Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.

Tesis de grado para obtener el título de físico.

Autores:
Cabrera Jojoa, Ángela Carolina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74989
Acceso en línea:
https://hdl.handle.net/1992/74989
Palabra clave:
Resistencia a antibióticos
Lipopéptidos cíclicos
Bacillus velezensis
Modelos de membrana
Pseudomonas aeruginosa
Eritrocitos
Lisis celular
Anisotropía
Estructura de la membrana
Fengicinas
Péptidos Antimicrobianos
Fluidez de membrana
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_dbd507543b2da19b750a831e62e4aa21
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74989
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
title Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
spellingShingle Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
Resistencia a antibióticos
Lipopéptidos cíclicos
Bacillus velezensis
Modelos de membrana
Pseudomonas aeruginosa
Eritrocitos
Lisis celular
Anisotropía
Estructura de la membrana
Fengicinas
Péptidos Antimicrobianos
Fluidez de membrana
Física
title_short Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
title_full Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
title_fullStr Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
title_full_unstemmed Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
title_sort Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.
dc.creator.fl_str_mv Cabrera Jojoa, Ángela Carolina
dc.contributor.advisor.none.fl_str_mv Leidy, Chad
Medeot, Daniela Beatriz
dc.contributor.author.none.fl_str_mv Cabrera Jojoa, Ángela Carolina
dc.contributor.jury.none.fl_str_mv Forero Shelton, Antonio Manu
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Biofísica
dc.subject.keyword.spa.fl_str_mv Resistencia a antibióticos
Lipopéptidos cíclicos
Bacillus velezensis
Modelos de membrana
Pseudomonas aeruginosa
Eritrocitos
Lisis celular
Anisotropía
Estructura de la membrana
Fengicinas
Péptidos Antimicrobianos
Fluidez de membrana
topic Resistencia a antibióticos
Lipopéptidos cíclicos
Bacillus velezensis
Modelos de membrana
Pseudomonas aeruginosa
Eritrocitos
Lisis celular
Anisotropía
Estructura de la membrana
Fengicinas
Péptidos Antimicrobianos
Fluidez de membrana
Física
dc.subject.themes.spa.fl_str_mv Física
description Tesis de grado para obtener el título de físico.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-05T16:35:58Z
dc.date.available.none.fl_str_mv 2024-08-05T16:35:58Z
dc.date.issued.none.fl_str_mv 2024-05-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74989
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74989
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations (2016).
2. Organización Mundial de la Salud. OMS publica lista de bacterias para las cuales se necesitan con urgencia nuevos antibióticos https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded. Consultado el 1 de abril de 2024. 2017.
3. Marín-Medina, N., Ramírez, D. A., Trier, S. y Leidy, C. Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied microbiology and biotechnology 100, 10251-10263 (2016).
4. Roque-Borda, C. A. et al. Challenge in the discovery of new drugs: antimicrobial peptides against WHO-list of critical and high-priority bacteria. Pharmaceutics 13, 773 (2021).
5. Hamley, I. W. Lipopeptides: from self-assembly to bioactivity. Chemical Communications 51, 8574-8583 (2015).
6. Rubio, S., Martínez-Cámara, S., de la Fuente, J. L., Rodríguez-Sáiz, M. y Barredo, J.-L. en Antimicrobial Therapies: Methods and Protocols 351-363 (Springer, 2021).
7. Ball, L.-J., Goult, C. M., Donarski, J. A., Micklefield, J. y Ramesh, V. NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Organic & biomolecular chemistry 2, 1872-1878 (2004).
8. Fira, D., Dimkić, I., Berić, T., Lozo, J. y Stanković, S. Biological control of plant pathogens by Bacillus species. Journal of biotechnology 285, 44-55 (2018).
9. Fan, H. Y. et al. Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. en. Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, 2306-2312. issn: 00052736. https://linkinghub.elsevier.com/retrieve/pii/S0005273614000820 (2023) (sep. de 2014).
10. Heerklotz, H. y Seelig, J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. en. European Biophysics Journal 36, 305-314. issn: 0175-7571, 1432-1017. https://link.springer.com/10.1007/s00249-006-0091-5 (2023) (abr. de 2007).
11. Jiang, C. et al. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. International journal of food microbiology 330, 108783 (2020).
12. Akpa, E. et al. Influence of Culture Conditions on Lipopeptide Production by Bacillus subtilis. en. Applied Biochemistry and Biotechnology 91-93, 551-562. issn: 0273-2289. http://link.springer.com/10.1385/ABAB:91-93:1-9:551 (2023) (2001).
13. Bie, X., Lu, Z. y Lu, F. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. en. Journal of Microbiological Methods 79, 272-278. issn: 01677012. https://linkinghub.elsevier.com/retrieve/pii/S0167701209002978 (2023) (dic. de 2009).
14. Medeot, D. B., Fernandez, M., Morales, G. M. y Jofré, E. Fengycins From Bacillus amyloliquefaciens MEP218 Exhibit Antibacterial Activity by Producing Alterations on the Cell Surface of the Pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Frontiers in Microbiology 10, 3107. issn: 1664-302X. https://www.frontiersin.org/article/10.3389/fmicb.2019.03107/full (2023) (ene. de 2020).
15. Sur, S., Romo, T. D. y Grossfield, A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. en. The Journal of Physical Chemistry B 122, 2219-2226. issn: 1520-6106, 1520-5207. https://pubs.acs.org/doi/10.1021/acs.jpcb.7b11889 (2023) (mar. de 2018).
16. Strahl, H. y Errington, J. Bacterial Membranes: Structure, Domains, and Function. en. Annual Review of Microbiology 71, 519-538. issn: 0066-4227, 1545-3251. https://www.annualreviews.org/doi/10.1146/annurev-micro-102215-095630 (2024) (sep. de 2017).
17. Bagatolli, L. Vida ¿una cuestión de grasas?: una perspectiva desde la biofísica de membranas spa. OCLC: 1026126232. isbn: 978-9942-07-694-6 (El Telégrafo, Quito, 2014).
18. Bagatolli, L.A., Ipsen, J. H., Simonsen,A. C. y Mouritsen, O. G.Anoutlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Progress in lipid research 49, 378-389 (2010).
19. Van Oss, C. J. Hydrophobicity and hydrophilicity of biosurfaces. Current opinion in colloid & interface science 2, 503-512 (1997).
20. Lochab, V. et al. Ultrastructure imaging of Pseudomonas aeruginosa lawn biofilms and eradication of the tobramycin-resistant variants under in vitro electroceutical treatment. Scientific reports 10, 9879 (2020).
21. Meisenberg, G. y Simmons,W. H. Principles of Medical Biochemistry E-Book: Principles of Medical Biochemistry E-Book (Elsevier Health Sciences, 2016).
22. Joensuu, M., Wallis, T. P., Saber, S. H. y Meunier, F. A. Phospholipases in neuronal function: A role in learning and memory? Journal of neurochemistry 153, 300-333 (2020).
23. Nelson, D. L., Lehninger,A. L. y Cox, M. M. Lehninger principles of biochemistry (Macmillan, 2008).
24. Gesto, D. S., Pereira, C. M., Cerqueira, N. M. y Sousa, S. F. An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules 25, 3891 (2020).
25. Bartholomew, J.W. y Mittwer, T. The gram stain. Bacteriological reviews 16, 1-29 (1952).
26. Burton, G. R.W. Microbiology for the health sciences. (No Title) (2000).
27. Royer, C. A. Fluorescence spectroscopy. Protein stability and folding: Theory and practice, 65-89 (1995).
28. Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Geny, D. y Linder, M. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie 95, 2018-2033 (2013).
29. Kuhry, J.-G., Fonteneau, P., Duportail, G., Maechling, C. y Laustriat, G. TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell biophysics 5, 129-140 (1983).
30. Calderón-Rivera, N. et al. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. en. Membranes 13, 304. issn: 2077-0375. https://www.mdpi.com/2077-0375/13/3/304 (2023) (mar. de 2023).
31. Rivera-Sanchez, S. P. et al. Integrating In Vitro and In Silico Analysis of a Cationic Antimicrobial Peptide Interaction with Model Membranes of Colistin-Resistant Pseudomonas aeruginosa Strains. en. Pharmaceutics 14, 1248. issn: 1999-4923. https://www.mdpi.com/1999-4923/14/6/1248 (2023) (jun. de 2022).
32. Bali, R. et al. Macroscopic domain formation during cooling in the platelet plasma membrane: An issue of low cholesterol content. en. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 1229-1237. issn: 00052736. https://linkinghub.elsevier.com/retrieve/pii/S000527360900100X (2023) (jun. de 2009).
33. Doktorova, M. et al. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. bioRxiv, 2023-07 (2023).
34. Alleva, K. y Federico, L. Análisis estructuralista de las teorías de Hill: una elucidación de explicación en bioquímica. Scientiae Studia 11, 333-353 (2013)
35. Grau-Campistany, A., Manresa, A., Pujol, M., Rabanal, F. y Cajal, Y. Tryptophancontaining lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858, 333-343 (2016).
36. Koller, D. y Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838, 2250-2259 (2014).
37. Heerklotz, H., Wieprecht, T. y Seelig, J. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. The Journal of Physical Chemistry B 108, 4909-4915 (2004).
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 39 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/bb6ef395-fcf7-46db-81c9-a3ed4c701eb1/download
https://repositorio.uniandes.edu.co/bitstreams/d899f499-b3f1-475b-b432-43ac65073c62/download
https://repositorio.uniandes.edu.co/bitstreams/5a986be5-763e-434c-97f8-5af827b9ed8d/download
https://repositorio.uniandes.edu.co/bitstreams/7ba3bb5b-791b-411b-95d0-85b4d226f467/download
https://repositorio.uniandes.edu.co/bitstreams/9a00c4b3-a97e-4a41-b093-e418accc3fdb/download
https://repositorio.uniandes.edu.co/bitstreams/26650729-650a-4c25-80c3-d8ceab047bb3/download
https://repositorio.uniandes.edu.co/bitstreams/83312d8b-0d72-4706-bc56-b466d2072260/download
https://repositorio.uniandes.edu.co/bitstreams/c968cf85-f968-451a-9f98-7db69a71c746/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
eb837a5551cfcc2ad6ed6c7126592707
67b4ea3f0273b216bb079bff8f9fe50d
eb29619db6d7884368d9f9c67e82da40
31007606865a4d180b6f9f1e61faf292
5f3f86bd8d6b0b2996e02c0b49919ecc
99311036053558bd077f3c37bbdcec8b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133954661122048
spelling Leidy, Chadvirtual::19590-1Medeot, Daniela BeatrizCabrera Jojoa, Ángela CarolinaForero Shelton, Antonio Manuvirtual::19591-1Facultad de Ciencias::Biofísica2024-08-05T16:35:58Z2024-08-05T16:35:58Z2024-05-31https://hdl.handle.net/1992/74989instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Tesis de grado para obtener el título de físico.La constante lucha contra los organismos resistentes a antibióticos ha permitido explorar alternativas poco convencionales para hacerles frente, como buscar en la misma naturaleza moléculas que combatan a sus homólogos y permitan el control biológico. Este estudio evaluó la capacidad antibiótica de lipopéptidos cíclicos producidos por Bacillus velezensis. Se caracterizaron cambios en la membrana utilizando modelos de membrana de Pseudomonas aeruginosa y eritocitos, bajo mediciones de fuga de contenido y de anisotropía. Los resultados mostraron que los lipopéptidos totales inducen lisis celular, especialmente en membranas con reducido espaciamiento de cabezas polares y mayor densidad de carga superficial. La estructura y composición de la membrana influyen significativamente en la susceptibilidad a la lisis. El modelo de Pseudomonas aeruginosa mostró mayor resistencia comparado con los modelos POPC y POPG, con excepción de eritrocitos. Aunque los lipopéptidos totales son efectivos en el modelo de eritrocitos, presentan menor cooperatividad y requieren mayores concentraciones para inducir lisis en comparación con las fengicinas, las cuales tienen mayor cooperatividad y ventajas como potenciales antibióticos. La fluidez de la membrana de Pseudomonas aeruginosa, que incluye la molécula cónica PE, es menos sensible a los lipopéptidos totales en comparación con los modelos de moléculas cilíndricas POPC y POPG, posiblemente debido a la estructura cónica de PE que facilita la acomodación del lipopéptido entre las cabezas polares. Estos hallazgos sugieren que los lipopéptidos cíclicos (lipopétidos totales y fengicinas aisladas) producidos por Bacillus velezensis son una prometedora alternativa en el desarrollo de nuevos tratamientos antibacterianos, ofreciendo una solución potencial frente a la creciente amenaza de resistencia a los antibióticos.The ongoing battle against antibiotic-resistant organisms has led to exploring unconventional alternatives, such as searching within nature for molecules that combat their counterparts and enable biological control. This study evaluated the antibiotic capacity of cyclic lipopeptides produced by Bacillus velezensis. Membrane changes were characterized using membrane models of Pseudomonas aeruginosa and erythrocytes, under measurements of leakage and anisotropy. Results showed that total lipopeptides induce cell lysis, especially in membranes with reduced polar head spacing and higher surface charge density. Membrane structure and composition significantly influence susceptibility to lysis. The Pseudomonas aeruginosa model showed greater resistance concerning the POPC and POPG models, except erythrocytes. Although total lipopeptides are effective in the erythrocyte model, they exhibit lower cooperativity and require higher concentrations to induce lysis concerning fengycins, which have higher cooperativity and advantages as potential antibiotics. The membrane fluidity of Pseudomonas aeruginosa, which includes the conical molecule PE, is less sensitive to total lipopeptides compared to cylindrical molecule models POPC and POPG, possibly due to the conical structure of PE facilitating the accommodation of the lipopeptide among the polar heads. These findings suggest that lipopeptides (total lipopeptides and isolated fengycins) produced by Bacillus velezensis are a promising alternative in the development of new antibacterial treatments, offering a potential solution to the growing threat of antibiotic resistance.PregradoBiofísica de membranas39 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caracterización de la actividad lítica de lipopéptidos cíclicos producidos por Bacillus velezencis en sistemas modelo de membranas de Pseudomonas aeruginosa y eritrocitos.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPResistencia a antibióticosLipopéptidos cíclicosBacillus velezensisModelos de membranaPseudomonas aeruginosaEritrocitosLisis celularAnisotropíaEstructura de la membranaFengicinasPéptidos AntimicrobianosFluidez de membranaFísica1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations (2016).2. Organización Mundial de la Salud. OMS publica lista de bacterias para las cuales se necesitan con urgencia nuevos antibióticos https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded. Consultado el 1 de abril de 2024. 2017.3. Marín-Medina, N., Ramírez, D. A., Trier, S. y Leidy, C. Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied microbiology and biotechnology 100, 10251-10263 (2016).4. Roque-Borda, C. A. et al. Challenge in the discovery of new drugs: antimicrobial peptides against WHO-list of critical and high-priority bacteria. Pharmaceutics 13, 773 (2021).5. Hamley, I. W. Lipopeptides: from self-assembly to bioactivity. Chemical Communications 51, 8574-8583 (2015).6. Rubio, S., Martínez-Cámara, S., de la Fuente, J. L., Rodríguez-Sáiz, M. y Barredo, J.-L. en Antimicrobial Therapies: Methods and Protocols 351-363 (Springer, 2021).7. Ball, L.-J., Goult, C. M., Donarski, J. A., Micklefield, J. y Ramesh, V. NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Organic & biomolecular chemistry 2, 1872-1878 (2004).8. Fira, D., Dimkić, I., Berić, T., Lozo, J. y Stanković, S. Biological control of plant pathogens by Bacillus species. Journal of biotechnology 285, 44-55 (2018).9. Fan, H. Y. et al. Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. en. Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, 2306-2312. issn: 00052736. https://linkinghub.elsevier.com/retrieve/pii/S0005273614000820 (2023) (sep. de 2014).10. Heerklotz, H. y Seelig, J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. en. European Biophysics Journal 36, 305-314. issn: 0175-7571, 1432-1017. https://link.springer.com/10.1007/s00249-006-0091-5 (2023) (abr. de 2007).11. Jiang, C. et al. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. International journal of food microbiology 330, 108783 (2020).12. Akpa, E. et al. Influence of Culture Conditions on Lipopeptide Production by Bacillus subtilis. en. Applied Biochemistry and Biotechnology 91-93, 551-562. issn: 0273-2289. http://link.springer.com/10.1385/ABAB:91-93:1-9:551 (2023) (2001).13. Bie, X., Lu, Z. y Lu, F. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. en. Journal of Microbiological Methods 79, 272-278. issn: 01677012. https://linkinghub.elsevier.com/retrieve/pii/S0167701209002978 (2023) (dic. de 2009).14. Medeot, D. B., Fernandez, M., Morales, G. M. y Jofré, E. Fengycins From Bacillus amyloliquefaciens MEP218 Exhibit Antibacterial Activity by Producing Alterations on the Cell Surface of the Pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Frontiers in Microbiology 10, 3107. issn: 1664-302X. https://www.frontiersin.org/article/10.3389/fmicb.2019.03107/full (2023) (ene. de 2020).15. Sur, S., Romo, T. D. y Grossfield, A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. en. The Journal of Physical Chemistry B 122, 2219-2226. issn: 1520-6106, 1520-5207. https://pubs.acs.org/doi/10.1021/acs.jpcb.7b11889 (2023) (mar. de 2018).16. Strahl, H. y Errington, J. Bacterial Membranes: Structure, Domains, and Function. en. Annual Review of Microbiology 71, 519-538. issn: 0066-4227, 1545-3251. https://www.annualreviews.org/doi/10.1146/annurev-micro-102215-095630 (2024) (sep. de 2017).17. Bagatolli, L. Vida ¿una cuestión de grasas?: una perspectiva desde la biofísica de membranas spa. OCLC: 1026126232. isbn: 978-9942-07-694-6 (El Telégrafo, Quito, 2014).18. Bagatolli, L.A., Ipsen, J. H., Simonsen,A. C. y Mouritsen, O. G.Anoutlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Progress in lipid research 49, 378-389 (2010).19. Van Oss, C. J. Hydrophobicity and hydrophilicity of biosurfaces. Current opinion in colloid & interface science 2, 503-512 (1997).20. Lochab, V. et al. Ultrastructure imaging of Pseudomonas aeruginosa lawn biofilms and eradication of the tobramycin-resistant variants under in vitro electroceutical treatment. Scientific reports 10, 9879 (2020).21. Meisenberg, G. y Simmons,W. H. Principles of Medical Biochemistry E-Book: Principles of Medical Biochemistry E-Book (Elsevier Health Sciences, 2016).22. Joensuu, M., Wallis, T. P., Saber, S. H. y Meunier, F. A. Phospholipases in neuronal function: A role in learning and memory? Journal of neurochemistry 153, 300-333 (2020).23. Nelson, D. L., Lehninger,A. L. y Cox, M. M. Lehninger principles of biochemistry (Macmillan, 2008).24. Gesto, D. S., Pereira, C. M., Cerqueira, N. M. y Sousa, S. F. An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules 25, 3891 (2020).25. Bartholomew, J.W. y Mittwer, T. The gram stain. Bacteriological reviews 16, 1-29 (1952).26. Burton, G. R.W. Microbiology for the health sciences. (No Title) (2000).27. Royer, C. A. Fluorescence spectroscopy. Protein stability and folding: Theory and practice, 65-89 (1995).28. Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Geny, D. y Linder, M. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie 95, 2018-2033 (2013).29. Kuhry, J.-G., Fonteneau, P., Duportail, G., Maechling, C. y Laustriat, G. TMA-DPH: a suitable fluorescence polarization probe for specific plasma membrane fluidity studies in intact living cells. Cell biophysics 5, 129-140 (1983).30. Calderón-Rivera, N. et al. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. en. Membranes 13, 304. issn: 2077-0375. https://www.mdpi.com/2077-0375/13/3/304 (2023) (mar. de 2023).31. Rivera-Sanchez, S. P. et al. Integrating In Vitro and In Silico Analysis of a Cationic Antimicrobial Peptide Interaction with Model Membranes of Colistin-Resistant Pseudomonas aeruginosa Strains. en. Pharmaceutics 14, 1248. issn: 1999-4923. https://www.mdpi.com/1999-4923/14/6/1248 (2023) (jun. de 2022).32. Bali, R. et al. Macroscopic domain formation during cooling in the platelet plasma membrane: An issue of low cholesterol content. en. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 1229-1237. issn: 00052736. https://linkinghub.elsevier.com/retrieve/pii/S000527360900100X (2023) (jun. de 2009).33. Doktorova, M. et al. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. bioRxiv, 2023-07 (2023).34. Alleva, K. y Federico, L. Análisis estructuralista de las teorías de Hill: una elucidación de explicación en bioquímica. Scientiae Studia 11, 333-353 (2013)35. Grau-Campistany, A., Manresa, A., Pujol, M., Rabanal, F. y Cajal, Y. Tryptophancontaining lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858, 333-343 (2016).36. Koller, D. y Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838, 2250-2259 (2014).37. Heerklotz, H., Wieprecht, T. y Seelig, J. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. The Journal of Physical Chemistry B 108, 4909-4915 (2004).201911759Publicationhttps://scholar.google.es/citations?user=0_jvORsAAAAJvirtual::19591-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000674044virtual::19590-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001289730virtual::19591-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::19590-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::19590-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::19591-1d8390b22-58d0-4d8c-9abb-d88e0327611dvirtual::19591-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/bb6ef395-fcf7-46db-81c9-a3ed4c701eb1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d899f499-b3f1-475b-b432-43ac65073c62/downloadae9e573a68e7f92501b6913cc846c39fMD53ORIGINALCaracterización de la actividad lítica de lipopéptidos cíclicos.pdfCaracterización de la actividad lítica de lipopéptidos cíclicos.pdfapplication/pdf3332680https://repositorio.uniandes.edu.co/bitstreams/5a986be5-763e-434c-97f8-5af827b9ed8d/downloadeb837a5551cfcc2ad6ed6c7126592707MD54Autorización Cabrera Angela..pdfAutorización Cabrera Angela..pdfHIDEapplication/pdf413037https://repositorio.uniandes.edu.co/bitstreams/7ba3bb5b-791b-411b-95d0-85b4d226f467/download67b4ea3f0273b216bb079bff8f9fe50dMD55TEXTCaracterización de la actividad lítica de lipopéptidos cíclicos.pdf.txtCaracterización de la actividad lítica de lipopéptidos cíclicos.pdf.txtExtracted texttext/plain90007https://repositorio.uniandes.edu.co/bitstreams/9a00c4b3-a97e-4a41-b093-e418accc3fdb/downloadeb29619db6d7884368d9f9c67e82da40MD56Autorización Cabrera Angela..pdf.txtAutorización Cabrera Angela..pdf.txtExtracted texttext/plain2102https://repositorio.uniandes.edu.co/bitstreams/26650729-650a-4c25-80c3-d8ceab047bb3/download31007606865a4d180b6f9f1e61faf292MD58THUMBNAILCaracterización de la actividad lítica de lipopéptidos cíclicos.pdf.jpgCaracterización de la actividad lítica de lipopéptidos cíclicos.pdf.jpgGenerated Thumbnailimage/jpeg9829https://repositorio.uniandes.edu.co/bitstreams/83312d8b-0d72-4706-bc56-b466d2072260/download5f3f86bd8d6b0b2996e02c0b49919eccMD57Autorización Cabrera Angela..pdf.jpgAutorización Cabrera Angela..pdf.jpgGenerated Thumbnailimage/jpeg11059https://repositorio.uniandes.edu.co/bitstreams/c968cf85-f968-451a-9f98-7db69a71c746/download99311036053558bd077f3c37bbdcec8bMD591992/74989oai:repositorio.uniandes.edu.co:1992/749892024-09-12 15:51:56.87http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K