Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana

Con el fin de comprender la forma en que Xanthomonas phaseoli pv. manihotis causa enfermedad en yuca, se evaluó la interacción molecular entre el efector XopAE de esta bacteria y la patelina 3, su posible proteína blanco. Para ello, se empleó como modelo Arabidopsis thaliana con su proteína homóloga...

Full description

Autores:
Bejarano Franco, Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64345
Acceso en línea:
http://hdl.handle.net/1992/64345
Palabra clave:
Xanthomonas phaseoli pv. manihotis
Patelina 3
Dominio proteico
Doble híbrido de levadura
Microbiología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_da3931ade1c836095dcfbcfe45db69ba
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64345
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
title Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
spellingShingle Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
Xanthomonas phaseoli pv. manihotis
Patelina 3
Dominio proteico
Doble híbrido de levadura
Microbiología
title_short Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
title_full Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
title_fullStr Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
title_full_unstemmed Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
title_sort Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana
dc.creator.fl_str_mv Bejarano Franco, Daniela
dc.contributor.advisor.none.fl_str_mv Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Bejarano Franco, Daniela
dc.contributor.jury.none.fl_str_mv Zimmermann, Barbara Hanna
dc.contributor.researchgroup.es_CO.fl_str_mv Laboratorio de Interacciones Moleculares de Microorganismos en Agricultura
dc.subject.keyword.none.fl_str_mv Xanthomonas phaseoli pv. manihotis
Patelina 3
Dominio proteico
Doble híbrido de levadura
topic Xanthomonas phaseoli pv. manihotis
Patelina 3
Dominio proteico
Doble híbrido de levadura
Microbiología
dc.subject.themes.es_CO.fl_str_mv Microbiología
description Con el fin de comprender la forma en que Xanthomonas phaseoli pv. manihotis causa enfermedad en yuca, se evaluó la interacción molecular entre el efector XopAE de esta bacteria y la patelina 3, su posible proteína blanco. Para ello, se empleó como modelo Arabidopsis thaliana con su proteína homóloga para la patelina 3. Además se buscó determinar los dominios proteicos que permiten la interacción mediante el sistema de doble híbrido de levadura.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-30T21:42:45Z
dc.date.available.none.fl_str_mv 2023-01-30T21:42:45Z
dc.date.issued.none.fl_str_mv 2023-01-30
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64345
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64345
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Anantharaman, V, & Aravind, L. (2002). The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biology, 3(5), 1-7.
Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller., & Lipman, D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25, 3389-3402.
Andargie, M., & Li, J. (2016). Arabidopsis thaliana: A Model Host Plant to Study Plant-Pathogen Interaction Using Rice False Smut Isolates of Ustilaginoidea virens. Frontiers in Plant Science, 7.
Boller, T., Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379-406.
Bolton M.D (2009) Primary metabolism and plant defense--fuel for the fire. Molecular Plant Microbe Interactions, 22, 487-497.
CLONTECH, 2001. Yeast Protocols Handbook - CLONTECH Laboratories, Inc.
Couto, D & Zipfel, C. (2016) Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16, 537-552.
Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329. doi: 10.1038/nature05286
Jumper et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature.
Khan, M., Seto, D., Subramaniam, R., & Desveaux D. (2017). Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. The Plant Journal, 93(4), 651-663.
Koegl, M & Uetz, P. (2008). Improving yeast two-hybrid screening systems. Functional Genomics and Proteomics. 6(4), 302-312. doi: 10.1093/bfgp/elm035
López, C. E., & Bernal, A. J. (2012). Cassava bacterial blight: using genomics for the elucidation and management of an old problem. Tropical Plant Biology, 5, 117-126. doi: 10.1007/s12042-011-9092-3
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., et al. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi: 10.1111/j.1364-3703.2012.00804.
Mohapatra, S., Ray, R.C., & Ramachandran, S. (2019). Bioethanol From Biorenewable Feedstocks: Technology, Economics, and Challenges. Bioethanol Production from Food Crops, 3-37.
Peterman TK, Ohol YM, McReynolds LJ, Luna EJ. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiology, 136(2), 3080-3094. [PubMed: 15466235] 
Salvador, E.M., Steenkamp, V., & Mcrindle, C.M.E. (2014). Production, Consuption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. Journal of Agricultural Biotechnology and Sustainable Development, 6(3), 29-38.
Scholthof KB. (2007) The disease triangle: pathogens, the environment and society. Nature Reviews Microbiology, 5(2),152-6. doi: 10.1038/nrmicro1596.
Schreiber, K., Chau-Ly I., & Lewis, J. (2021). What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms, 9(5), 1029.  
Sierra, M. C. (2021). How to transport lipids: A brief history of patellins. [Monografía]
Soto, J. C., Mora Moreno, R. E., Mathew, B., Léon, J., Gómez Cano, F. A., Ballvora, A., & López Carrascal, C. E. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8, 1169.
Tejos, R. Rodriguez-Furlan, C. Adamowski, M. Sauer, M. Norambuena, L. Friml, J. (2017). PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 
Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Garnica, D., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., Lopez, C., & Bernal, A. (2013). HpaF from Xanthomonas axonopodis pv. Manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. [Tesis Doctoral]. 
Varadi, M et al. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research
Wu, C., Tan, L., Van Hooren, M., Tan X., Liu, F., Li, Y., Zhao, Y., Li, B., Rui, Q., Munnik, T., & Bao, Y, (2017). Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. Journal of Integrative Plant Biology, 59(12), 851-865. doi: 10.1111/jipb.12578
Zárate- Chaves, C., Gómez de la cruz, D., Verdier, V., López, C., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassava. Molecular Plant Pathology, 22(12), 1520-1537.
Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94-97. doi: 10.1016/j.jplph.2019.01.012
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 20 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Microbiología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/761c250a-0147-4256-a16d-3518f56f123d/download
https://repositorio.uniandes.edu.co/bitstreams/0631b9dd-9a72-424f-9e24-26fb449328df/download
https://repositorio.uniandes.edu.co/bitstreams/d39ce37b-33ae-48d8-8109-123c07c044c0/download
https://repositorio.uniandes.edu.co/bitstreams/e8e17c60-ea95-47d9-98b2-b8f0b0cdd996/download
https://repositorio.uniandes.edu.co/bitstreams/61303b78-9339-495e-a468-a58d0b73c912/download
https://repositorio.uniandes.edu.co/bitstreams/4e0bbe1e-af01-42d7-8389-37498934f4b2/download
https://repositorio.uniandes.edu.co/bitstreams/befdcc71-2af8-47e4-a29d-8589ca986820/download
bitstream.checksum.fl_str_mv be34d3e97040618785dd7de1ac0549a0
4491fe1afb58beaaef41a73cf7ff2e27
5aa5c691a1ffe97abd12c2966efcb8d6
58852a290af5da4327cce9a0e0bf03c0
4a64fcbd4aed08c47dcff0ca02d519bf
e299dd88a4804c2c38cca3b48632875c
cea3badd7d80eb1e969ddc6aff1eeb68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112006792675328
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Giraldo, Adriana Jimenavirtual::15328-1Bejarano Franco, Daniela7376da02-b1fc-44e8-ad1b-047d3dd087fc600Zimmermann, Barbara HannaLaboratorio de Interacciones Moleculares de Microorganismos en Agricultura2023-01-30T21:42:45Z2023-01-30T21:42:45Z2023-01-30http://hdl.handle.net/1992/64345instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Con el fin de comprender la forma en que Xanthomonas phaseoli pv. manihotis causa enfermedad en yuca, se evaluó la interacción molecular entre el efector XopAE de esta bacteria y la patelina 3, su posible proteína blanco. Para ello, se empleó como modelo Arabidopsis thaliana con su proteína homóloga para la patelina 3. Además se buscó determinar los dominios proteicos que permiten la interacción mediante el sistema de doble híbrido de levadura.MicrobiólogoPregrado20 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasDominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thalianaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPXanthomonas phaseoli pv. manihotisPatelina 3Dominio proteicoDoble híbrido de levaduraMicrobiologíaAnantharaman, V, & Aravind, L. (2002). The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biology, 3(5), 1-7.Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller., & Lipman, D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25, 3389-3402.Andargie, M., & Li, J. (2016). Arabidopsis thaliana: A Model Host Plant to Study Plant-Pathogen Interaction Using Rice False Smut Isolates of Ustilaginoidea virens. Frontiers in Plant Science, 7.Boller, T., Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379-406.Bolton M.D (2009) Primary metabolism and plant defense--fuel for the fire. Molecular Plant Microbe Interactions, 22, 487-497.CLONTECH, 2001. Yeast Protocols Handbook - CLONTECH Laboratories, Inc.Couto, D & Zipfel, C. (2016) Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16, 537-552.Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329. doi: 10.1038/nature05286Jumper et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature.Khan, M., Seto, D., Subramaniam, R., & Desveaux D. (2017). Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. The Plant Journal, 93(4), 651-663.Koegl, M & Uetz, P. (2008). Improving yeast two-hybrid screening systems. Functional Genomics and Proteomics. 6(4), 302-312. doi: 10.1093/bfgp/elm035López, C. E., & Bernal, A. J. (2012). Cassava bacterial blight: using genomics for the elucidation and management of an old problem. Tropical Plant Biology, 5, 117-126. doi: 10.1007/s12042-011-9092-3Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., et al. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi: 10.1111/j.1364-3703.2012.00804.Mohapatra, S., Ray, R.C., & Ramachandran, S. (2019). Bioethanol From Biorenewable Feedstocks: Technology, Economics, and Challenges. Bioethanol Production from Food Crops, 3-37.Peterman TK, Ohol YM, McReynolds LJ, Luna EJ. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiology, 136(2), 3080-3094. [PubMed: 15466235] Salvador, E.M., Steenkamp, V., & Mcrindle, C.M.E. (2014). Production, Consuption and nutritional value of cassava (Manihot esculenta, Crantz) in Mozambique: An overview. Journal of Agricultural Biotechnology and Sustainable Development, 6(3), 29-38.Scholthof KB. (2007) The disease triangle: pathogens, the environment and society. Nature Reviews Microbiology, 5(2),152-6. doi: 10.1038/nrmicro1596.Schreiber, K., Chau-Ly I., & Lewis, J. (2021). What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms, 9(5), 1029.  Sierra, M. C. (2021). How to transport lipids: A brief history of patellins. [Monografía]Soto, J. C., Mora Moreno, R. E., Mathew, B., Léon, J., Gómez Cano, F. A., Ballvora, A., & López Carrascal, C. E. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8, 1169.Tejos, R. Rodriguez-Furlan, C. Adamowski, M. Sauer, M. Norambuena, L. Friml, J. (2017). PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. Trujillo, C. A., Hurtado, V., Gil, J., Joe, A., Garnica, D., Saur, I., Restrepo, S., Alfano, J. R., Rathjen, J., Lopez, C., & Bernal, A. (2013). HpaF from Xanthomonas axonopodis pv. Manihotis is a suppressor of basal defenses in plants by targeting three proteins in cassava. [Tesis Doctoral]. Varadi, M et al. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids ResearchWu, C., Tan, L., Van Hooren, M., Tan X., Liu, F., Li, Y., Zhao, Y., Li, B., Rui, Q., Munnik, T., & Bao, Y, (2017). Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. Journal of Integrative Plant Biology, 59(12), 851-865. doi: 10.1111/jipb.12578Zárate- Chaves, C., Gómez de la cruz, D., Verdier, V., López, C., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassava. Molecular Plant Pathology, 22(12), 1520-1537.Zhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94-97. doi: 10.1016/j.jplph.2019.01.012201812786Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::15328-10000-0002-3557-697Xvirtual::15328-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::15328-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::15328-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::15328-1TEXTDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdf.txtDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdf.txtExtracted texttext/plain36133https://repositorio.uniandes.edu.co/bitstreams/761c250a-0147-4256-a16d-3518f56f123d/downloadbe34d3e97040618785dd7de1ac0549a0MD54Formato de autorizacion y entrega de tesis.pdf.txtFormato de autorizacion y entrega de tesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/0631b9dd-9a72-424f-9e24-26fb449328df/download4491fe1afb58beaaef41a73cf7ff2e27MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/d39ce37b-33ae-48d8-8109-123c07c044c0/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdf.jpgDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdf.jpgIM Thumbnailimage/jpeg6451https://repositorio.uniandes.edu.co/bitstreams/e8e17c60-ea95-47d9-98b2-b8f0b0cdd996/download58852a290af5da4327cce9a0e0bf03c0MD55Formato de autorizacion y entrega de tesis.pdf.jpgFormato de autorizacion y entrega de tesis.pdf.jpgIM Thumbnailimage/jpeg16084https://repositorio.uniandes.edu.co/bitstreams/61303b78-9339-495e-a468-a58d0b73c912/download4a64fcbd4aed08c47dcff0ca02d519bfMD57ORIGINALDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdfDominios de interaccion entre la proteina efectora XopAE de Xanthomonas phaseoli pv. manihotis y la patelina 3 en Arabidopsis thaliana .pdfTrabajo de gradoapplication/pdf1147153https://repositorio.uniandes.edu.co/bitstreams/4e0bbe1e-af01-42d7-8389-37498934f4b2/downloade299dd88a4804c2c38cca3b48632875cMD52Formato de autorizacion y entrega de tesis.pdfFormato de autorizacion y entrega de tesis.pdfHIDEapplication/pdf232668https://repositorio.uniandes.edu.co/bitstreams/befdcc71-2af8-47e4-a29d-8589ca986820/downloadcea3badd7d80eb1e969ddc6aff1eeb68MD531992/64345oai:repositorio.uniandes.edu.co:1992/643452024-11-14 14:51:16.403https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==