-481d-8faa-d682fa74a732virtual::3445-16ce2beec-157c-481d-8faa-d682fa74a732virtual::3445-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154482virtual::3445-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/0dc401d4-a3fc-4af1-811a-ff7be9aa2b10/download5aa5c691a1ffe97abd12c2966efcb8d6MD51ORIGINALThesis_Final.pdfThesis_Final.pdfTrabajo de gradoapplication/pdf6302447https://repositorio.uniandes.edu.co/bitstreams/5424f485-44bb-41d5-89d5-4529fe6ca406/download66cacaa6e9f5547e14b745f883363da9MD53FormatoTesis.pdfFormatoTesis.pdfHIDEapplication/pdf192945https://repositorio.uniandes.edu.co/bitstreams/bc6ac813-bb74-4cb4-a0fb-1009b7e3fd2a/downloade6076600ce2a1ae68600b5996affffdfMD54TEXTThesis_Final.pdf.txtThesis_Final.pdf.txtExtracted texttext/plain57776https://repositorio.uniandes.edu.co/bitstreams/7f887895-3c64-4d06-a15f-354432087ca2/download2b6495c585cb69d66231bb3a254953daMD56FormatoTesis.pdf.txtFormatoTesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/9f76f2d9-4fff-4655-bbbd-238e02aa9034/download4491fe1afb58beaaef41a73cf7ff2e27MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/11e05330-19d7-48ff-8399-2199381afc22/download934f4ca17e109e0a05eaeaba504d7ce4MD55THUMBNAILThesis_Final.pdf.jpgThesis_Final.pdf.jpgIM Thumbnailimage/jpeg8250https://repositorio.uniandes.edu.co/bitstreams/65638210-d6fc-4535-802e-2bd374e8a596/download9fc5f38079c20c17342ee4953c05e14eMD57FormatoTesis.pdf.jpgFormatoTesis.pdf.jpgIM Thumbnailimage/jpeg15864https://repositorio.uniandes.edu.co/bitstreams/67902c17-613c-4d8f-9246-4f951acd4ac1/download374bf4bbea36e3ed2b2ebb5889a4d77dMD591992/59389oai:repositorio.uniandes.edu.co:1992/593892024-03-13 12:26:31.612http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==