Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico

El cambio climático traerá distintas repercusiones en la vida humana dentro de las cuales resaltan las afectaciones en la agricultura que generarían millones en pérdidas y amenaza la seguridad alimentaria del planeta. Uno de los primordiales desafíos del cambio climático son las profundas sequías qu...

Full description

Autores:
Ortiz Medina, Iván Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75909
Acceso en línea:
https://hdl.handle.net/1992/75909
Palabra clave:
Phaseolus vulgaris
PGPR
Estrés hídrico
Rasgos ecofisiológicos
Producción de grano
Comunidad sintética
Biología
Rights
embargoedAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_dab70b1ca06a4abd1cce50102217374c
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75909
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
title Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
spellingShingle Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
Phaseolus vulgaris
PGPR
Estrés hídrico
Rasgos ecofisiológicos
Producción de grano
Comunidad sintética
Biología
title_short Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
title_full Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
title_fullStr Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
title_full_unstemmed Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
title_sort Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico
dc.creator.fl_str_mv Ortiz Medina, Iván Andrés
dc.contributor.advisor.none.fl_str_mv Bernal Giraldo, Adriana Jimena
Rada Rincón, Fermín José
dc.contributor.author.none.fl_str_mv Ortiz Medina, Iván Andrés
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Interacciones Moleculares Microbianas
Facultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino
dc.subject.keyword.none.fl_str_mv Phaseolus vulgaris
topic Phaseolus vulgaris
PGPR
Estrés hídrico
Rasgos ecofisiológicos
Producción de grano
Comunidad sintética
Biología
dc.subject.keyword.eng.fl_str_mv PGPR
dc.subject.keyword.spa.fl_str_mv Estrés hídrico
Rasgos ecofisiológicos
Producción de grano
Comunidad sintética
dc.subject.themes.spa.fl_str_mv Biología
description El cambio climático traerá distintas repercusiones en la vida humana dentro de las cuales resaltan las afectaciones en la agricultura que generarían millones en pérdidas y amenaza la seguridad alimentaria del planeta. Uno de los primordiales desafíos del cambio climático son las profundas sequías que se agravan en las temporadas secas, que además se proyecta que se alargarán en el futuro. Por esta razón, es de suma importancia la búsqueda de alternativas en las cuales se protejan los cultivos como el Frijol que son susceptibles a las sequías. Un medio en estudio por el cual se busca lo anterior, es el uso de rizobacterias promotoras de crecimiento vegetal (RPCVs) que no solamente permiten el crecimiento de las plantas sino han presentado resultados donde protegen a sus hospederos de distintos estreses incluido el estrés hídrico por sequía. Por ello, el presente estudio experimenta el uso de distintas RPCVs de manera individual y en una comunidad sintética en una variedad de frijol ampliamente utilizada en Colombia. Para esto, se realizaron inoculaciones desde semilla para monitorear desde la germinación distintos rasgos fisiológicos como el potencial hídrico, área foliar especifica, peso seco, entre otros. Los resultados permiten entender que la variedad utilizada no es susceptible al estrés hídrico leve y los cambios fisiológicos que presenta a través de las simbiosis con las RPCVs seleccionadas; como la asignación de biomasa al grano bajo condiciones de sequía. Estos resultados prometen el desarrollo de biofertilizantes y la identificación de una variedad de frijol que podrían ser útiles para la seguridad alimentaria bajo las condiciones de sequía proyectadas.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-31T15:32:46Z
dc.date.issued.none.fl_str_mv 2025-01-30
dc.date.accepted.none.fl_str_mv 2025-01-31
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75909
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75909
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research International, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
Acosta Vera, A. F. (2024). Bioprospección de bacterias con potencial de biofertilizante de rizosfera de yuca (Manihot esculenta) [Universidad de los Andes]. In Repositorio Institucional Séneca. https://hdl.handle.net/1992/75017
Ahsan, N., & Shimizu, M. (2021). Lysinibacillus species: Their potential as effective bioremediation, biostimulant, and biocontrol agents. Reviews in Agricultural Science, 9(0), 103–116. https://doi.org/10.7831/ras.9.0_103
AlAli, H. A., Khalifa, A., & Almalki, M. (2021). Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. Suid-Afrikaanse Tydskrif Vir Plantkunde [South African Journal of Botany], 139, 200–209. https://doi.org/10.1016/j.sajb.2021.02.019
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2
Al-Amri, S. M. (2021). Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi Journal of Biological Sciences, 28(7), 3901–3908. https://doi.org/10.1016/j.sjbs.2021.03.064
Arruda, B., Bejarano-Herrera, W. F., Ortega-Cepeda, M. C., Campo-Quesada, J. M., Toro-Tobón, G.,Estrada-Bonilla, G. A., Silva, A. M. M., & Ferrari Putti, F. (2023). Bioinput inoculation in common beans to mitigate stresses caused by a period of drought. Stresses, 3(4), 842–857. https://doi.org/10.3390/stresses3040057
Baert, A., Villez, K., & Steppe, K. (2013). Automatic drought stress detection in grapevines without using conventional threshold values. Plant and Soil, 369(1–2), 439–452. https://doi.org/10.1007/s11104-013-1588-1
Bai, Q., Li, M., Zhou, J., Imran, A., de Souza, T. S. P., Barrow, C., Dunshea, F., & Suleria, H. A. R. (2024). Influence of processing methods on phytochemical composition of different varieties of beans ( Phaseolus vulgaris ). Food Reviews International, 40(7), 1941–1979. https://doi.org/10.1080/87559129.2023.2245026
Beebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00035
Benchling [Biology Software]. (2024). Retrieved from https://benchling.com Bialek, K., Michalczuk, L., & Cohen, J. D. (1992). Auxin Biosynthesis during Seed Germination in Phaseolus vulgaris. Plant Physiology, 100(1), 509–517. https://doi.org/10.1104/pp.100.1.509
Bibi, N., Khan, M., Rehman, F. ur, Mahrukh, Room, S., Ahmad, M. A., Iftikhar, M., Munis, M. F. H., & Chaudhary, H. J. (2024). Harnessing Bacillus safensis as biofertilizer for sustainable drought alleviation in Brassica juncea L. Biocatalysis and Agricultural Biotechnology, 61(103388), 103388. https://doi.org/10.1016/j.bcab.2024.103388
Botero, H., Barnes, A. P., Perez, L., Rios, D., & Ramirez-Villegas, J. (2021). The determinants of common bean variety selection and diversification in Colombia. Ecological Economics, 190(107181). https://doi.org/10.1016/j.ecolecon.2021.107181
Bourne, W. M. (1987). No statistically significant difference: So what? Archives of Ophthalmology, 105(1), 40. https://doi.org/10.1001/archopht.1987.01060010046029
Burkhardt, J., Kaiser, H., Goldbach, H., & Kappen, L. (1999). Measurements of electrical leaf surface conductance reveal re‐condensation of transpired water vapour on leaf surfaces. Plant, Cell & Environment, 22(2), 189–196. https://doi.org/10.1046/j.1365-3040.1999.00387.x
Çam, S., Küçük, Ç., & Almaca, A. (2023). Bacillus strains exhibit various plant growth promoting traits and their biofilm-forming capability correlates to their salt stress alleviation effect on maize seedlings. Journal of Biotechnology, 369, 35–42. https://doi.org/10.1016/j.jbiotec.2023.05.004
Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P., & Dey, P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29(5), 789–803. https://doi.org/10.1007/s11274-012-1234-8
Coffey, B. M., & Anderson, G. G. (2014). Biofilm Formation in the 96-well Microtiter Plate. In Pseudomonas Methods and Protocols. Springer. https://link.springer.com/protocol/10.1007/978-1-4939-0473-0_48
Cortés, A. J., Monserrate, F. A., Ramírez-Villegas, J., Madriñán, S., & Blair, M. W. (2013). Drought tolerance in wild plant populations: The case of common beans (Phaseolus vulgaris L.). PloS One, 8(5), e62898. https://doi.org/10.1371/journal.pone.0062898
Costa França, M. G., Pham Thi, A. T., Pimentel, C., Pereyra Rossiello, R. O., Zuily-Fodil, Y., & Laffray, D. (2000). Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany, 43(3), 227–237. https://doi.org/10.1016/s0098-8472(99)00060-x
Cruz de Carvalho, M. H., Van Le, B., Zuily-Fodil, Y., Pham Thi, A. T., & Thanh Van, K. T. (2000). Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Science, 159(2), 223–232. https://doi.org/10.1016/S0168-9452(00)00346-0
Dane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4. In Google Books (Vol. 4). John Wiley & Sons. https://books.google.com.co/books?hl=en&lr=&id=OYLWDwAAQBAJ&oi=fnd&pg=PR27&dq=D
Dunn, O. J. (1959). Confidence intervals for the means of dependent, normally distributed variables. Journal of the American Statistical Association, 54(287), 613–621. https://doi.org/10.1080/01621459.1959.10501524
El Semillero SAS. (2024). El Semillero, tienda de insumos agroforestales. El SEMILLERO SAS. https://www.elsemillero.co/
Figueroa, M. E., Fernández-Baco, L., Luque, T., & Davy, A. J. (1997). Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science, 8(6), 881–888. https://doi.org/10.2307/3237033
Fisher, R. A., & Mackenzie, W. A. (1923). Studies in crop variation. II. The manurial response of different potato varieties. The Journal of Agricultural Science, 13(3), 311–320. https://doi.org/10.1017/s0021859600003592
Ghorbanpour, M., & Hatami, M. (2014). Biopriming of Salvia officinalis Seed with Growth Promoting Rhizobacteria Affects Invigoration and Germination Indices. J. BIOL. ENVIRON. SCI, 8(22), 29–36. https://dergipark.org.tr/en/download/article-file/497426
Hernández Alcántara, N. (2024a). Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.
Hernández Alcántara, N. (2024b). Efecto de bacterias promotoras de crecimiento vegetal en dos variedades de Coffea arabica L. ante condiciones de déficit hídrico.
Jinal, H. N., Gopi, K., Kumar, K., & Amaresan, N. (2021). Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environmental Science and Pollution Research International, 28(6), 6540–6548. https://doi.org/10.1007/s11356-020-10998-4
Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/s13213-015-1112-3
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441
Kumar, S., Lawrence, D. M., Dirmeyer, P. A., & Sheffield, J. (2013). Less reliable water availability in the 21st century climate projections. Earth’s Future, 2(3), 152–160. https://doi.org/10.1002/2013ef000159
Kumar, A., Maurya, B. R., & Raghuwanshi, R. (2021). The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition, 44(13), 1942–1956. https://doi.org/10.1080/01904167.2021.1884706
Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S., & Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. Journal of Plant Growth Regulation, 36(3), 608–617. https://doi.org/10.1007/s00344-016-9663-5
Levene, H. (1960). Robust tests for equality of variances.
Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R., & Michaud, L. (2007). Bacteriumbacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology, 60(3), 383–396. https://doi.org/10.1111/j.1574-6941.2007.00300.x
Marchin, R. M., Ossola, A., Leishman, M. R., & Ellsworth, D. S. (2020). A Simple Method for Simulating Drought Effects on Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01715
Martínez, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy: The Journal of the European Society for Agronomy, 26(1), 30–38. https://doi.org/10.1016/j.eja.2006.08.003
Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005
Meza, C., Valenzuela, F., Echeverría-Vega, A., Gomez, A., Sarkar, S., Cabeza, R. A., Arencibia, A. D., Quiroz, K., Carrasco, B., & Banerjee, A. (2022). Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype (Phaseolus vulgaris L.) supporting seed germination and growth against salinity stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1052263
Mujumdar, S., Bhoyar, J., Akkar, A., Hundekar, S., Agnihotri, N., Jaybhay, P., & Bhuyan, S. (2023). Chapter 15 - Acinetobacter: A versatile plant growth-promoting rhizobacteria (PGPR). In P. Swapnil, Harish, S. Vijayalakshmi, M. Meena, A. Marwal, & A. Zehra (Eds.), Plant-Microbe Interaction -Recent Advances in Molecular and Biochemical Approaches. Volume 1 : Overview of Biochemical and Physiological Alteration During Plant-Microbe Interaction (pp. 327–362). Academic Press. https://doi.org/10.1016/B978-0-323-91875-6.00009-8
Ojuederie, O., Olanrewaju, O., & Babalola, O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy (Basel, Switzerland), 9(11), 712. https://doi.org/10.3390/agronomy9110712
Orozco-Mosqueda, M. del C., Rocha-Granados, M. del C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 208, 25–31. https://doi.org/10.1016/j.micres.2018.01.005
Paisaje Natural SAS. (2024, January 11). Inicio - Vivero Paisaje Natural. Vivero Paisaje Natural. https://viveropaisajenatural.com/
Parker, T. A., Gallegos, J. A.,Delgado Salinas, A., Dohle, S., Ernest, E., de Jensen, C. E., Gomez, F., Hellier, B., Karasev, A. V., Kelly, J. D., Beaver, J., Brick, M., Brown, J. K., Cichy, K., Debouck, D. G., McClean, P., Miklas, P., Myers, J. R., Osorno, J. M., … Gepts, P. (2022). Genetic resources and breeding priorities in Phaseolus beans: Vulnerability, resilience, and future challenges. In I. Goldman (Ed.), Plant Breeding Reviews. Volume 46 (pp. 289–420). Wiley. https://doi.org/10.1002/9781119874157.ch6
Patono, D. L., Said-Pullicino, D., Eloi Alcatrāo, L., Firbus, A., Ivaldi, G., Chitarra, W., Ferrandino, A., Ricauda Aimonino, D., Celi, L., Gambino, G., Perrone, I., & Lovisolo, C. (2022). Photosynthetic recovery in drought‐rehydrated grapevines is associated with high demand from the sinks, maximizing the fruit‐oriented performance. The Plant Journal: For Cell and Molecular Biology, 112(4), 1098–1111. https://doi.org/10.1111/tpj.16000
Pequeno, D. N. L., Hernández-Ochoa, I. M., Reynolds, M., Sonder, K., MoleroMilan, A., Robertson, R. D., Lopes, M. S., Xiong, W., Kropff, M., & Asseng, S. (2021). Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abd970
Pérez-Llorca, M., Fenollosa, E., Salguero-Gómez, R., & Munné-Bosch, S. (2018). What is the minimal optimal sample size for plant ecophysiological studies? Plant Physiology, 178(3), 953–955. https://doi.org/10.1104/pp.18.01001
Petrović, M., Janakiev, T., Grbić, M. L., Unković, N., Stević, T., Vukićević, S., & Dimkić, I. (2024). Insights into endophytic and rhizospheric bacteria of five sugar beet hybrids in terms of their diversity, plant-growth promoting, and biocontrol properties. Microbial Ecology, 87(1). https://doi.org/10.1007/s00248-023-02329-0
Pisco-Ortiz, C., González-Almario, A., Uribe-Gutiérrez, L., Soto-Suárez, M., & Amaya-Gómez, C. V. (2023). Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon. World Journal of Microbiology and Biotechnology, 39(11). https://doi.org/10.1007/s11274-023-03719-9
Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 351, 317–329. https://doi.org/10.1016/j.jhazmat.2018.03.009
Rafique, M., Naveed, M., Mumtaz, M. Z., Niaz, A., Alamri, S., Siddiqui, M. H., Waheed, M. Q., Ali, Z., Naman, A., Rehman, S. ur, Brtnicky, M., & Mustafa, A. (2024). Unlocking the potential of biofilm forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.). Scientific Reports, 14(1), 1–18. https://doi.org/10.1038/s41598-024-66562-4
Ramos, M. L. G., Gordon, A. J., Minchin, F. R., Sprent, J. I., & Parsons, R. (1999). Effect of Water Stress on Nodule Physiology and Biochemistry of a Drought Tolerant Cultivar of Common Bean (Phaseolus vulgaris L.). Annals of Botany, 83(1), 57–63. https://doi.org/10.1006/anbo.1998.0792
Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of Plant-Growth-Promoting Traits of Acinetobacter Species Isolated from Rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556–566. https://doi.org/10.4014/jmb.1012.12006
Rosales, M. A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., & Covarrubias, A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiology and Biochemistry, 56, 24–34. https://doi.org/10.1016/j.plaphy.2012.04.007
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/
Rühle, T., Reiter, B., & Leister, D. (2018). Chlorophyll fluorescence video imaging: A versatile tool for identifying factors related to photosynthesis. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00055
Saikia, J., Kotoky, R., Debnath, R., Kumar, N., Gogoi, P., Yadav, A., & Saikia, R. (2023). De novogenomic analysis ofEnterobacter asburiaeEBRJ12, a plant growth-promoting rhizobacteria isolated from the rhizosphere of Phaseolus vulgarisL. Journal of Applied Microbiology, 134(2). https://doi.org/10.1093/jambio/lxac090
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. del C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475. https://doi.org/10.3390/biology10060475
Sarma, A. K., & Deka, K. (2024). Plant growth promoting rhizobacteria: An option for reducing abiotic stress in plant. Communications in Soil Science and Plant Analysis, 55(15), 2267–2284. https://doi.org/10.1080/00103624.2024.2353745
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Singh, S. P. (2007). Drought resistance in the race Durango dry bean landraces and cultivars. Agronomy Journal, 99(5), 1219–1225. https://doi.org/10.2134/agronj2006.0301
Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5744–5749. https://doi.org/10.1073/pnas.1503376112
Spector, P. E. (1977). What to do with significant multivariate effects in multivariate analyses of variance. The Journal of Applied Psychology, 62(2), 158–163. https://doi.org/10.1037/0021-9010.62.2.158
Thibeaux, R., Kainiu, M., & Goarant, C. (2020). Biofilm Formation and Quantification Using the 96-Microtiter Plate. In Methods in Molecular Biology (pp. 207–214). Springer. https://doi.org/10.1007/978-1-0716-0459-5_19
Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001
Tukey, J. W. (1953). The problem of multiple comparisons. Multiple comparisons.
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S., & Bales, S. (2023). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Science, 5(1). https://doi.org/10.1002/leg3.155
Vitorino, L. C., da Silva, E. J., Oliveira, M. S., Silva, I. de O., Santos, L. da S., Mendonça, M. A. C., Oliveira, T. C. S., & Bessa, L. A. (2024). Effect of a Bacillus velezensis and Lysinibacillus fusiformis based biofertilizer on phosphorus acquisition and grain yield of soybean. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1433828
Vogt, K. A., & Persson, H. (1991). Measuring Growth and Development of Roots. In J. P. Lassoie & T. M. Hinckley (Eds.), Techniques and Approaches in Forest Tree Ecophysiology (pp. 477–501). CRC Press.https://www.researchgate.net/publication/311693424_Measuring_growth_and_development_of_roots
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88(4), 486–493. https://doi.org/10.1007/bf00317710
Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C. B., Zhu, Y.-G., Burney, J., D’Odorico, P., Fantke, P., Fargione, J., Finlay, J. C., Rulli, M. C., Sloat, L., Jan van Groenigen, K., West, P. C., Ziska, L., Michalak, A. M., the Clim-Ag Team, Lobell, D. B., … Zhuang, M. (2024). Climate change exacerbates the environmental impacts of agriculture. Science (New York, N.Y.), 385(6713). https://doi.org/10.1126/science.adn3747
Zahra, N., Hafeez, M. B., Wahid, A., Al Masruri, M. H., Ullah, A., Siddique, K. H. M., & Farooq, M. (2023). Impact of climate change on wheat grain composition and quality. Journal of the Science of Food and Agriculture, 103(6), 2745–2751. https://doi.org/10.1002/jsfa.12289
Zamani, F., Hosseini, N. M., Oveisi, M., Arvin, K., Rabieyan, E., Torkaman, Z., & Rodriguez, D. (2024). Rhizobacteria and Phytohormonal interactions increase Drought Tolerance in Phaseolus vulgaris through enhanced physiological and biochemical efficiency. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/s41598-024-79422-y
Zapata, T., Galindo, D. M., Corrales-Ducuara, A. R., & Ocampo-Ibáñez, I. D. (2021). The diversity of culture-dependent Gram-negative rhizobacteria associated with Manihot esculenta Crantz plants subjected to water-deficit stress. Diversity, 13(8), 366. https://doi.org/10.3390/d13080366
Zhang, M., Yang, L., Hao, R., Bai, X., Wang, Y., & Yu, X. (2020). Drought-tolerant plant growth promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant and Soil, 452(1–2), 423–440. https://doi.org/10.1007/s11104-020-04582-5
Zweifel, R., Zimmermann, L., & Newbery, D. M. (2005). Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25(2), 147–156. https://doi.org/10.1093/treephys/25.2.147
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 48 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/08988949-0109-419d-8c02-3d6b96a75876/download
https://repositorio.uniandes.edu.co/bitstreams/aaac7ce2-e90a-43f9-aa8d-f7c08bdcc7b0/download
https://repositorio.uniandes.edu.co/bitstreams/a90e41fe-5b89-4571-8e3b-9c3e1f459f48/download
https://repositorio.uniandes.edu.co/bitstreams/d3194d75-e240-41c4-917f-0b753bd8dd28/download
https://repositorio.uniandes.edu.co/bitstreams/35ed00ca-51bc-4ac1-a03d-b742f8532ea5/download
https://repositorio.uniandes.edu.co/bitstreams/6c60ac82-f44d-49e1-9883-c21e90c52970/download
https://repositorio.uniandes.edu.co/bitstreams/2743b596-93be-4255-9d8d-43c6feca7b10/download
bitstream.checksum.fl_str_mv 91ab9ca3ade4a53d9ce3c6f8e5b0c3ce
c30a80af4a6c794bc5f67b72327deec3
ae9e573a68e7f92501b6913cc846c39f
af538cfa91996c27553dbe5259d47a06
c53747931f250ae897cdb9e6669dac1b
e3ad02110a6cbf989ecb02e31b9e4498
e8376b95b79123ac3246a748a308d1ca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159279789506560
spelling Bernal Giraldo, Adriana Jimenavirtual::22981-1Rada Rincón, Fermín JoséOrtiz Medina, Iván AndrésFacultad de Ciencias::Interacciones Moleculares MicrobianasFacultad de Ciencias::Ecofiv: Grupo de Ecologia y Fisiologia Vegetal Uniandino2025-01-31T15:32:46Z2025-01-302025-01-31https://hdl.handle.net/1992/75909instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El cambio climático traerá distintas repercusiones en la vida humana dentro de las cuales resaltan las afectaciones en la agricultura que generarían millones en pérdidas y amenaza la seguridad alimentaria del planeta. Uno de los primordiales desafíos del cambio climático son las profundas sequías que se agravan en las temporadas secas, que además se proyecta que se alargarán en el futuro. Por esta razón, es de suma importancia la búsqueda de alternativas en las cuales se protejan los cultivos como el Frijol que son susceptibles a las sequías. Un medio en estudio por el cual se busca lo anterior, es el uso de rizobacterias promotoras de crecimiento vegetal (RPCVs) que no solamente permiten el crecimiento de las plantas sino han presentado resultados donde protegen a sus hospederos de distintos estreses incluido el estrés hídrico por sequía. Por ello, el presente estudio experimenta el uso de distintas RPCVs de manera individual y en una comunidad sintética en una variedad de frijol ampliamente utilizada en Colombia. Para esto, se realizaron inoculaciones desde semilla para monitorear desde la germinación distintos rasgos fisiológicos como el potencial hídrico, área foliar especifica, peso seco, entre otros. Los resultados permiten entender que la variedad utilizada no es susceptible al estrés hídrico leve y los cambios fisiológicos que presenta a través de las simbiosis con las RPCVs seleccionadas; como la asignación de biomasa al grano bajo condiciones de sequía. Estos resultados prometen el desarrollo de biofertilizantes y la identificación de una variedad de frijol que podrían ser útiles para la seguridad alimentaria bajo las condiciones de sequía proyectadas.Universidad de Los AndesPregrado48 páginasapplication/pdfspaUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfFrijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídricoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPPhaseolus vulgarisPGPREstrés hídricoRasgos ecofisiológicosProducción de granoComunidad sintéticaBiologíaAbbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research International, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6Acosta Vera, A. F. (2024). Bioprospección de bacterias con potencial de biofertilizante de rizosfera de yuca (Manihot esculenta) [Universidad de los Andes]. In Repositorio Institucional Séneca. https://hdl.handle.net/1992/75017Ahsan, N., & Shimizu, M. (2021). Lysinibacillus species: Their potential as effective bioremediation, biostimulant, and biocontrol agents. Reviews in Agricultural Science, 9(0), 103–116. https://doi.org/10.7831/ras.9.0_103AlAli, H. A., Khalifa, A., & Almalki, M. (2021). Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. Suid-Afrikaanse Tydskrif Vir Plantkunde [South African Journal of Botany], 139, 200–209. https://doi.org/10.1016/j.sajb.2021.02.019Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2Al-Amri, S. M. (2021). Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi Journal of Biological Sciences, 28(7), 3901–3908. https://doi.org/10.1016/j.sjbs.2021.03.064Arruda, B., Bejarano-Herrera, W. F., Ortega-Cepeda, M. C., Campo-Quesada, J. M., Toro-Tobón, G.,Estrada-Bonilla, G. A., Silva, A. M. M., & Ferrari Putti, F. (2023). Bioinput inoculation in common beans to mitigate stresses caused by a period of drought. Stresses, 3(4), 842–857. https://doi.org/10.3390/stresses3040057Baert, A., Villez, K., & Steppe, K. (2013). Automatic drought stress detection in grapevines without using conventional threshold values. Plant and Soil, 369(1–2), 439–452. https://doi.org/10.1007/s11104-013-1588-1Bai, Q., Li, M., Zhou, J., Imran, A., de Souza, T. S. P., Barrow, C., Dunshea, F., & Suleria, H. A. R. (2024). Influence of processing methods on phytochemical composition of different varieties of beans ( Phaseolus vulgaris ). Food Reviews International, 40(7), 1941–1979. https://doi.org/10.1080/87559129.2023.2245026Beebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00035Benchling [Biology Software]. (2024). Retrieved from https://benchling.com Bialek, K., Michalczuk, L., & Cohen, J. D. (1992). Auxin Biosynthesis during Seed Germination in Phaseolus vulgaris. Plant Physiology, 100(1), 509–517. https://doi.org/10.1104/pp.100.1.509Bibi, N., Khan, M., Rehman, F. ur, Mahrukh, Room, S., Ahmad, M. A., Iftikhar, M., Munis, M. F. H., & Chaudhary, H. J. (2024). Harnessing Bacillus safensis as biofertilizer for sustainable drought alleviation in Brassica juncea L. Biocatalysis and Agricultural Biotechnology, 61(103388), 103388. https://doi.org/10.1016/j.bcab.2024.103388Botero, H., Barnes, A. P., Perez, L., Rios, D., & Ramirez-Villegas, J. (2021). The determinants of common bean variety selection and diversification in Colombia. Ecological Economics, 190(107181). https://doi.org/10.1016/j.ecolecon.2021.107181Bourne, W. M. (1987). No statistically significant difference: So what? Archives of Ophthalmology, 105(1), 40. https://doi.org/10.1001/archopht.1987.01060010046029Burkhardt, J., Kaiser, H., Goldbach, H., & Kappen, L. (1999). Measurements of electrical leaf surface conductance reveal re‐condensation of transpired water vapour on leaf surfaces. Plant, Cell & Environment, 22(2), 189–196. https://doi.org/10.1046/j.1365-3040.1999.00387.xÇam, S., Küçük, Ç., & Almaca, A. (2023). Bacillus strains exhibit various plant growth promoting traits and their biofilm-forming capability correlates to their salt stress alleviation effect on maize seedlings. Journal of Biotechnology, 369, 35–42. https://doi.org/10.1016/j.jbiotec.2023.05.004Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P., & Dey, P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29(5), 789–803. https://doi.org/10.1007/s11274-012-1234-8Coffey, B. M., & Anderson, G. G. (2014). Biofilm Formation in the 96-well Microtiter Plate. In Pseudomonas Methods and Protocols. Springer. https://link.springer.com/protocol/10.1007/978-1-4939-0473-0_48Cortés, A. J., Monserrate, F. A., Ramírez-Villegas, J., Madriñán, S., & Blair, M. W. (2013). Drought tolerance in wild plant populations: The case of common beans (Phaseolus vulgaris L.). PloS One, 8(5), e62898. https://doi.org/10.1371/journal.pone.0062898Costa França, M. G., Pham Thi, A. T., Pimentel, C., Pereyra Rossiello, R. O., Zuily-Fodil, Y., & Laffray, D. (2000). Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environmental and Experimental Botany, 43(3), 227–237. https://doi.org/10.1016/s0098-8472(99)00060-xCruz de Carvalho, M. H., Van Le, B., Zuily-Fodil, Y., Pham Thi, A. T., & Thanh Van, K. T. (2000). Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Science, 159(2), 223–232. https://doi.org/10.1016/S0168-9452(00)00346-0Dane, J. H., & Topp, C. G. (2020). Methods of Soil Analysis, Part 4. In Google Books (Vol. 4). John Wiley & Sons. https://books.google.com.co/books?hl=en&lr=&id=OYLWDwAAQBAJ&oi=fnd&pg=PR27&dq=DDunn, O. J. (1959). Confidence intervals for the means of dependent, normally distributed variables. Journal of the American Statistical Association, 54(287), 613–621. https://doi.org/10.1080/01621459.1959.10501524El Semillero SAS. (2024). El Semillero, tienda de insumos agroforestales. El SEMILLERO SAS. https://www.elsemillero.co/Figueroa, M. E., Fernández-Baco, L., Luque, T., & Davy, A. J. (1997). Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. Journal of Vegetation Science: Official Organ of the International Association for Vegetation Science, 8(6), 881–888. https://doi.org/10.2307/3237033Fisher, R. A., & Mackenzie, W. A. (1923). Studies in crop variation. II. The manurial response of different potato varieties. The Journal of Agricultural Science, 13(3), 311–320. https://doi.org/10.1017/s0021859600003592Ghorbanpour, M., & Hatami, M. (2014). Biopriming of Salvia officinalis Seed with Growth Promoting Rhizobacteria Affects Invigoration and Germination Indices. J. BIOL. ENVIRON. SCI, 8(22), 29–36. https://dergipark.org.tr/en/download/article-file/497426Hernández Alcántara, N. (2024a). Caracterización de bacterias de rizosfera como colonizadoras de raíces y aliviadoras del estrés por déficit hídrico.Hernández Alcántara, N. (2024b). Efecto de bacterias promotoras de crecimiento vegetal en dos variedades de Coffea arabica L. ante condiciones de déficit hídrico.Jinal, H. N., Gopi, K., Kumar, K., & Amaresan, N. (2021). Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environmental Science and Pollution Research International, 28(6), 6540–6548. https://doi.org/10.1007/s11356-020-10998-4Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/s13213-015-1112-3Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441Kumar, S., Lawrence, D. M., Dirmeyer, P. A., & Sheffield, J. (2013). Less reliable water availability in the 21st century climate projections. Earth’s Future, 2(3), 152–160. https://doi.org/10.1002/2013ef000159Kumar, A., Maurya, B. R., & Raghuwanshi, R. (2021). The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition, 44(13), 1942–1956. https://doi.org/10.1080/01904167.2021.1884706Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S., & Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. Journal of Plant Growth Regulation, 36(3), 608–617. https://doi.org/10.1007/s00344-016-9663-5Levene, H. (1960). Robust tests for equality of variances.Lo Giudice, A., Brilli, M., Bruni, V., De Domenico, M., Fani, R., & Michaud, L. (2007). Bacteriumbacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology, 60(3), 383–396. https://doi.org/10.1111/j.1574-6941.2007.00300.xMarchin, R. M., Ossola, A., Leishman, M. R., & Ellsworth, D. S. (2020). A Simple Method for Simulating Drought Effects on Plants. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01715Martínez, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy: The Journal of the European Society for Agronomy, 26(1), 30–38. https://doi.org/10.1016/j.eja.2006.08.003Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005Meza, C., Valenzuela, F., Echeverría-Vega, A., Gomez, A., Sarkar, S., Cabeza, R. A., Arencibia, A. D., Quiroz, K., Carrasco, B., & Banerjee, A. (2022). Plant-growth-promoting bacteria from rhizosphere of Chilean common bean ecotype (Phaseolus vulgaris L.) supporting seed germination and growth against salinity stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1052263Mujumdar, S., Bhoyar, J., Akkar, A., Hundekar, S., Agnihotri, N., Jaybhay, P., & Bhuyan, S. (2023). Chapter 15 - Acinetobacter: A versatile plant growth-promoting rhizobacteria (PGPR). In P. Swapnil, Harish, S. Vijayalakshmi, M. Meena, A. Marwal, & A. Zehra (Eds.), Plant-Microbe Interaction -Recent Advances in Molecular and Biochemical Approaches. Volume 1 : Overview of Biochemical and Physiological Alteration During Plant-Microbe Interaction (pp. 327–362). Academic Press. https://doi.org/10.1016/B978-0-323-91875-6.00009-8Ojuederie, O., Olanrewaju, O., & Babalola, O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy (Basel, Switzerland), 9(11), 712. https://doi.org/10.3390/agronomy9110712Orozco-Mosqueda, M. del C., Rocha-Granados, M. del C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 208, 25–31. https://doi.org/10.1016/j.micres.2018.01.005Paisaje Natural SAS. (2024, January 11). Inicio - Vivero Paisaje Natural. Vivero Paisaje Natural. https://viveropaisajenatural.com/Parker, T. A., Gallegos, J. A.,Delgado Salinas, A., Dohle, S., Ernest, E., de Jensen, C. E., Gomez, F., Hellier, B., Karasev, A. V., Kelly, J. D., Beaver, J., Brick, M., Brown, J. K., Cichy, K., Debouck, D. G., McClean, P., Miklas, P., Myers, J. R., Osorno, J. M., … Gepts, P. (2022). Genetic resources and breeding priorities in Phaseolus beans: Vulnerability, resilience, and future challenges. In I. Goldman (Ed.), Plant Breeding Reviews. Volume 46 (pp. 289–420). Wiley. https://doi.org/10.1002/9781119874157.ch6Patono, D. L., Said-Pullicino, D., Eloi Alcatrāo, L., Firbus, A., Ivaldi, G., Chitarra, W., Ferrandino, A., Ricauda Aimonino, D., Celi, L., Gambino, G., Perrone, I., & Lovisolo, C. (2022). Photosynthetic recovery in drought‐rehydrated grapevines is associated with high demand from the sinks, maximizing the fruit‐oriented performance. The Plant Journal: For Cell and Molecular Biology, 112(4), 1098–1111. https://doi.org/10.1111/tpj.16000Pequeno, D. N. L., Hernández-Ochoa, I. M., Reynolds, M., Sonder, K., MoleroMilan, A., Robertson, R. D., Lopes, M. S., Xiong, W., Kropff, M., & Asseng, S. (2021). Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abd970Pérez-Llorca, M., Fenollosa, E., Salguero-Gómez, R., & Munné-Bosch, S. (2018). What is the minimal optimal sample size for plant ecophysiological studies? Plant Physiology, 178(3), 953–955. https://doi.org/10.1104/pp.18.01001Petrović, M., Janakiev, T., Grbić, M. L., Unković, N., Stević, T., Vukićević, S., & Dimkić, I. (2024). Insights into endophytic and rhizospheric bacteria of five sugar beet hybrids in terms of their diversity, plant-growth promoting, and biocontrol properties. Microbial Ecology, 87(1). https://doi.org/10.1007/s00248-023-02329-0Pisco-Ortiz, C., González-Almario, A., Uribe-Gutiérrez, L., Soto-Suárez, M., & Amaya-Gómez, C. V. (2023). Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon. World Journal of Microbiology and Biotechnology, 39(11). https://doi.org/10.1007/s11274-023-03719-9Pramanik, K., Mitra, S., Sarkar, A., & Maiti, T. K. (2018). Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 351, 317–329. https://doi.org/10.1016/j.jhazmat.2018.03.009Rafique, M., Naveed, M., Mumtaz, M. Z., Niaz, A., Alamri, S., Siddiqui, M. H., Waheed, M. Q., Ali, Z., Naman, A., Rehman, S. ur, Brtnicky, M., & Mustafa, A. (2024). Unlocking the potential of biofilm forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.). Scientific Reports, 14(1), 1–18. https://doi.org/10.1038/s41598-024-66562-4Ramos, M. L. G., Gordon, A. J., Minchin, F. R., Sprent, J. I., & Parsons, R. (1999). Effect of Water Stress on Nodule Physiology and Biochemistry of a Drought Tolerant Cultivar of Common Bean (Phaseolus vulgaris L.). Annals of Botany, 83(1), 57–63. https://doi.org/10.1006/anbo.1998.0792Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., Dhakephalkar, P. K., & Chopade, B. A. (2011). Characterization of Plant-Growth-Promoting Traits of Acinetobacter Species Isolated from Rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556–566. https://doi.org/10.4014/jmb.1012.12006Rosales, M. A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., & Covarrubias, A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiology and Biochemistry, 56, 24–34. https://doi.org/10.1016/j.plaphy.2012.04.007RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/Rühle, T., Reiter, B., & Leister, D. (2018). Chlorophyll fluorescence video imaging: A versatile tool for identifying factors related to photosynthesis. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00055Saikia, J., Kotoky, R., Debnath, R., Kumar, N., Gogoi, P., Yadav, A., & Saikia, R. (2023). De novogenomic analysis ofEnterobacter asburiaeEBRJ12, a plant growth-promoting rhizobacteria isolated from the rhizosphere of Phaseolus vulgarisL. Journal of Applied Microbiology, 134(2). https://doi.org/10.1093/jambio/lxac090Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. del C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475. https://doi.org/10.3390/biology10060475Sarma, A. K., & Deka, K. (2024). Plant growth promoting rhizobacteria: An option for reducing abiotic stress in plant. Communications in Soil Science and Plant Analysis, 55(15), 2267–2284. https://doi.org/10.1080/00103624.2024.2353745Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591Singh, S. P. (2007). Drought resistance in the race Durango dry bean landraces and cultivars. Agronomy Journal, 99(5), 1219–1225. https://doi.org/10.2134/agronj2006.0301Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5744–5749. https://doi.org/10.1073/pnas.1503376112Spector, P. E. (1977). What to do with significant multivariate effects in multivariate analyses of variance. The Journal of Applied Psychology, 62(2), 158–163. https://doi.org/10.1037/0021-9010.62.2.158Thibeaux, R., Kainiu, M., & Goarant, C. (2020). Biofilm Formation and Quantification Using the 96-Microtiter Plate. In Methods in Molecular Biology (pp. 207–214). Springer. https://doi.org/10.1007/978-1-0716-0459-5_19Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001Tukey, J. W. (1953). The problem of multiple comparisons. Multiple comparisons.Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S., & Bales, S. (2023). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Science, 5(1). https://doi.org/10.1002/leg3.155Vitorino, L. C., da Silva, E. J., Oliveira, M. S., Silva, I. de O., Santos, L. da S., Mendonça, M. A. C., Oliveira, T. C. S., & Bessa, L. A. (2024). Effect of a Bacillus velezensis and Lysinibacillus fusiformis based biofertilizer on phosphorus acquisition and grain yield of soybean. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1433828Vogt, K. A., & Persson, H. (1991). Measuring Growth and Development of Roots. In J. P. Lassoie & T. M. Hinckley (Eds.), Techniques and Approaches in Forest Tree Ecophysiology (pp. 477–501). CRC Press.https://www.researchgate.net/publication/311693424_Measuring_growth_and_development_of_rootsWeisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88(4), 486–493. https://doi.org/10.1007/bf00317710Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C. B., Zhu, Y.-G., Burney, J., D’Odorico, P., Fantke, P., Fargione, J., Finlay, J. C., Rulli, M. C., Sloat, L., Jan van Groenigen, K., West, P. C., Ziska, L., Michalak, A. M., the Clim-Ag Team, Lobell, D. B., … Zhuang, M. (2024). Climate change exacerbates the environmental impacts of agriculture. Science (New York, N.Y.), 385(6713). https://doi.org/10.1126/science.adn3747Zahra, N., Hafeez, M. B., Wahid, A., Al Masruri, M. H., Ullah, A., Siddique, K. H. M., & Farooq, M. (2023). Impact of climate change on wheat grain composition and quality. Journal of the Science of Food and Agriculture, 103(6), 2745–2751. https://doi.org/10.1002/jsfa.12289Zamani, F., Hosseini, N. M., Oveisi, M., Arvin, K., Rabieyan, E., Torkaman, Z., & Rodriguez, D. (2024). Rhizobacteria and Phytohormonal interactions increase Drought Tolerance in Phaseolus vulgaris through enhanced physiological and biochemical efficiency. Scientific Reports, 14(1), 1–17. https://doi.org/10.1038/s41598-024-79422-yZapata, T., Galindo, D. M., Corrales-Ducuara, A. R., & Ocampo-Ibáñez, I. D. (2021). The diversity of culture-dependent Gram-negative rhizobacteria associated with Manihot esculenta Crantz plants subjected to water-deficit stress. Diversity, 13(8), 366. https://doi.org/10.3390/d13080366Zhang, M., Yang, L., Hao, R., Bai, X., Wang, Y., & Yu, X. (2020). Drought-tolerant plant growth promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant and Soil, 452(1–2), 423–440. https://doi.org/10.1007/s11104-020-04582-5Zweifel, R., Zimmermann, L., & Newbery, D. M. (2005). Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25(2), 147–156. https://doi.org/10.1093/treephys/25.2.147202012944Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22981-1https://scholar.google.es/citations?user=vQ9yFZoAAAAJ0000-0002-3557-697Xvirtual::22981-10000-0002-3557-697Xhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22981-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00006223544e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22981-14e93f81c-d517-4226-80b7-2c5d693a24f44e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22981-1ORIGINAL202012944_ForAutEntTesis_TraGraSisBib_202420.pdf202012944_ForAutEntTesis_TraGraSisBib_202420.pdfHIDEapplication/pdf159869https://repositorio.uniandes.edu.co/bitstreams/08988949-0109-419d-8c02-3d6b96a75876/download91ab9ca3ade4a53d9ce3c6f8e5b0c3ceMD51Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdfFrijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdfSin acceso de forma indefinida. El trabajo de grado hace parte de un proyecto de la Universidad de Los Andes llamado "Bioprospección, bioestabilización y formulación de microorganismos benéficos para plantas" que tiene como objetivo la formulación de bioproductos. Que además cuenta con un acuerdo de confidencialidad y cesión de derechos de propiedad intelectual del autor hacia la Universidad de Los Andes.application/pdf1621817https://repositorio.uniandes.edu.co/bitstreams/aaac7ce2-e90a-43f9-aa8d-f7c08bdcc7b0/downloadc30a80af4a6c794bc5f67b72327deec3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/a90e41fe-5b89-4571-8e3b-9c3e1f459f48/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXT202012944_ForAutEntTesis_TraGraSisBib_202420.pdf.txt202012944_ForAutEntTesis_TraGraSisBib_202420.pdf.txtExtracted texttext/plain1609https://repositorio.uniandes.edu.co/bitstreams/d3194d75-e240-41c4-917f-0b753bd8dd28/downloadaf538cfa91996c27553dbe5259d47a06MD54Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdf.txtFrijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdf.txtExtracted texttext/plain83605https://repositorio.uniandes.edu.co/bitstreams/35ed00ca-51bc-4ac1-a03d-b742f8532ea5/downloadc53747931f250ae897cdb9e6669dac1bMD56THUMBNAIL202012944_ForAutEntTesis_TraGraSisBib_202420.pdf.jpg202012944_ForAutEntTesis_TraGraSisBib_202420.pdf.jpgGenerated Thumbnailimage/jpeg11106https://repositorio.uniandes.edu.co/bitstreams/6c60ac82-f44d-49e1-9883-c21e90c52970/downloade3ad02110a6cbf989ecb02e31b9e4498MD55Frijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdf.jpgFrijol y rizobacterias: respuestas fisiológicas y de asignación de biomasa bajo condiciones de déficit hídrico.pdf.jpgGenerated Thumbnailimage/jpeg6587https://repositorio.uniandes.edu.co/bitstreams/2743b596-93be-4255-9d8d-43c6feca7b10/downloade8376b95b79123ac3246a748a308d1caMD571992/75909oai:repositorio.uniandes.edu.co:1992/759092025-03-05 09:38:13.544https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K