The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance

Understanding how selection pressures operate at different evolutionary scales to promote diversity in various species' traits and phenotypes has long intrigued evolutionary biologists. In recent years, efforts have been made to comprehend the function of UV reflectance in avian eggs, leading t...

Full description

Autores:
Mendiwelso Moreno, Maria Elisa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69438
Acceso en línea:
http://hdl.handle.net/1992/69438
Palabra clave:
Eggshell color
UV reflectance
Macroecological analysis
Light exposure
Biología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_dcf8ea3a9b4bb95a704a6f55a40e225a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69438
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
dc.title.alternative.none.fl_str_mv El mundo oculto de la coloración de los huevos: Exploración de los factores de variación de la reflectancia UV
title The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
spellingShingle The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
Eggshell color
UV reflectance
Macroecological analysis
Light exposure
Biología
title_short The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
title_full The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
title_fullStr The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
title_full_unstemmed The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
title_sort The hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
dc.creator.fl_str_mv Mendiwelso Moreno, Maria Elisa
dc.contributor.advisor.none.fl_str_mv Ocampo Rincón, David
Cadena Ordóñez, Carlos Daniel
dc.contributor.author.none.fl_str_mv Mendiwelso Moreno, Maria Elisa
dc.contributor.researchgroup.es_CO.fl_str_mv Biología Evolutiva de Vertebrados (EVOLVERT)
dc.subject.keyword.none.fl_str_mv Eggshell color
UV reflectance
Macroecological analysis
Light exposure
topic Eggshell color
UV reflectance
Macroecological analysis
Light exposure
Biología
dc.subject.themes.es_CO.fl_str_mv Biología
description Understanding how selection pressures operate at different evolutionary scales to promote diversity in various species' traits and phenotypes has long intrigued evolutionary biologists. In recent years, efforts have been made to comprehend the function of UV reflectance in avian eggs, leading to the proposal of different hypotheses. Among the most extensively studied are the UV resistance hypothesis and the egg detectability hypothesis, both of which we investigated in this study to determine to which one may explain patterns in UV reflectance and to evaluate the driving forces associated with such variation. This study is the first to take a large-scale macroecological view of eggshell UV coloration in novel data collected for over 500 avian species and analyzed using phylogenetic comparative methods. We identified the importance of brightness and the exposure of the nest in relation to the UV chroma reflected by the egg. Likewise, although we did not observe a statistically significant effect of nest type on UV reflectance, we did find patterns that, taking into account the mean UV reflectance measurements and character mapping, reveal greater support for the UV resistance hypothesis in Passeriformes and Charadriiformes, which could suggest future research. Overall, this research contributes to a deeper understanding of the mechanisms driving UV coloration in avian eggs and sheds light on the complex interplay between selection pressures and the evolution of species' traits.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-08T19:24:58Z
dc.date.available.none.fl_str_mv 2023-08-08T19:24:58Z
dc.date.issued.none.fl_str_mv 2023-08-04
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69438
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69438
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Cherry, M. I., & Bennett, T. D. (2001). Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1467), 565-571. https://doi.org/10.1098/rspb.2000.1414
Price-Waldman, R., & Stoddard, M. C. (2021). Avian Coloration Genetics: Recent Advances and Emerging Questions. Journal of Heredity, 112(5), 395-416. https://doi.org/10.1093/jhered/esab015
Riehl, C. (2011). Paternal investment and the "sexually selected hypothesis" for the evolution of eggshell coloration: Revisiting the assumptions. Auk, 128(1), 175-179. https://doi.org/10.1525/auk.2011.10171
Jagannath, A., Shore, R. F., Walker, L. A., Ferns, P. N., & Gosler, A. G. (2008). Eggshell pigmentation indicates pesticide contamination. Journal of Applied Ecology, 45(1), 133-140. https://doi.org/10.1111/j.1365-2664.2007.01386.x
Orlowski, G., Niedzielski, P., Merta, D., Pokorny, P., & Proch, J. (2020). Quantifying the functional disparity in pigment spot-background egg colour ICP-OES-based eggshell ionome at two extremes of avian embryonic development. Scientific Reports, 10(1), 1-15. https://doi.org/10.1038/s41598-020-79040-4
Hanley, D., Cassey, P., & Doucet, S. M. (2013). Parents, predators, parasites, and the evolution of eggshell colour in open nesting birds. Evolutionary Ecology, 27(3), 593-617. https://doi.org/10.1007/s10682-012-9619-6
Dainson, M., Hauber, M. E., López, A. V., Grim, T., & Hanley, D. (2017). Does contrast between eggshell ground and spot coloration affect egg rejection?. The Science of Nature, 104, 1-9. https://doi.org/10.1007/s00114-017-1476-2
Yang, C., Wang, J., and Liang, W. (2016). Blocking of ultraviolet reflectance on bird eggs reduces nest predation by aerial predators. Journal of Ornithology, 157: 43-47. https://doi.org/10.1007/s10336-015-1243-0
Honza, M., Polaciková, L., & Procházka, P. (2007). Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biological Journal of the Linnean Society, 92(2), 269-276. https://doi.org/10.1111/j.1095-8312.2007.00848.x
Lahti, D. C., & Ardia, D. R. (2016). Shedding light on bird egg color: Pigment as parasol and the dark car effect. The American Naturalist, 187(5), 547-563. https://doi.org/10.1086/685780
Mayani-Parás, F., Kilner, R. M., Stoddard, M. C., Rodríguez, C., & Drummond, H. (2015). Behaviorally induced camouflage: a new mechanism of avian egg protection. The American Naturalist, 186(4), E91-E97. https://doi.org/10.1086/682579
Hanley, D., Doucet, S. M., & Dearborn, D. C. (2010). A blackmail hypothesis for the evolution of conspicuous egg coloration in birds. The Auk, 127(2), 453-459. https://doi.org/10.1525/auk.2009.09090
Soler, J. J., Moreno, J., Aviles, j., & Moller, A. P. (2005). Blue and green egg-color intensity is associated with parental: effort and mating system in passerines: support for: the sexual selection hypothesis. Evolution, 59(3), 636-644. https://doi.org/10.1525/auk.2009.09090
Ladouce, M., Barakat, T., Su, B. L., Deparis, O., & Mouchet, S. R. (2020). Scattering of ultraviolet light by avian eggshells. Faraday Discussions, 223, 63-80. https://doi.org/10.1039/D0FD00034E
Cassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T.Lovell, G,. Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.x
Hansell, M. (2000). Bird nests and construction behaviour. Cambridge University Press.
Paul, N. D., & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology & Evolution, 18(1), 48-55. https://doi.org/10.1016/S0169-5347(02)00014-9
Wang, J., Yang, C., Shi, H., & Liang, W. (2016). Reflectance and artificial nest experiments of reptile and bird eggs imply an adaptation of bird eggs against ultraviolet. Ecological research, 31(1), 105-110. https://doi.org/10.1007/s11284-015-1317-8
Avilés, J. M., Soler, J. J., & Pérez-Contreras, T. (2006). Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 2821-2829. https://doi.org/10.1098/rspb.2006.3674
Ödeen, A., Håstad, O., & Alström, P. (2011). Evolution of ultraviolet vision in the largest avian radiation-the passerines. BMC Evolutionary Biology, 11(1), 1-8. https://doi.org/10.1186/1471-2148-11-313
Maurer, G., Portugal, S. J., & Cassey, P. (2011). An embryo's eye view of avian eggshell pigmentation. Journal of Avian Biology, 42(6), 494-504. https://doi.org/10.1111/j.1600-048X.2011.05368.x
Clements, J. F., T. S. Schulenberg, M. J. Iliff, T. A. Fredericks, J. A. Gerbracht, D. Lepage, S. M. Billerman, B. L. Sullivan, and C. L. Wood. (2021). The eBird/Clements checklist of Birds of the World: v2021. Downloaded from https://www.birds.cornell.edu/clementschecklist/download/
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
D'Alba, L., Torres, R., Waterhouse, G. I., Eliason, C., Hauber, M. E., & Shawkey, M. D. (2017). What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiological and Biochemical Zoology, 90(5), 588-599. https://doi.org/10.1086/693434
Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10), 906-913.
Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (2020). Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA.
Simón, J. E., & Pacheco, S. (2005). On the standardization of nest descriptions of neotropical birds. Revista Brasileira de ornitologia, 13(2), 143-154.
Tobias, J. A. Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S,Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25, 581-597. https://doi.org/10.1111/ele.13898
Englert Duursma, D., Gallagher, R. V., Price, J. J., & Griffith, S. C. (2018). Variation in avian egg shape and nest structure is explained by climatic conditions. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-22436-0
Heenan, C. B. (2013). An overview of the factors influencing the morphology and thermal properties of avian nests. Avian Biology Research, 6(2), 104-118. https://doi.org/10.3184/003685013X13614670646299
Gómez, J., Ramo, C., Stevens, M., Liñán-Cembrano, G., Rendón, M. A., Troscianko, J. T., & Amat, J. A. (2018). Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecology and Evolution, 8(16), 8019-8029. https://doi.org/10.1002/ece3.4335
Cherry, M. I., & Gosler, A. G. (2010). Avian eggshell coloration: new perspectives on adaptive explanations. Biological Journal of the Linnean Society, 100(4), 753-762. https://doi.org/10.1111/j.1095-8312.2010.01457.x
Kilner, R. M. (2006). The evolution of egg colour and patterning in birds. Biological Reviews, 81(3), 383-406. https://doi.org/10.1017/S1464793106007044
Wegrzyn, E., Leniowski, K., Rykowska, I., & Wasiak, W. (2011). Is UV and blue-green egg colouration a signal in cavity-nesting birds?. Ethology Ecology & Evolution, 23(2), 121-139. https://doi.org/10.1080/03949370.2011.554882
Maurer, G., Portugal, S. J., Hauber, M. E., Miksík, I., Russell, D. G., & Cassey, P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Functional Ecology, 29(2), 209-218. https://doi.org/10.1111/1365-2435.12314
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089
Nagy, J., Hauber, M. E., Hartley, I. R., & Mainwaring, M. C. (2019). Correlated evolution of nest and egg characteristics in birds. Animal Behaviour, 158, 211-225. https://doi.org/10.1016/j.anbehav.2019.10.015
Stoddard, M. C., Yong, E. H., Akkaynak, D., Sheard, C., Tobias, J. A., & Mahadevan, L. (2017). Avian egg shape: Form, function, and evolution. Science, 356(6344), 1249-1254. DOI: 10.1126/science.aaj1945
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444-448. https://doi.org/10.1038/nature11631
Ocampo, D., De Silva, T.N., Sheard, C., Stoddard, M.C. (2023). Evolution of nest architecture in tyrant flycatchers and allies. Philosophical Transactions B. https://doi.org/10.1098/rstb.2022.0148
Bouckaert, R., Drummond, A., Rambaut, A., Suchard, M., Vaughan, T., & Heled, Y. (2014). BEAST2: Bayesian evolutionary analysis sampling trees.
Revell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223
Revell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution, 4(8), 754-759. https://doi.org/10.1111/2041-210X.12066
Orme, D., Freckleton, R., Thomas, G. Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2018). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1
Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35. https://doi.org/10.1007/s00265-010-1029-6
Barton, K. (2019). MuMIn: Multi-model inference. R package version 1.43.15. Retrieved from http://r-forge.r-project.org/projects/mumin/.
Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. In Model selection and multimodel inference (2nd ed., p. 2). Springer.
D'Alba, L., Goldenberg, J., Nallapaneni, A., Parkinson, D. Y., Zhu, C., Vanthournout, B., & Shawkey, M. D. (2021). Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. Journal of morphology, 282(7), 1066-1079. https://doi.org/10.1002/jmor.21347
Wisocki, P. A., Kennelly, P., Rojas Rivera, I., Cassey, P., Burkey, M. L., & Hanley, D. (2020). The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology & Evolution, 4(1), 148-155. https://doi.org/10.1038/s41559-019-1003-2
Hanley, D., Grim, T., Cassey, P., & Hauber, M. E. (2015). Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biology letters, 11(5), 20150087. https://doi.org/10.1098/rsbl.2015.0087
Lee, W. S., Kwon, Y. S., & Yoo, J. C. (2010). Egg survival is related to the colour matching of eggs to nest background in Black-tailed Gulls. Journal of Ornithology, 151, 765-770. https://doi.org/10.1007/s10336-010-0508-x
Yang, C., Møller, A. P., & Liang, W. (2022). Light matters: Nest illumination alters egg rejection behavior in a cavity-nesting bird. Avian Research, 13, 100016. https://doi.org/10.1016/j.avrs.2022.100016
Maziarz, M., & Wesolowski, T. (2014). Does darkness limit the use of tree cavities for nesting by birds?. Journal of Ornithology, 155, 793-799. https://doi.org/10.1007/s10336-014-1069-1
Moreno, J., & Osorno, J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality?. Ecology Letters, 6(9), 803-806. https://doi.org/10.1046/j.1461-0248.2003.00505.x
Lahti, D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. The Auk, 125(4), 796-802. https://doi.org/10.1525/auk.2008.07033
L'Herpiniere, K. L., Tims, A. R., Englert Duursma, D., & Griffith, S. C. (2021). The evolution of egg colour and patterning in Australian songbirds. Evolution, 75(12), 3132-3141. https://doi.org/10.1111/evo.14375
Gosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds' eggs speckled?. Ecology Letters, 8(10), 1105-1113. https://doi.org/10.1111/j.1461-0248.2005.00816.x
Cassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T., & Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.x
Yang, C., Wang, L., Hsu, Y.-C., Antonov, A., Moksnes, A., Røskaft, E., Liang, W. & Stokke, B. G. (2013) UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. The Ibis 155, 571-575. https://doi.org/10.1111/ibi.12043
Honza, M., Capek, M., Mikulica, O., & Samas, P. (2022). Ultraviolet coloration of avian parasitic egg does not cue egg rejection in the common redstart host. Journal of Ornithology, 163(4), 903-909. https://doi.org/10.1007/s10336-022-01991-4
Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US et al., (2006). Diversification of Neoaves: Integration of molecular sequence data and fossils. Biol. Lett. 2: 543-547. https://doi.org/10.1098/rsbl.2006.0523
Gómez, J., Pereira, A. I., Pérez-Hurtado, A., Castro, M., Ramo, C., & Amat, J. A. (2016). A trade-off between overheating and camouflage on shorebird eggshell colouration. Journal of Avian Biology, 47(3), 346-353. https://doi.org/10.1111/jav.00736
Kinoshita, S., Yoshioka, S., & Miyazaki, J. (2008). Physics of structural colors. Reports on Progress in Physics, 71(7), 076401. DOI 10.1088/0034-4885/71/7/076401
Honza, M., Sulc, M., & Cherry, M. I. (2014). Does nest luminosity play a role in recognition of parasitic eggs in domed nests? A case study of the red bishop. Naturwissenschaften, 101, 1009-1015. https://doi.org/10.1007/s00114-014-1240-9
Xiao, H., Hu, Y., Lang, Z., Fang, B., Guo, W., Zhang, Q. I et al (2017). How much do we know about the breeding biology of bird species in the world?. Journal of Avian Biology, 48(4), 513-518. https://doi.org/10.1111/jav.00934
Wiemann, J., Yang, T. R., & Norell, M. A. (2018). Dinosaur egg colour had a single evolutionary origin. Nature, 563(7732), 555-558. https://doi.org/10.1038/s41586-018-0646-5
Marki, P. Z., Fabre, P. H., Jønsson, K. A., Rahbek, C., Fjeldså, J., & Kennedy, J. D. (2015). Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution, 69(7), 1874-1924. https://doi.org/10.1111/evo.12695
Carvalho, C. B., Macedo, R. H., & Graves, J. A. (2006). Breeding strategies of a socially monogamous neotropical passerine: extra-pair fertilizations, behavior, and morphology. The Condor, 108(3), 579-590. https://doi.org/10.1093/condor/108.3.579
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 30 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Biología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0588d13c-9ffc-48ef-bb1c-77db1f9db2b0/download
https://repositorio.uniandes.edu.co/bitstreams/093cbbe4-3c19-4d38-b6bb-5d2313846b65/download
https://repositorio.uniandes.edu.co/bitstreams/a42155df-ec36-4353-8999-43acf83c4b22/download
https://repositorio.uniandes.edu.co/bitstreams/4652341a-ff94-49ce-8fbc-d90d28c0fe39/download
https://repositorio.uniandes.edu.co/bitstreams/86d95868-2b84-46e7-ab4d-c7f02376b3c3/download
https://repositorio.uniandes.edu.co/bitstreams/3d2d9baa-ace9-4f85-be56-951cb5799fdb/download
https://repositorio.uniandes.edu.co/bitstreams/3e01744d-e367-456e-b264-17db4ed035c8/download
https://repositorio.uniandes.edu.co/bitstreams/2d209a8c-6f0b-4141-a30d-0a94568018ad/download
bitstream.checksum.fl_str_mv 5aa5c691a1ffe97abd12c2966efcb8d6
67125bbd6bb712111bcab1cc1d1fef93
28184f3065e24f546e02c5d9c1e33964
094040866f067845c9ee9822843cdea2
a744d8cdc5c6faa69eda32e330398409
4460e5956bc1d1639be9ae6146a50347
9ae4155ca88ba8026827d571965aa340
3ba96d21352619fd9895825ffef6dbf0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390480898031616
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ocampo Rincón, Davidc8acf79f-0ca3-4226-b22e-1d1089143f0b600Cadena Ordóñez, Carlos Daniel8308cacd-eb61-4f56-9496-b997382da70d600Mendiwelso Moreno, Maria Elisaf1453d65-d195-4250-8271-d0c8b47a5217600Biología Evolutiva de Vertebrados (EVOLVERT)2023-08-08T19:24:58Z2023-08-08T19:24:58Z2023-08-04http://hdl.handle.net/1992/69438instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Understanding how selection pressures operate at different evolutionary scales to promote diversity in various species' traits and phenotypes has long intrigued evolutionary biologists. In recent years, efforts have been made to comprehend the function of UV reflectance in avian eggs, leading to the proposal of different hypotheses. Among the most extensively studied are the UV resistance hypothesis and the egg detectability hypothesis, both of which we investigated in this study to determine to which one may explain patterns in UV reflectance and to evaluate the driving forces associated with such variation. This study is the first to take a large-scale macroecological view of eggshell UV coloration in novel data collected for over 500 avian species and analyzed using phylogenetic comparative methods. We identified the importance of brightness and the exposure of the nest in relation to the UV chroma reflected by the egg. Likewise, although we did not observe a statistically significant effect of nest type on UV reflectance, we did find patterns that, taking into account the mean UV reflectance measurements and character mapping, reveal greater support for the UV resistance hypothesis in Passeriformes and Charadriiformes, which could suggest future research. Overall, this research contributes to a deeper understanding of the mechanisms driving UV coloration in avian eggs and sheds light on the complex interplay between selection pressures and the evolution of species' traits.Entender cómo operan las presiones de selección a diferentes escalas evolutivas para promover la diversidad en los rasgos y fenotipos de diversas especies ha intrigado durante mucho tiempo a los biólogos evolutivos. En los últimos años, se han hecho esfuerzos para comprender la función de la reflectancia UV en los huevos de las aves, lo que ha llevado a proponer diferentes hipótesis. Entre las más ampliamente estudiadas se encuentran la hipótesis de la resistencia a los rayos UV y la hipótesis de la detectabilidad del huevo, las cuales investigamos en este estudio para determinar cuál de ellas podría explicar patrones en la reflectancia UV y evaluar las fuerzas impulsoras asociadas a dicha variación. Este estudio es el primero que adopta una visión macroecológica a gran escala sobre la coloración UV de la cáscara de los huevos usando datos nuevos de más de 500 especies de aves analizados con métodos filogenéticos comparativos. Identificamos la importancia del brillo y la exposición del nido en relación con el croma UV reflejado por el huevo. Asimismo, aunque no observamos un efecto estadísticamente significativo del tipo de nido sobre la reflectancia UV, si observamos patrones que, tomando en cuenta la media de las medidas de la reflectancia UV y el mapeo de caracteres, indican que hay un mayor apoyo a la hipótesis de la resistencia UV, particularmente en Passeriformes y Charadriiformes, lo que abre la puerta para futuras investigaciones. En general, esta investigación contribuye a una comprensión más profunda de los mecanismos que impulsan la coloración UV en los huevos de las aves y arroja luz sobre la compleja interacción entre las presiones de selección y la evolución de los rasgos de las especies.Neotropical Ornithological SocietyBiólogoPregrado30 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasThe hidden world of egg coloration: Exploring the drivers of variation in UV reflectanceEl mundo oculto de la coloración de los huevos: Exploración de los factores de variación de la reflectancia UVTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEggshell colorUV reflectanceMacroecological analysisLight exposureBiologíaCherry, M. I., & Bennett, T. D. (2001). Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1467), 565-571. https://doi.org/10.1098/rspb.2000.1414Price-Waldman, R., & Stoddard, M. C. (2021). Avian Coloration Genetics: Recent Advances and Emerging Questions. Journal of Heredity, 112(5), 395-416. https://doi.org/10.1093/jhered/esab015Riehl, C. (2011). Paternal investment and the "sexually selected hypothesis" for the evolution of eggshell coloration: Revisiting the assumptions. Auk, 128(1), 175-179. https://doi.org/10.1525/auk.2011.10171Jagannath, A., Shore, R. F., Walker, L. A., Ferns, P. N., & Gosler, A. G. (2008). Eggshell pigmentation indicates pesticide contamination. Journal of Applied Ecology, 45(1), 133-140. https://doi.org/10.1111/j.1365-2664.2007.01386.xOrlowski, G., Niedzielski, P., Merta, D., Pokorny, P., & Proch, J. (2020). Quantifying the functional disparity in pigment spot-background egg colour ICP-OES-based eggshell ionome at two extremes of avian embryonic development. Scientific Reports, 10(1), 1-15. https://doi.org/10.1038/s41598-020-79040-4Hanley, D., Cassey, P., & Doucet, S. M. (2013). Parents, predators, parasites, and the evolution of eggshell colour in open nesting birds. Evolutionary Ecology, 27(3), 593-617. https://doi.org/10.1007/s10682-012-9619-6Dainson, M., Hauber, M. E., López, A. V., Grim, T., & Hanley, D. (2017). Does contrast between eggshell ground and spot coloration affect egg rejection?. The Science of Nature, 104, 1-9. https://doi.org/10.1007/s00114-017-1476-2Yang, C., Wang, J., and Liang, W. (2016). Blocking of ultraviolet reflectance on bird eggs reduces nest predation by aerial predators. Journal of Ornithology, 157: 43-47. https://doi.org/10.1007/s10336-015-1243-0Honza, M., Polaciková, L., & Procházka, P. (2007). Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biological Journal of the Linnean Society, 92(2), 269-276. https://doi.org/10.1111/j.1095-8312.2007.00848.xLahti, D. C., & Ardia, D. R. (2016). Shedding light on bird egg color: Pigment as parasol and the dark car effect. The American Naturalist, 187(5), 547-563. https://doi.org/10.1086/685780Mayani-Parás, F., Kilner, R. M., Stoddard, M. C., Rodríguez, C., & Drummond, H. (2015). Behaviorally induced camouflage: a new mechanism of avian egg protection. The American Naturalist, 186(4), E91-E97. https://doi.org/10.1086/682579Hanley, D., Doucet, S. M., & Dearborn, D. C. (2010). A blackmail hypothesis for the evolution of conspicuous egg coloration in birds. The Auk, 127(2), 453-459. https://doi.org/10.1525/auk.2009.09090Soler, J. J., Moreno, J., Aviles, j., & Moller, A. P. (2005). Blue and green egg-color intensity is associated with parental: effort and mating system in passerines: support for: the sexual selection hypothesis. Evolution, 59(3), 636-644. https://doi.org/10.1525/auk.2009.09090Ladouce, M., Barakat, T., Su, B. L., Deparis, O., & Mouchet, S. R. (2020). Scattering of ultraviolet light by avian eggshells. Faraday Discussions, 223, 63-80. https://doi.org/10.1039/D0FD00034ECassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T.Lovell, G,. Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.xHansell, M. (2000). Bird nests and construction behaviour. Cambridge University Press.Paul, N. D., & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology & Evolution, 18(1), 48-55. https://doi.org/10.1016/S0169-5347(02)00014-9Wang, J., Yang, C., Shi, H., & Liang, W. (2016). Reflectance and artificial nest experiments of reptile and bird eggs imply an adaptation of bird eggs against ultraviolet. Ecological research, 31(1), 105-110. https://doi.org/10.1007/s11284-015-1317-8Avilés, J. M., Soler, J. J., & Pérez-Contreras, T. (2006). Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 2821-2829. https://doi.org/10.1098/rspb.2006.3674Ödeen, A., Håstad, O., & Alström, P. (2011). Evolution of ultraviolet vision in the largest avian radiation-the passerines. BMC Evolutionary Biology, 11(1), 1-8. https://doi.org/10.1186/1471-2148-11-313Maurer, G., Portugal, S. J., & Cassey, P. (2011). An embryo's eye view of avian eggshell pigmentation. Journal of Avian Biology, 42(6), 494-504. https://doi.org/10.1111/j.1600-048X.2011.05368.xClements, J. F., T. S. Schulenberg, M. J. Iliff, T. A. Fredericks, J. A. Gerbracht, D. Lepage, S. M. Billerman, B. L. Sullivan, and C. L. Wood. (2021). The eBird/Clements checklist of Birds of the World: v2021. Downloaded from https://www.birds.cornell.edu/clementschecklist/download/R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.D'Alba, L., Torres, R., Waterhouse, G. I., Eliason, C., Hauber, M. E., & Shawkey, M. D. (2017). What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiological and Biochemical Zoology, 90(5), 588-599. https://doi.org/10.1086/693434Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10), 906-913.Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (2020). Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA.Simón, J. E., & Pacheco, S. (2005). On the standardization of nest descriptions of neotropical birds. Revista Brasileira de ornitologia, 13(2), 143-154.Tobias, J. A. Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S,Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25, 581-597. https://doi.org/10.1111/ele.13898Englert Duursma, D., Gallagher, R. V., Price, J. J., & Griffith, S. C. (2018). Variation in avian egg shape and nest structure is explained by climatic conditions. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-22436-0Heenan, C. B. (2013). An overview of the factors influencing the morphology and thermal properties of avian nests. Avian Biology Research, 6(2), 104-118. https://doi.org/10.3184/003685013X13614670646299Gómez, J., Ramo, C., Stevens, M., Liñán-Cembrano, G., Rendón, M. A., Troscianko, J. T., & Amat, J. A. (2018). Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecology and Evolution, 8(16), 8019-8029. https://doi.org/10.1002/ece3.4335Cherry, M. I., & Gosler, A. G. (2010). Avian eggshell coloration: new perspectives on adaptive explanations. Biological Journal of the Linnean Society, 100(4), 753-762. https://doi.org/10.1111/j.1095-8312.2010.01457.xKilner, R. M. (2006). The evolution of egg colour and patterning in birds. Biological Reviews, 81(3), 383-406. https://doi.org/10.1017/S1464793106007044Wegrzyn, E., Leniowski, K., Rykowska, I., & Wasiak, W. (2011). Is UV and blue-green egg colouration a signal in cavity-nesting birds?. Ethology Ecology & Evolution, 23(2), 121-139. https://doi.org/10.1080/03949370.2011.554882Maurer, G., Portugal, S. J., Hauber, M. E., Miksík, I., Russell, D. G., & Cassey, P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Functional Ecology, 29(2), 209-218. https://doi.org/10.1111/1365-2435.12314Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089Nagy, J., Hauber, M. E., Hartley, I. R., & Mainwaring, M. C. (2019). Correlated evolution of nest and egg characteristics in birds. Animal Behaviour, 158, 211-225. https://doi.org/10.1016/j.anbehav.2019.10.015Stoddard, M. C., Yong, E. H., Akkaynak, D., Sheard, C., Tobias, J. A., & Mahadevan, L. (2017). Avian egg shape: Form, function, and evolution. Science, 356(6344), 1249-1254. DOI: 10.1126/science.aaj1945Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444-448. https://doi.org/10.1038/nature11631Ocampo, D., De Silva, T.N., Sheard, C., Stoddard, M.C. (2023). Evolution of nest architecture in tyrant flycatchers and allies. Philosophical Transactions B. https://doi.org/10.1098/rstb.2022.0148Bouckaert, R., Drummond, A., Rambaut, A., Suchard, M., Vaughan, T., & Heled, Y. (2014). BEAST2: Bayesian evolutionary analysis sampling trees.Revell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223Revell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution, 4(8), 754-759. https://doi.org/10.1111/2041-210X.12066Orme, D., Freckleton, R., Thomas, G. Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2018). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35. https://doi.org/10.1007/s00265-010-1029-6Barton, K. (2019). MuMIn: Multi-model inference. R package version 1.43.15. Retrieved from http://r-forge.r-project.org/projects/mumin/.Burnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. In Model selection and multimodel inference (2nd ed., p. 2). Springer.D'Alba, L., Goldenberg, J., Nallapaneni, A., Parkinson, D. Y., Zhu, C., Vanthournout, B., & Shawkey, M. D. (2021). Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. Journal of morphology, 282(7), 1066-1079. https://doi.org/10.1002/jmor.21347Wisocki, P. A., Kennelly, P., Rojas Rivera, I., Cassey, P., Burkey, M. L., & Hanley, D. (2020). The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology & Evolution, 4(1), 148-155. https://doi.org/10.1038/s41559-019-1003-2Hanley, D., Grim, T., Cassey, P., & Hauber, M. E. (2015). Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biology letters, 11(5), 20150087. https://doi.org/10.1098/rsbl.2015.0087Lee, W. S., Kwon, Y. S., & Yoo, J. C. (2010). Egg survival is related to the colour matching of eggs to nest background in Black-tailed Gulls. Journal of Ornithology, 151, 765-770. https://doi.org/10.1007/s10336-010-0508-xYang, C., Møller, A. P., & Liang, W. (2022). Light matters: Nest illumination alters egg rejection behavior in a cavity-nesting bird. Avian Research, 13, 100016. https://doi.org/10.1016/j.avrs.2022.100016Maziarz, M., & Wesolowski, T. (2014). Does darkness limit the use of tree cavities for nesting by birds?. Journal of Ornithology, 155, 793-799. https://doi.org/10.1007/s10336-014-1069-1Moreno, J., & Osorno, J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality?. Ecology Letters, 6(9), 803-806. https://doi.org/10.1046/j.1461-0248.2003.00505.xLahti, D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. The Auk, 125(4), 796-802. https://doi.org/10.1525/auk.2008.07033L'Herpiniere, K. L., Tims, A. R., Englert Duursma, D., & Griffith, S. C. (2021). The evolution of egg colour and patterning in Australian songbirds. Evolution, 75(12), 3132-3141. https://doi.org/10.1111/evo.14375Gosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds' eggs speckled?. Ecology Letters, 8(10), 1105-1113. https://doi.org/10.1111/j.1461-0248.2005.00816.xCassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T., & Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.xYang, C., Wang, L., Hsu, Y.-C., Antonov, A., Moksnes, A., Røskaft, E., Liang, W. & Stokke, B. G. (2013) UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. The Ibis 155, 571-575. https://doi.org/10.1111/ibi.12043Honza, M., Capek, M., Mikulica, O., & Samas, P. (2022). Ultraviolet coloration of avian parasitic egg does not cue egg rejection in the common redstart host. Journal of Ornithology, 163(4), 903-909. https://doi.org/10.1007/s10336-022-01991-4Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US et al., (2006). Diversification of Neoaves: Integration of molecular sequence data and fossils. Biol. Lett. 2: 543-547. https://doi.org/10.1098/rsbl.2006.0523Gómez, J., Pereira, A. I., Pérez-Hurtado, A., Castro, M., Ramo, C., & Amat, J. A. (2016). A trade-off between overheating and camouflage on shorebird eggshell colouration. Journal of Avian Biology, 47(3), 346-353. https://doi.org/10.1111/jav.00736Kinoshita, S., Yoshioka, S., & Miyazaki, J. (2008). Physics of structural colors. Reports on Progress in Physics, 71(7), 076401. DOI 10.1088/0034-4885/71/7/076401Honza, M., Sulc, M., & Cherry, M. I. (2014). Does nest luminosity play a role in recognition of parasitic eggs in domed nests? A case study of the red bishop. Naturwissenschaften, 101, 1009-1015. https://doi.org/10.1007/s00114-014-1240-9Xiao, H., Hu, Y., Lang, Z., Fang, B., Guo, W., Zhang, Q. I et al (2017). How much do we know about the breeding biology of bird species in the world?. Journal of Avian Biology, 48(4), 513-518. https://doi.org/10.1111/jav.00934Wiemann, J., Yang, T. R., & Norell, M. A. (2018). Dinosaur egg colour had a single evolutionary origin. Nature, 563(7732), 555-558. https://doi.org/10.1038/s41586-018-0646-5Marki, P. Z., Fabre, P. H., Jønsson, K. A., Rahbek, C., Fjeldså, J., & Kennedy, J. D. (2015). Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution, 69(7), 1874-1924. https://doi.org/10.1111/evo.12695Carvalho, C. B., Macedo, R. H., & Graves, J. A. (2006). Breeding strategies of a socially monogamous neotropical passerine: extra-pair fertilizations, behavior, and morphology. The Condor, 108(3), 579-590. https://doi.org/10.1093/condor/108.3.579201729924PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/0588d13c-9ffc-48ef-bb1c-77db1f9db2b0/download5aa5c691a1ffe97abd12c2966efcb8d6MD55THUMBNAILMendiwelso-Moreno et al (2023).pdf.jpgMendiwelso-Moreno et al (2023).pdf.jpgIM Thumbnailimage/jpeg6837https://repositorio.uniandes.edu.co/bitstreams/093cbbe4-3c19-4d38-b6bb-5d2313846b65/download67125bbd6bb712111bcab1cc1d1fef93MD58201729924_ForAutEntTesis_TraGraSisBib_202320.pdf.jpg201729924_ForAutEntTesis_TraGraSisBib_202320.pdf.jpgIM Thumbnailimage/jpeg16516https://repositorio.uniandes.edu.co/bitstreams/a42155df-ec36-4353-8999-43acf83c4b22/download28184f3065e24f546e02c5d9c1e33964MD59ORIGINALMendiwelso-Moreno et al (2023).pdfMendiwelso-Moreno et al (2023).pdfapplication/pdf5236638https://repositorio.uniandes.edu.co/bitstreams/4652341a-ff94-49ce-8fbc-d90d28c0fe39/download094040866f067845c9ee9822843cdea2MD54201729924_ForAutEntTesis_TraGraSisBib_202320.pdf201729924_ForAutEntTesis_TraGraSisBib_202320.pdfHIDEapplication/pdf372842https://repositorio.uniandes.edu.co/bitstreams/86d95868-2b84-46e7-ab4d-c7f02376b3c3/downloada744d8cdc5c6faa69eda32e330398409MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/3d2d9baa-ace9-4f85-be56-951cb5799fdb/download4460e5956bc1d1639be9ae6146a50347MD52TEXTMendiwelso-Moreno et al (2023).pdf.txtMendiwelso-Moreno et al (2023).pdf.txtExtracted texttext/plain95287https://repositorio.uniandes.edu.co/bitstreams/3e01744d-e367-456e-b264-17db4ed035c8/download9ae4155ca88ba8026827d571965aa340MD57201729924_ForAutEntTesis_TraGraSisBib_202320.pdf.txt201729924_ForAutEntTesis_TraGraSisBib_202320.pdf.txtExtracted texttext/plain2099https://repositorio.uniandes.edu.co/bitstreams/2d209a8c-6f0b-4141-a30d-0a94568018ad/download3ba96d21352619fd9895825ffef6dbf0MD5101992/69438oai:repositorio.uniandes.edu.co:1992/694382023-10-11 03:16:40.593http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==