Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos

Se estudió el rendimiento aerodinámico de un perfil para turbinas eólicas verticales mediante simulaciones en el software de código abierto OpenFoam con dos condiciones de simulación principales: sin control de flujo y con chorros sintéticos. En ambos casos se obtuvieron las características aerodiná...

Full description

Autores:
Molano Gutiérrez, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64316
Acceso en línea:
http://hdl.handle.net/1992/64316
Palabra clave:
Chorros Sintéticos
CFD
OpenFoam
Modelo de orden reducido
VAWTs
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_dd73e0043b777b299d8882977d18a627
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64316
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
title Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
spellingShingle Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
Chorros Sintéticos
CFD
OpenFoam
Modelo de orden reducido
VAWTs
Ingeniería
title_short Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
title_full Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
title_fullStr Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
title_full_unstemmed Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
title_sort Mejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros Sintéticos
dc.creator.fl_str_mv Molano Gutiérrez, Sebastián
dc.contributor.advisor.none.fl_str_mv López Mejía, Omar Dario
dc.contributor.author.none.fl_str_mv Molano Gutiérrez, Sebastián
dc.contributor.researchgroup.es_CO.fl_str_mv Mecánica computacional
dc.subject.keyword.none.fl_str_mv Chorros Sintéticos
CFD
OpenFoam
Modelo de orden reducido
VAWTs
topic Chorros Sintéticos
CFD
OpenFoam
Modelo de orden reducido
VAWTs
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Se estudió el rendimiento aerodinámico de un perfil para turbinas eólicas verticales mediante simulaciones en el software de código abierto OpenFoam con dos condiciones de simulación principales: sin control de flujo y con chorros sintéticos. En ambos casos se obtuvieron las características aerodinámicas del perfil que permiten analizar su comportamiento de entrada en pérdida en función del ángulo de ataque desde 0° hasta 22°. En primer lugar, se validó el modelo al contrastar los resultados experimentales y a partir de allí se utilizó el modelo de orden reducido en el que una condición de frontera emula un actuador de chorro sintético. Al utilizar el control dinámico de flujo se encontró que para altos ángulos de ataque el coeficiente de sustentación aumenta en un máximo de 57.6 % con respecto a las condiciones no controladas.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-30T18:20:33Z
dc.date.available.none.fl_str_mv 2023-01-30T18:20:33Z
dc.date.issued.none.fl_str_mv 2023-01-30
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64316
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64316
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv F. Porté-Agel, M. Bastankhah, and S. Shamsoddin, "Wind-turbine and windfarm flows: A review," Boundary-Layer Meteorology, vol. 174, 01 2020.
IEA, "Global energy & co2 status report 2017," 2018.
IEA, "World energy outlook," vol. Annex A, 2022.
J. V. Akwa, H. A. Vielmo, and A. P. Petry, "A review on the performance of savonius wind turbines," Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 3054-3064, 2012.
D. A. Abaunza, "The power system: Present and future," in The Law for Energy Prosumers: The Case of the Netherlands, New Zealand and Colombia, pp. 1-24, Singapore: Springer Nature Singapore, 2022.
I. Yahyaoui and A. S. Cantero, "Chapter 16 - modeling and characterization of a wind turbine emulator," in Advances in Renewable Energies and Power Technologies (I. Yahyaoui, ed.), pp. 491-508, Elsevier, 2018.
D. De Tavernier, C. Ferreira, A. Viré, B. LeBlanc, and S. Bernardy, "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, vol. 172, pp. 1194-1211, 2021.
D. Baldacchino, Vortex Generators for Flow Separation Control Wind Turbine Applications. PhD thesis, Delft University of Technology, 2019.
S. B. Pope, Turbulent Flows. Cambridge University Press, 2000.
W. K. George, Lectures in Turbulence for the 21st Century. Department of Aeronautics Imperial College of London, 2013.
F. Villalpando, M. Reggio, and A. Ilinca, "Assessment of turbulence models for flow simulation around a wind turbine airfoil," Modelling and Simulation in Engineering, vol. 2011, 01 2011.
C. Suvanjumrat, "Comparison of turbulence models for flow past naca0015 airfoil using openfoam," Engineering Journal, vol. 21, pp. 207-221, 06 2017.
A. Matyushenko and A. Garbaruk, "Adjustment of the k- sst turbulence model for prediction of airfoil characteristics near stall," Journal of Physics: Conference Series, vol. 769, p. 012082, 11 2016.
F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, pp. 1598-1605, 1994.
F. Menter, M. Kuntz, and R. Langtry, "Ten years of industrial experience with the sst turbulence model," Heat and Mass Transfer, vol. 4, 01 2003.
"Openfoam: User guide v.2112," 2017.
J. Wang and L. Feng, "Synthetic jet," in Flow Control Techniques and Applications, Cambridge Aerospace Series, p. 168-205, Cambridge University Press, 2018.
K. Mohseni and M. Rajat, "Basic principles," in Synthetic Jets Fundamentals and Applications, 2014.
L. N. Cattafesta, "Design of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.
N. K. Yamaleev, "Reduced-order modeling of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.
] C. Y. Lee and D. B. Goldstein, "Two-dimensional synthetic jet simulation," AIAA Journal, vol. 40, no. 3, pp. 510-516, 2002.
A. W. Cary, J. F. Donovan, and L. D. Kral, "Simulations of synthetic jets and application to airfoil control," in Turbulence Structure and Modulation (A. Soldati and R. Monti, eds.), pp. 235-253, Vienna: Springer Vienna, 2001.
J. Cater and J. Soria, "The evolution of round zero-net-mass-flux jets," Journal of Fluid Mechanics, vol. 472, pp. 167-200, 12 2002.
N. Khameneh and M. Tadjfar, "Improvement of wind turbine efficiency by using synthetic jets," 07 2016.
H. Esmaeili Monir, M. Tadjfar, and A. Bakhtian, "Tangential synthetic jets for separation control," Journal of Fluids and Structures, vol. 45, pp. 50-65, 2014.
D. De Tavernier, C. Ferreira, and G. van Bussel, "Airfoil optimisation for vertical-axis wind turbines with variable pitch," Wind Energy, vol. 22, 04 2019.
P. Daniel, "Construct2d user manual," vol. 2.1, 2014.
M. A. Boukenkoul, F.-C. Li, and M. Aounallah, "A 2d simulation of the flow separation control over a naca0015 airfoil using a synthetic jet actuator," IOP Conference Series: Materials Science and Engineering, vol. 187, p. 012007, 03 2017.
R. Duvigneau and M. Visonneau, "Optimization of a synthetic jet actuator for aerodynamic stall control", Computers Fluids, vol. 35, pp. 624-638, 07 2006.
J. Gilarranz, L. Traub, and O. Rediniotis, "A new class of synthetic jet actuators¿part i: Design, fabrication and bench top characterization," Journal of Fluids Engineering-transactions of The Asme - J FLUID ENG, vol. 127, 03 2005.
C. Velkova, T. Branger, F. Calderon, and C. Soulier, "The impact of different turbulence models at ansys fluent over the aerodynamic characteristics of ultralight wing airfoil naca 2412," 09 2016.
R. Mittal, S. Aram, and R. Raju, "Computational modelinf of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.
R. Kotapati, R. Mittal, and F. Ham, "Large-eddy simulations of zero-net-massflux jet-based separation control in a canonical separated flow," 06 2008.
E. Aram, R. Mittal, J. Griffin, and L. Cattafesta, "Towards effective znmf jet based control of a canonical separated flow," in 5th Flow Control Conference.
J. Feng, G. Zhu, Y. Lin, Y. Li, G. Wu, and J. Lu, "Control of dynamic stall of an airfoil by using synthetic jet technology," Arabian Journal for Science and Engineering, vol. 45, pp. 9835-9841, 11 2020.
H. Beri and Y. Yao, "Double multiple stream tube model and numerical analysis of vertical axis wind turbine," Energy and Power Engineering, vol. 03, 01 2011.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 53 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Mecánica
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e0891109-8bdb-4f6c-aade-d9b0b36c6e4c/download
https://repositorio.uniandes.edu.co/bitstreams/c05e6b67-ed56-4a32-bfdb-b0fc8bd90442/download
https://repositorio.uniandes.edu.co/bitstreams/207b9c35-6f1e-45d3-9369-3a3f6d0e7bee/download
https://repositorio.uniandes.edu.co/bitstreams/8b56befe-a8cd-4c38-8768-0f3eb3d68ba5/download
https://repositorio.uniandes.edu.co/bitstreams/3a279538-cb75-49c3-aa0a-fac845333a82/download
https://repositorio.uniandes.edu.co/bitstreams/ec1ee6ff-3d3c-46c5-bc25-e528fa3c2663/download
https://repositorio.uniandes.edu.co/bitstreams/810b90b3-f123-43dd-b402-6b8be5458480/download
https://repositorio.uniandes.edu.co/bitstreams/b5cd34d1-037f-4c50-bde5-3628ffdbde05/download
https://repositorio.uniandes.edu.co/bitstreams/42382e16-6a9d-4458-9478-0f29b1767ae4/download
https://repositorio.uniandes.edu.co/bitstreams/c6ab59d5-c1c5-4ee5-81e7-6b11bb96b7cb/download
https://repositorio.uniandes.edu.co/bitstreams/593cf6c0-1bae-4625-825b-bc67908b1dbf/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
4460e5956bc1d1639be9ae6146a50347
e9f92f72934b66174dcf302175cc3abf
9a09c6b27aa8889736d68b57a65bf156
4491fe1afb58beaaef41a73cf7ff2e27
dc723a8bb1a49017cb4b7e5c7465cfad
dc723a8bb1a49017cb4b7e5c7465cfad
b2360ceeb99c7d828228747a6ce529eb
478d8db62136856f07dd797b46582a33
97a6644d8f5611735e89d144c0c0bacd
c9ca6541fd6429505a56872bf3f7993b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133830910279680
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoreshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Mejía, Omar Dariovirtual::2392-1Molano Gutiérrez, Sebastián43f55ba8-87cf-454a-b156-b95f0626f220600Mecánica computacional2023-01-30T18:20:33Z2023-01-30T18:20:33Z2023-01-30http://hdl.handle.net/1992/64316instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Se estudió el rendimiento aerodinámico de un perfil para turbinas eólicas verticales mediante simulaciones en el software de código abierto OpenFoam con dos condiciones de simulación principales: sin control de flujo y con chorros sintéticos. En ambos casos se obtuvieron las características aerodinámicas del perfil que permiten analizar su comportamiento de entrada en pérdida en función del ángulo de ataque desde 0° hasta 22°. En primer lugar, se validó el modelo al contrastar los resultados experimentales y a partir de allí se utilizó el modelo de orden reducido en el que una condición de frontera emula un actuador de chorro sintético. Al utilizar el control dinámico de flujo se encontró que para altos ángulos de ataque el coeficiente de sustentación aumenta en un máximo de 57.6 % con respecto a las condiciones no controladas.Ingeniero MecánicoPregradoDinámica de fluidos computacional53 páginasapplication/pdfspaUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaMejora del rendimiento aerodinámico de aerogeneradores verticales mediante Chorros SintéticosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPChorros SintéticosCFDOpenFoamModelo de orden reducidoVAWTsIngenieríaF. Porté-Agel, M. Bastankhah, and S. Shamsoddin, "Wind-turbine and windfarm flows: A review," Boundary-Layer Meteorology, vol. 174, 01 2020.IEA, "Global energy & co2 status report 2017," 2018.IEA, "World energy outlook," vol. Annex A, 2022.J. V. Akwa, H. A. Vielmo, and A. P. Petry, "A review on the performance of savonius wind turbines," Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 3054-3064, 2012.D. A. Abaunza, "The power system: Present and future," in The Law for Energy Prosumers: The Case of the Netherlands, New Zealand and Colombia, pp. 1-24, Singapore: Springer Nature Singapore, 2022.I. Yahyaoui and A. S. Cantero, "Chapter 16 - modeling and characterization of a wind turbine emulator," in Advances in Renewable Energies and Power Technologies (I. Yahyaoui, ed.), pp. 491-508, Elsevier, 2018.D. De Tavernier, C. Ferreira, A. Viré, B. LeBlanc, and S. Bernardy, "Controlling dynamic stall using vortex generators on a wind turbine airfoil," Renewable Energy, vol. 172, pp. 1194-1211, 2021.D. Baldacchino, Vortex Generators for Flow Separation Control Wind Turbine Applications. PhD thesis, Delft University of Technology, 2019.S. B. Pope, Turbulent Flows. Cambridge University Press, 2000.W. K. George, Lectures in Turbulence for the 21st Century. Department of Aeronautics Imperial College of London, 2013.F. Villalpando, M. Reggio, and A. Ilinca, "Assessment of turbulence models for flow simulation around a wind turbine airfoil," Modelling and Simulation in Engineering, vol. 2011, 01 2011.C. Suvanjumrat, "Comparison of turbulence models for flow past naca0015 airfoil using openfoam," Engineering Journal, vol. 21, pp. 207-221, 06 2017.A. Matyushenko and A. Garbaruk, "Adjustment of the k- sst turbulence model for prediction of airfoil characteristics near stall," Journal of Physics: Conference Series, vol. 769, p. 012082, 11 2016.F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, vol. 32, pp. 1598-1605, 1994.F. Menter, M. Kuntz, and R. Langtry, "Ten years of industrial experience with the sst turbulence model," Heat and Mass Transfer, vol. 4, 01 2003."Openfoam: User guide v.2112," 2017.J. Wang and L. Feng, "Synthetic jet," in Flow Control Techniques and Applications, Cambridge Aerospace Series, p. 168-205, Cambridge University Press, 2018.K. Mohseni and M. Rajat, "Basic principles," in Synthetic Jets Fundamentals and Applications, 2014.L. N. Cattafesta, "Design of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.N. K. Yamaleev, "Reduced-order modeling of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.] C. Y. Lee and D. B. Goldstein, "Two-dimensional synthetic jet simulation," AIAA Journal, vol. 40, no. 3, pp. 510-516, 2002.A. W. Cary, J. F. Donovan, and L. D. Kral, "Simulations of synthetic jets and application to airfoil control," in Turbulence Structure and Modulation (A. Soldati and R. Monti, eds.), pp. 235-253, Vienna: Springer Vienna, 2001.J. Cater and J. Soria, "The evolution of round zero-net-mass-flux jets," Journal of Fluid Mechanics, vol. 472, pp. 167-200, 12 2002.N. Khameneh and M. Tadjfar, "Improvement of wind turbine efficiency by using synthetic jets," 07 2016.H. Esmaeili Monir, M. Tadjfar, and A. Bakhtian, "Tangential synthetic jets for separation control," Journal of Fluids and Structures, vol. 45, pp. 50-65, 2014.D. De Tavernier, C. Ferreira, and G. van Bussel, "Airfoil optimisation for vertical-axis wind turbines with variable pitch," Wind Energy, vol. 22, 04 2019.P. Daniel, "Construct2d user manual," vol. 2.1, 2014.M. A. Boukenkoul, F.-C. Li, and M. Aounallah, "A 2d simulation of the flow separation control over a naca0015 airfoil using a synthetic jet actuator," IOP Conference Series: Materials Science and Engineering, vol. 187, p. 012007, 03 2017.R. Duvigneau and M. Visonneau, "Optimization of a synthetic jet actuator for aerodynamic stall control", Computers Fluids, vol. 35, pp. 624-638, 07 2006.J. Gilarranz, L. Traub, and O. Rediniotis, "A new class of synthetic jet actuators¿part i: Design, fabrication and bench top characterization," Journal of Fluids Engineering-transactions of The Asme - J FLUID ENG, vol. 127, 03 2005.C. Velkova, T. Branger, F. Calderon, and C. Soulier, "The impact of different turbulence models at ansys fluent over the aerodynamic characteristics of ultralight wing airfoil naca 2412," 09 2016.R. Mittal, S. Aram, and R. Raju, "Computational modelinf of synthetic jets," in Synthetic Jets Fundamentals and Applications, 2014.R. Kotapati, R. Mittal, and F. Ham, "Large-eddy simulations of zero-net-massflux jet-based separation control in a canonical separated flow," 06 2008.E. Aram, R. Mittal, J. Griffin, and L. Cattafesta, "Towards effective znmf jet based control of a canonical separated flow," in 5th Flow Control Conference.J. Feng, G. Zhu, Y. Lin, Y. Li, G. Wu, and J. Lu, "Control of dynamic stall of an airfoil by using synthetic jet technology," Arabian Journal for Science and Engineering, vol. 45, pp. 9835-9841, 11 2020.H. Beri and Y. Yao, "Double multiple stream tube model and numerical analysis of vertical axis wind turbine," Energy and Power Engineering, vol. 03, 01 2011.201821487Publicationhttps://scholar.google.es/citations?user=OT7CoaAAAAAJvirtual::2392-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253413virtual::2392-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::2392-1c8d383a8-3d03-42c9-aae7-4cb590ecb21avirtual::2392-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/e0891109-8bdb-4f6c-aade-d9b0b36c6e4c/download5aa5c691a1ffe97abd12c2966efcb8d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/c05e6b67-ed56-4a32-bfdb-b0fc8bd90442/download4460e5956bc1d1639be9ae6146a50347MD52TEXTIMEC_bch_thesis-1.pdf.txtIMEC_bch_thesis-1.pdf.txtExtracted texttext/plain62386https://repositorio.uniandes.edu.co/bitstreams/207b9c35-6f1e-45d3-9369-3a3f6d0e7bee/downloade9f92f72934b66174dcf302175cc3abfMD56Mejora_chorros_sintéticos_Molano.pdf.txtMejora_chorros_sintéticos_Molano.pdf.txtExtracted texttext/plain62342https://repositorio.uniandes.edu.co/bitstreams/8b56befe-a8cd-4c38-8768-0f3eb3d68ba5/download9a09c6b27aa8889736d68b57a65bf156MD58formato_bilbioteca_molano.pdf.txtformato_bilbioteca_molano.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/3a279538-cb75-49c3-aa0a-fac845333a82/download4491fe1afb58beaaef41a73cf7ff2e27MD510THUMBNAILIMEC_bch_thesis-1.pdf.jpgIMEC_bch_thesis-1.pdf.jpgIM Thumbnailimage/jpeg5695https://repositorio.uniandes.edu.co/bitstreams/ec1ee6ff-3d3c-46c5-bc25-e528fa3c2663/downloaddc723a8bb1a49017cb4b7e5c7465cfadMD57Mejora_chorros_sintéticos_Molano.pdf.jpgMejora_chorros_sintéticos_Molano.pdf.jpgIM Thumbnailimage/jpeg5695https://repositorio.uniandes.edu.co/bitstreams/810b90b3-f123-43dd-b402-6b8be5458480/downloaddc723a8bb1a49017cb4b7e5c7465cfadMD59formato_bilbioteca_molano.pdf.jpgformato_bilbioteca_molano.pdf.jpgIM Thumbnailimage/jpeg16058https://repositorio.uniandes.edu.co/bitstreams/b5cd34d1-037f-4c50-bde5-3628ffdbde05/downloadb2360ceeb99c7d828228747a6ce529ebMD511ORIGINALIMEC_bch_thesis-1.pdfIMEC_bch_thesis-1.pdfapplication/pdf15154512https://repositorio.uniandes.edu.co/bitstreams/42382e16-6a9d-4458-9478-0f29b1767ae4/download478d8db62136856f07dd797b46582a33MD55Mejora_chorros_sintéticos_Molano.pdfMejora_chorros_sintéticos_Molano.pdfHIDEapplication/pdf15143967https://repositorio.uniandes.edu.co/bitstreams/c6ab59d5-c1c5-4ee5-81e7-6b11bb96b7cb/download97a6644d8f5611735e89d144c0c0bacdMD53formato_bilbioteca_molano.pdfformato_bilbioteca_molano.pdfHIDEapplication/pdf260928https://repositorio.uniandes.edu.co/bitstreams/593cf6c0-1bae-4625-825b-bc67908b1dbf/downloadc9ca6541fd6429505a56872bf3f7993bMD541992/64316oai:repositorio.uniandes.edu.co:1992/643162024-03-13 12:11:29.903http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==