Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia

Cardiovascular diseases remain a leading cause of mortality globally. Heart failure often results in irreversible damage and the formation of non-contractile fibrotic scars that are not capable of proper electrical transmission as they are not an adequate substitute for cardiomyocytes. The scars are...

Full description

Autores:
Arenas Pérez, Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75796
Acceso en línea:
https://hdl.handle.net/1992/75796
Palabra clave:
Heart Regeneration
Electrocardiogram
Hypoxia
Normoxia
Danio rerio
Hypobaric hypoxia
Biología
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_d92e428c12c2377cf35b8f1690ec530d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75796
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
title Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
spellingShingle Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
Heart Regeneration
Electrocardiogram
Hypoxia
Normoxia
Danio rerio
Hypobaric hypoxia
Biología
title_short Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
title_full Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
title_fullStr Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
title_full_unstemmed Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
title_sort Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia
dc.creator.fl_str_mv Arenas Pérez, Camilo
dc.contributor.advisor.none.fl_str_mv Garavito Aguilar, Zayra Viviana
Vásquez Vélez, Isabel Cristina
dc.contributor.author.none.fl_str_mv Arenas Pérez, Camilo
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Laboratorio de Biología del desarrollo (Bioldes)
dc.subject.keyword.eng.fl_str_mv Heart Regeneration
Electrocardiogram
Hypoxia
Normoxia
Danio rerio
Hypobaric hypoxia
topic Heart Regeneration
Electrocardiogram
Hypoxia
Normoxia
Danio rerio
Hypobaric hypoxia
Biología
dc.subject.themes.spa.fl_str_mv Biología
description Cardiovascular diseases remain a leading cause of mortality globally. Heart failure often results in irreversible damage and the formation of non-contractile fibrotic scars that are not capable of proper electrical transmission as they are not an adequate substitute for cardiomyocytes. The scars are made of a non-contractile collagenous tissue that thins and compacts over time, increasing stress to the heart walls causing problems such as arrhythmias. Current research focuses on regenerative approaches to restore the lost cardiac tissue, using model organisms such as zebrafish (Danio rerio) due to their heart regeneration capacity, and similarities to humans in cell composition and electric activity. This study investigates the effects of hypobaric hypoxia on the regeneration processes as the hypoxia-inducible factors (HIF) have been seen to change cell metabolism, management of oxidative stress, and angiogenesis likely affecting heart electric activity. This was functionally visualized following the ventricular regeneration process after cryoinjury using electrocardiogram (ECG) analysis. Thus, we assess the cardiac electrical activity throughout the regeneration process of the zebrafish comparing a state of normoxia and a state of hypobaric hypoxia. All ECG data were processed through a principal component analysis, which revealed possible differences in cardiac recovery patterns between hypoxic and normoxic groups. Hypoxia-exposed zebrafish demonstrated potentially faster heart rate recovery, shorter RR intervals, likely influenced by chronic hypoxia adaptations such as enhanced HIF-1α expression and increased sympathetic nerve activity. These findings suggest that hypoxia could make the regeneration process more efficient, and prepare the heart for events of heart failure, which correlates with studies of humans permanently residing in high-altitude regions.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-29T20:23:46Z
dc.date.available.none.fl_str_mv 2025-01-29T20:23:46Z
dc.date.issued.none.fl_str_mv 2025-01-29
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75796
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75796
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Arel, E., Rolland, L., Thireau, J., Torrente, AG., Bechard, E., Bride, J., Jopling, C., Demion, M., & Guennec, J.-Y. L. (2022, January 1). Characterization of the adult zebrafish electrocardiogram. bioRxiv. https://doi.org/10.1101/2022.02.02.478776
Bo, B., Li, S., Zhou, K., & Wei, J. (2021). The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Frontiers in cell and developmental biology, 9, 664527. https://doi.org/10.3389/fcell.2021.664527
Bocchi, E. A., Arias, A., Verdejo, H., Diez, M., Gómez, E., Castro, P., & Interamerican Society of Cardiology (2013). The reality of heart failure in Latin America. Journal of the American College of Cardiology, 62(11), 949–958. https://doi.org/10.1016/j.jacc.2013.06.013
Boron, W. F. & Boulpaep, E. L. Cardiac Electrophysiology and the Electrocardiogram. Medical Physiology (Third Edition, pp. 483–506). Elsevier. Retrieved 2024, from https://www-clinicalkey-com.ezproxy.uniandes.edu.co/#!/content/book/3-s2.0-B9781455743773000215.
Burtscher M. (2013). Effects of living at higher altitudes on mortality: a narrative review. Aging and disease, 5(4), 274–280. https://doi.org/10.14336/AD.2014.0500274
Burtscher, J., Citherlet, T., Camacho-Cardenosa, A., Camacho-Cardenosa, M., Raberin, A., Krumm, B., Hohenauer, E., Egg, M., Lichtblau, M., Müller, J., Rybnikova, E. A., Gatterer, H., Debevec, T., Baillieul, S., Manferdelli, G., Behrendt, T., Schega, L., Ehrenreich, H., Millet, G. P., Gassmann, M., … Mallet, R. T. (2024). Mechanisms underlying the health benefits of intermittent hypoxia conditioning. The Journal of physiology, 602(21), 5757–5783. https://doi.org/10.1113/JP285230
Calbet, J. A., Robach, P., & Lundby, C. (2009). The exercising heart at altitude. Cellular and molecular life sciences : CMLS, 66(22), 3601–3613. https://doi.org/10.1007/s00018-009-0148-6
Chablais, F., Veit, J., Rainer, G. et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11, 21 (2011). https://doi.org/10.1186/1471-213X-11-21
Dall, C., Khan, M., Chen, C.-A., & Angelos, M. G. (2016). Oxygen cycling to improve survival of stem cells for myocardial repair: A Review. Life Sciences, 153, 124–131. https://doi.org/10.1016/j.lfs.2016.04.011
Dbouk, H. A., Mroue, R. M., El-Sabban, M. E., & Talhouk, R. S. (2009). Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell communication and signaling : CCS, 7, 4. https://doi.org/10.1186/1478-811X-7-4
Ezzati, M., Murray Horwitz, M. E., Thomas, D. S., Friedman, A. B., Roach, R., Clark, T., Murray, C. J., & Honigman, B. (2012). Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. Journal of epidemiology and community health, 66(7), e17. https://doi.org/10.1136/jech.2010.112938
Faeh D, Gutzwiller F, Bopp M. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. 2009;120(6):495–501.
Faulhaber, M., Gatterer, H., Haider, T., Linser, T., Netzer, N., & Burtscher, M. (2015). Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD. International journal of chronic obstructive pulmonary disease, 10, 339–345. https://doi.org/10.2147/COPD.S75749
Gao, R., & Ren, J. (2021, July 20). Zebrafish models in therapeutic research of cardiac conduction disease. Frontiers. https://doi.org/10.3389/fcell.2021.731402
Garbern, J. C., & Lee, R. T. (2022). Heart regeneration: 20 years of progress and renewed optimism. Developmental cell, 57(4), 424–439. https://doi.org/10.1016/j.devcel.2022.01.012
González-Rosa, J. M., Burns, C. E., & Burns, C. G. (2017). Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 4(3), 105–123. https://doi.org/10.1002/reg2.83
Hara H, Takeda N, Komuro I. Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regen. 2017;37(1):1–10
Hochachka P. W. (1998). Mechanism and evolution of hypoxia-tolerance in humans. The Journal of experimental biology, 201(Pt 8), 1243–1254. https://doi.org/10.1242/jeb.201.8.1243
Howe, K., Clark, M., Torroja, C. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503. https://doi.org/10.1038/nature12111
Johnson FL. Pathophysiology and Etiology of Heart Failure. Cardiol Clin [Internet]. 2014;32(1):9–19. Available from: http://dx.doi.org/10.1016/j.ccl.2013.09.015
Jopling, C., Suñé, G., Faucherre, A., Fabregat, C., & Izpisua Belmonte, J. C. (2012). Hypoxia induces myocardial regeneration in zebrafish. Circulation, 126(25), 3017–3027. https://doi.org/10.1161/CIRCULATIONAHA.112.107888
Kotini, M., Barriga, E.H., Leslie, J. et al. Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun 9, 3846 (2018). https://doi.org/10.1038/s41467-018-06368-x
Mandic, M., Joyce, W., & Perry, S. F. (2021). The evolutionary and physiological significance of the HIF pathway in teleost fishes. Journal of Experimental Biology, 224(18). https://doi.org/10.1242/jeb.231936
Nakada, Y., Canseco, D. C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C. X., Shah, A. M., Zhang, H., Faber, J. E., Kinter, M. T., Szweda, L. I., Xing, C., Hu, Z., Deberardinis, R. J., Schiattarella, G., Hill, J. A., Oz, O., Lu, Z., Zhang, C. C., … Sadek, H. A. (2016). Hypoxia induces heart regeneration in adult mice. Nature, 541(7636), 222–227. https://doi.org/10.1038/nature20173
Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G., & Ravens, U. (2010). Adult zebrafish heart as a model for human heart? An electrophysiological study. Journal of molecular and cellular cardiology, 48(1), 161–171. https://doi.org/10.1016/j.yjmcc.2009.08.034
Ostadal B, Kolar F. (2007). Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects. Respir Physiol Neurobiol. 2007;158(2–3):224–36. https://doi.org/10.1016/j.resp.2007.03.005
Price, E. L., Vieira, J. M., & Riley, P. R. (2019). Model organisms at the heart of regeneration. Disease models & mechanisms, 12(10), dmm040691. https://doi.org/10.1242/dmm.040691
Richardson, W. J., Clarke, S. A., Quinn, T. A., & Holmes, J. W. (2015). Physiological Implications of Myocardial Scar Structure. Comprehensive Physiology, 5(4), 1877–1909. https://doi.org/10.1002/cphy.c140067
Rodríguez-Sinovas, A., Sánchez, J. A., Valls-Lacalle, L., Consegal, M., & Ferreira-González, I. (2021). Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. International journal of molecular sciences, 22(9), 4413. https://doi.org/10.3390/ijms22094413
Sattar Y, Chhabra L. Electrocardiogram. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549803/
Semenza, G. L. (2015, November 5). Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Molecular Aspects of Medicine. https://www.sciencedirect.com/science/article/pii/S0098299715300030?via%3Dihub
Sun, P., Zhang, Y., Yu, F., Parks, E., Lyman, A., Wu, Q., Ai, L., Hu, C. H., Zhou, Q., Shung, K., Lien, C. L., & Hsiai, T. K. (2009). Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Annals of biomedical engineering, 37(5), 890–901. https://doi.org/10.1007/s10439-009-9668-3
Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., Xie, M., Gao, C., Ye, Y., Duan, M., & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal frontiers : the review magazine of animal agriculture, 9(3), 68–77. https://doi.org/10.1093/af/vfz020
Vornanen, M., & Hassinen, M. (2016). Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin, Tex.), 10(2), 101–110. https://doi.org/10.1080/19336950.2015.1121335
Zhao, Yali & Yun, Morgan & Nguyen, Sean & Tran, Michelle & Nguyen, Thao. (2019). In Vivo Surface Electrocardiography for Adult Zebrafish. Journal of Visualized Experiments. 10.3791/60011.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d9befcbf-4d5e-447d-aa65-1c22c4ee02dc/download
https://repositorio.uniandes.edu.co/bitstreams/99b1aff0-3688-4077-8ffb-51bac2ebcff0/download
https://repositorio.uniandes.edu.co/bitstreams/553e5c1e-0ea3-47bd-8373-de2537b55d26/download
https://repositorio.uniandes.edu.co/bitstreams/0c390f4e-0d95-45ec-82f7-1955a2fa0206/download
https://repositorio.uniandes.edu.co/bitstreams/db50e66d-3b55-4ada-9e4b-90f451f59420/download
https://repositorio.uniandes.edu.co/bitstreams/13b318dc-cd8f-4a2f-8380-29cfa147b36b/download
https://repositorio.uniandes.edu.co/bitstreams/dc74346e-a0a4-42dd-9b51-b11ece4f7925/download
https://repositorio.uniandes.edu.co/bitstreams/c3798286-0000-4494-9e85-11ec7aa0096b/download
bitstream.checksum.fl_str_mv 96dd8fb467964e2e6856708f788466f1
73fe87564a3a95639cd416173a404d8e
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
557a2638103d34307148a3916e02d6a4
544e62e093c6679bd883b498bfddefaa
514f5cf00b625119a28012527f5df92c
8b763f525ca05f9ce99d4f02ad8cba47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927761037426688
spelling Garavito Aguilar, Zayra Vivianavirtual::22807-1Vásquez Vélez, Isabel Cristinavirtual::22806-1Arenas Pérez, CamiloFacultad de Ciencias::Laboratorio de Biología del desarrollo (Bioldes)2025-01-29T20:23:46Z2025-01-29T20:23:46Z2025-01-29https://hdl.handle.net/1992/75796instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Cardiovascular diseases remain a leading cause of mortality globally. Heart failure often results in irreversible damage and the formation of non-contractile fibrotic scars that are not capable of proper electrical transmission as they are not an adequate substitute for cardiomyocytes. The scars are made of a non-contractile collagenous tissue that thins and compacts over time, increasing stress to the heart walls causing problems such as arrhythmias. Current research focuses on regenerative approaches to restore the lost cardiac tissue, using model organisms such as zebrafish (Danio rerio) due to their heart regeneration capacity, and similarities to humans in cell composition and electric activity. This study investigates the effects of hypobaric hypoxia on the regeneration processes as the hypoxia-inducible factors (HIF) have been seen to change cell metabolism, management of oxidative stress, and angiogenesis likely affecting heart electric activity. This was functionally visualized following the ventricular regeneration process after cryoinjury using electrocardiogram (ECG) analysis. Thus, we assess the cardiac electrical activity throughout the regeneration process of the zebrafish comparing a state of normoxia and a state of hypobaric hypoxia. All ECG data were processed through a principal component analysis, which revealed possible differences in cardiac recovery patterns between hypoxic and normoxic groups. Hypoxia-exposed zebrafish demonstrated potentially faster heart rate recovery, shorter RR intervals, likely influenced by chronic hypoxia adaptations such as enhanced HIF-1α expression and increased sympathetic nerve activity. These findings suggest that hypoxia could make the regeneration process more efficient, and prepare the heart for events of heart failure, which correlates with studies of humans permanently residing in high-altitude regions.This work was funded by the Universidad de los Andes (Bogotá – Colombia) through the seed project (INV-2021-126-2278), and by the Pontificia Universidad Javeriana (Bogotá – Colombia) – Vice-Rectorate of Research in the internal call for support of interdisciplinary research projects 2021 (project ID 20457).Pregrado21 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPHeart RegenerationElectrocardiogramHypoxiaNormoxiaDanio rerioHypobaric hypoxiaBiologíaArel, E., Rolland, L., Thireau, J., Torrente, AG., Bechard, E., Bride, J., Jopling, C., Demion, M., & Guennec, J.-Y. L. (2022, January 1). Characterization of the adult zebrafish electrocardiogram. bioRxiv. https://doi.org/10.1101/2022.02.02.478776Bo, B., Li, S., Zhou, K., & Wei, J. (2021). The Regulatory Role of Oxygen Metabolism in Exercise-Induced Cardiomyocyte Regeneration. Frontiers in cell and developmental biology, 9, 664527. https://doi.org/10.3389/fcell.2021.664527Bocchi, E. A., Arias, A., Verdejo, H., Diez, M., Gómez, E., Castro, P., & Interamerican Society of Cardiology (2013). The reality of heart failure in Latin America. Journal of the American College of Cardiology, 62(11), 949–958. https://doi.org/10.1016/j.jacc.2013.06.013Boron, W. F. & Boulpaep, E. L. Cardiac Electrophysiology and the Electrocardiogram. Medical Physiology (Third Edition, pp. 483–506). Elsevier. Retrieved 2024, from https://www-clinicalkey-com.ezproxy.uniandes.edu.co/#!/content/book/3-s2.0-B9781455743773000215.Burtscher M. (2013). Effects of living at higher altitudes on mortality: a narrative review. Aging and disease, 5(4), 274–280. https://doi.org/10.14336/AD.2014.0500274Burtscher, J., Citherlet, T., Camacho-Cardenosa, A., Camacho-Cardenosa, M., Raberin, A., Krumm, B., Hohenauer, E., Egg, M., Lichtblau, M., Müller, J., Rybnikova, E. A., Gatterer, H., Debevec, T., Baillieul, S., Manferdelli, G., Behrendt, T., Schega, L., Ehrenreich, H., Millet, G. P., Gassmann, M., … Mallet, R. T. (2024). Mechanisms underlying the health benefits of intermittent hypoxia conditioning. The Journal of physiology, 602(21), 5757–5783. https://doi.org/10.1113/JP285230Calbet, J. A., Robach, P., & Lundby, C. (2009). The exercising heart at altitude. Cellular and molecular life sciences : CMLS, 66(22), 3601–3613. https://doi.org/10.1007/s00018-009-0148-6Chablais, F., Veit, J., Rainer, G. et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11, 21 (2011). https://doi.org/10.1186/1471-213X-11-21Dall, C., Khan, M., Chen, C.-A., & Angelos, M. G. (2016). Oxygen cycling to improve survival of stem cells for myocardial repair: A Review. Life Sciences, 153, 124–131. https://doi.org/10.1016/j.lfs.2016.04.011Dbouk, H. A., Mroue, R. M., El-Sabban, M. E., & Talhouk, R. S. (2009). Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell communication and signaling : CCS, 7, 4. https://doi.org/10.1186/1478-811X-7-4Ezzati, M., Murray Horwitz, M. E., Thomas, D. S., Friedman, A. B., Roach, R., Clark, T., Murray, C. J., & Honigman, B. (2012). Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. Journal of epidemiology and community health, 66(7), e17. https://doi.org/10.1136/jech.2010.112938Faeh D, Gutzwiller F, Bopp M. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation. 2009;120(6):495–501.Faulhaber, M., Gatterer, H., Haider, T., Linser, T., Netzer, N., & Burtscher, M. (2015). Heart rate and blood pressure responses during hypoxic cycles of a 3-week intermittent hypoxia breathing program in patients at risk for or with mild COPD. International journal of chronic obstructive pulmonary disease, 10, 339–345. https://doi.org/10.2147/COPD.S75749Gao, R., & Ren, J. (2021, July 20). Zebrafish models in therapeutic research of cardiac conduction disease. Frontiers. https://doi.org/10.3389/fcell.2021.731402Garbern, J. C., & Lee, R. T. (2022). Heart regeneration: 20 years of progress and renewed optimism. Developmental cell, 57(4), 424–439. https://doi.org/10.1016/j.devcel.2022.01.012González-Rosa, J. M., Burns, C. E., & Burns, C. G. (2017). Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 4(3), 105–123. https://doi.org/10.1002/reg2.83Hara H, Takeda N, Komuro I. Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regen. 2017;37(1):1–10Hochachka P. W. (1998). Mechanism and evolution of hypoxia-tolerance in humans. The Journal of experimental biology, 201(Pt 8), 1243–1254. https://doi.org/10.1242/jeb.201.8.1243Howe, K., Clark, M., Torroja, C. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503. https://doi.org/10.1038/nature12111Johnson FL. Pathophysiology and Etiology of Heart Failure. Cardiol Clin [Internet]. 2014;32(1):9–19. Available from: http://dx.doi.org/10.1016/j.ccl.2013.09.015Jopling, C., Suñé, G., Faucherre, A., Fabregat, C., & Izpisua Belmonte, J. C. (2012). Hypoxia induces myocardial regeneration in zebrafish. Circulation, 126(25), 3017–3027. https://doi.org/10.1161/CIRCULATIONAHA.112.107888Kotini, M., Barriga, E.H., Leslie, J. et al. Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat Commun 9, 3846 (2018). https://doi.org/10.1038/s41467-018-06368-xMandic, M., Joyce, W., & Perry, S. F. (2021). The evolutionary and physiological significance of the HIF pathway in teleost fishes. Journal of Experimental Biology, 224(18). https://doi.org/10.1242/jeb.231936Nakada, Y., Canseco, D. C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C. X., Shah, A. M., Zhang, H., Faber, J. E., Kinter, M. T., Szweda, L. I., Xing, C., Hu, Z., Deberardinis, R. J., Schiattarella, G., Hill, J. A., Oz, O., Lu, Z., Zhang, C. C., … Sadek, H. A. (2016). Hypoxia induces heart regeneration in adult mice. Nature, 541(7636), 222–227. https://doi.org/10.1038/nature20173Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G., & Ravens, U. (2010). Adult zebrafish heart as a model for human heart? An electrophysiological study. Journal of molecular and cellular cardiology, 48(1), 161–171. https://doi.org/10.1016/j.yjmcc.2009.08.034Ostadal B, Kolar F. (2007). Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects. Respir Physiol Neurobiol. 2007;158(2–3):224–36. https://doi.org/10.1016/j.resp.2007.03.005Price, E. L., Vieira, J. M., & Riley, P. R. (2019). Model organisms at the heart of regeneration. Disease models & mechanisms, 12(10), dmm040691. https://doi.org/10.1242/dmm.040691Richardson, W. J., Clarke, S. A., Quinn, T. A., & Holmes, J. W. (2015). Physiological Implications of Myocardial Scar Structure. Comprehensive Physiology, 5(4), 1877–1909. https://doi.org/10.1002/cphy.c140067Rodríguez-Sinovas, A., Sánchez, J. A., Valls-Lacalle, L., Consegal, M., & Ferreira-González, I. (2021). Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. International journal of molecular sciences, 22(9), 4413. https://doi.org/10.3390/ijms22094413Sattar Y, Chhabra L. Electrocardiogram. [Updated 2023 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549803/Semenza, G. L. (2015, November 5). Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Molecular Aspects of Medicine. https://www.sciencedirect.com/science/article/pii/S0098299715300030?via%3DihubSun, P., Zhang, Y., Yu, F., Parks, E., Lyman, A., Wu, Q., Ai, L., Hu, C. H., Zhou, Q., Shung, K., Lien, C. L., & Hsiai, T. K. (2009). Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Annals of biomedical engineering, 37(5), 890–901. https://doi.org/10.1007/s10439-009-9668-3Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., Xie, M., Gao, C., Ye, Y., Duan, M., & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal frontiers : the review magazine of animal agriculture, 9(3), 68–77. https://doi.org/10.1093/af/vfz020Vornanen, M., & Hassinen, M. (2016). Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin, Tex.), 10(2), 101–110. https://doi.org/10.1080/19336950.2015.1121335Zhao, Yali & Yun, Morgan & Nguyen, Sean & Tran, Michelle & Nguyen, Thao. (2019). In Vivo Surface Electrocardiography for Adult Zebrafish. Journal of Visualized Experiments. 10.3791/60011.201921832Publicationhttps://scholar.google.es/citations?user=J1xQFB4AAAAJvirtual::22807-1https://scholar.google.es/citations?user=J1xQFB4AAAAJ0000-0001-5671-7017virtual::22807-10000-0001-5671-7017https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001443145virtual::22807-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00014431454033451d-4829-428f-99e0-968786798fcbvirtual::22807-1c4e8efc5-f462-4923-99a7-533f94552debvirtual::22806-14033451d-4829-428f-99e0-968786798fcbc4e8efc5-f462-4923-99a7-533f94552debvirtual::22806-14033451d-4829-428f-99e0-968786798fcbvirtual::22807-1ORIGINAL201921832_ForAutTesis_202420.pdf201921832_ForAutTesis_202420.pdfHIDEapplication/pdf383773https://repositorio.uniandes.edu.co/bitstreams/d9befcbf-4d5e-447d-aa65-1c22c4ee02dc/download96dd8fb467964e2e6856708f788466f1MD51Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdfEvaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdfapplication/pdf906197https://repositorio.uniandes.edu.co/bitstreams/99b1aff0-3688-4077-8ffb-51bac2ebcff0/download73fe87564a3a95639cd416173a404d8eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/553e5c1e-0ea3-47bd-8373-de2537b55d26/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/0c390f4e-0d95-45ec-82f7-1955a2fa0206/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXT201921832_ForAutTesis_202420.pdf.txt201921832_ForAutTesis_202420.pdf.txtExtracted texttext/plain2106https://repositorio.uniandes.edu.co/bitstreams/db50e66d-3b55-4ada-9e4b-90f451f59420/download557a2638103d34307148a3916e02d6a4MD55Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdf.txtEvaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdf.txtExtracted texttext/plain41448https://repositorio.uniandes.edu.co/bitstreams/13b318dc-cd8f-4a2f-8380-29cfa147b36b/download544e62e093c6679bd883b498bfddefaaMD57THUMBNAIL201921832_ForAutTesis_202420.pdf.jpg201921832_ForAutTesis_202420.pdf.jpgGenerated Thumbnailimage/jpeg11336https://repositorio.uniandes.edu.co/bitstreams/dc74346e-a0a4-42dd-9b51-b11ece4f7925/download514f5cf00b625119a28012527f5df92cMD56Evaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdf.jpgEvaluation of cardiac regeneration through electrocardiograms in Danio rerio in state of hypobaric hypoxia.pdf.jpgGenerated Thumbnailimage/jpeg7608https://repositorio.uniandes.edu.co/bitstreams/c3798286-0000-4494-9e85-11ec7aa0096b/download8b763f525ca05f9ce99d4f02ad8cba47MD581992/75796oai:repositorio.uniandes.edu.co:1992/757962025-03-05 09:38:29.508http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K