Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design

Effective valorization of vegetable biomass under the biorefinery concept depends on taking full advantage of its chemical composition, which must be accurately quantified to appropriately valorize each one of its fractions. For this, it is necessary to use comprehensive and reliable compositional a...

Full description

Autores:
Durán Aranguren, Daniel David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68392
Acceso en línea:
http://hdl.handle.net/1992/68392
Palabra clave:
Biomass
Valorization
Composition
Biorefinery
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_d8c3d61dac086246d48ea0ba3d84d95d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68392
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
title Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
spellingShingle Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
Biomass
Valorization
Composition
Biorefinery
Ingeniería
title_short Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
title_full Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
title_fullStr Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
title_full_unstemmed Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
title_sort Vegetable biomass composition: The key parameter for biomass valorization and biorefinery design
dc.creator.fl_str_mv Durán Aranguren, Daniel David
dc.contributor.advisor.none.fl_str_mv Sierra Ramírez, Rocío
Posada Duque, John Alexander
Mussatto, Solange I.
dc.contributor.author.none.fl_str_mv Durán Aranguren, Daniel David
dc.contributor.jury.none.fl_str_mv El-Halwagi, Mahmoud
Saldarriaga, Juan Fernando
Dos Santos, Julio
dc.subject.keyword.none.fl_str_mv Biomass
Valorization
Composition
Biorefinery
topic Biomass
Valorization
Composition
Biorefinery
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description Effective valorization of vegetable biomass under the biorefinery concept depends on taking full advantage of its chemical composition, which must be accurately quantified to appropriately valorize each one of its fractions. For this, it is necessary to use comprehensive and reliable compositional analysis methods. Also, the classification of different types of biomasses, greatly contributes to the accuracy of the compositional analysis while facilitating the selection pathways (operations, processes, products) during the design process based on a specific feedstock. This work proposes a pioneer methodological framework for biorefinery design that suggests using the composition of vegetable biomass as a key parameter for biomass valorization and biorefinery design. Novel techniques that involve the use of data clustering, a form of unsupervised learning, will be implemented to find patterns that could help in the classification of vegetable biomass composition. This results in the formation of groups that, together with biomass cascading criteria which prioritizes the use of materials and products over energy were used as a guide to obtain experimental data regarding yields of different products under various processing conditions to maximize the recovery of valuable substances in a biorefinery from orange residues. This work included a systematic literature review about compositional analysis methods and biomass characterization techniques that could be used for biorefinery design, the construction of a biomass composition database used to obtain different groups through data clustering, a revision on how lignocellulosic biomass and fruit-derived biomass are currently valorized considering their composition, and finally the valorization of valuable fractions recovered from orange residues the formulation of a baked good, the evaluation of different valorization techniques for orange residues, and finally an experimental cascade to integrate several processing options into a biorefinery.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-13T14:45:07Z
dc.date.available.none.fl_str_mv 2023-07-13T14:45:07Z
dc.date.issued.none.fl_str_mv 2023-07-11
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68392
dc.identifier.doi.none.fl_str_mv 10.57784/1992/68392
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68392
identifier_str_mv 10.57784/1992/68392
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv [1]. FAO. (2020). FAO - News Article: Food loss and waste must be reduced for greater food security and environmental sustainability. FAO. http://www.fao.org/news/story/en/item/1310271/icode/
[2]. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
[3]. Halder, P., Azad, K., Shah, S., & Sarker, E. (2019). Prospects and technological advancement of cellulosic bioethanol ecofuel production. In Advances in Eco-Fuels for a Sustainable Environment. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00008-5
[4]. Reuters. (2019). How ethanol plant shutdowns deepen pain for U.S. corn farmers. Commodities News. https://www.reuters.com/article/us-usa-biofuels-corn-idUSKBN1YH1B7
[5]. Slegers, P. M., Olivieri, G., Breitmayer, E., Sijtsma, L., Eppink, M. H. M., Wijffels, R. H., & Reith, J. H. (2020). Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Frontiers in Bioengineering and Biotechnology, 8(September), 1-17. https://doi.org/10.3389/fbioe.2020.550758
6]. Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., Van Ree, R., & de Jong, E. Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534-546. https://doi.org/10.1002/bbb.17
[7]. Kokossis, A. C., & Yang, A. (2010). On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Computers and Chemical Engineering, 34(9), 1397-1405. https://doi.org/10.1016/j.compchemeng.2010.02.021
[8]. Aristizábal Marulanda, V., & Cardona Alzate, C. A. (2019). Methods for designing and 18 assessing biorefineries: Review. Biofuels, Bioproducts and Biorefining, 13(3), 789-808. https://doi.org/10.1002/bbb.1961
[9]. Olsson, O., Bruce, L., Roos, A., Hektor, B., Guisson, R., Lamers, P., Hartley, D., Ponitka, J., Hildebrandt, J., & Thrän, D. (2016). Cascading of woody biomass: definitions, policies and effects on international trade. In IEA Bioenergy Task 40 working paper. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/t40-cascading-2016.pdf
10]. Battista, F., Zanzoni, S., Strazzera, G., Andreolli, M., & Bolzonella, D. (2020). The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 157, 1203-1211. https://doi.org/10.1016/j.renene.2020.05.11
[11]. Fehrenbach, H., Köppen, S., Kauertz, B., Detzel, A., & Wellenreuther, F. (2017). Biomass Cascades: Increasing Resource Efficiency by Cascading Use of Biomass From Theory to Practice.
[12]. Weihrauch, J. L., & Teter, B. B. (1994). Fruit and vegetable by-products as sources of oil. In Technological Advances in Improved and Alternative Sources of Lipids (pp. 177-208). Springer US. https://doi.org/10.1007/978-1-4615-2109-9_7
[13]. Chen, G.-L. L., Chen, S.-G. G., Zhao, Y.-Y. Y., Luo, C.-X. X., Li, J., & Gao, Y.-Q. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. https://doi.org/10.1016/j.indcrop.2014.03.018
[14]. Kringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3-4), 1-9. https://doi.org/10.1002/star.201900200
[15]. Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K., & Sforza, S. (2016). Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chemistry, 201, 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 418 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Química y de Alimentos
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/be4cc3b4-81e1-45c1-b928-ce70cf99cab2/download
https://repositorio.uniandes.edu.co/bitstreams/7cc76b7a-111b-4730-9575-0bcd7c5d4b1e/download
https://repositorio.uniandes.edu.co/bitstreams/57bef231-b092-4de3-97be-61e8a9683881/download
https://repositorio.uniandes.edu.co/bitstreams/9f3df730-cdfc-41a7-b292-4da602410cf9/download
https://repositorio.uniandes.edu.co/bitstreams/2c02d130-2a57-4775-9f46-6af9a626409c/download
https://repositorio.uniandes.edu.co/bitstreams/84b0db63-ec37-45d3-b8e9-945da12a4aaa/download
https://repositorio.uniandes.edu.co/bitstreams/13d1928e-39bf-4f2f-a7fb-9211457636fb/download
bitstream.checksum.fl_str_mv 309470c702234b253298eb6302302898
8b444b3382ad64f64b1b90545179acaa
5aa5c691a1ffe97abd12c2966efcb8d6
2a6184c824ed76baf9f1ac6b40f0a94d
37be4ae5f71e02d0322b13845f10d692
4ddaf00b1f0b70566c673d80fa558c78
801d314a54ad0fd2a5e57a53c9ebf286
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134023473922048
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ramírez, Rocío5bf6ec03-11ab-4982-b9b3-276a721a2d60600Posada Duque, John Alexander5e20d1e5-d900-4f1b-a8c4-d42d6fa2a2ec600Mussatto, Solange I.f8b63149-1252-4525-94b9-d08c7ed06170600Durán Aranguren, Daniel David3d641d76-8210-47b9-9f63-06c05281c2c6600El-Halwagi, MahmoudSaldarriaga, Juan FernandoDos Santos, Julio2023-07-13T14:45:07Z2023-07-13T14:45:07Z2023-07-11http://hdl.handle.net/1992/6839210.57784/1992/68392instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Effective valorization of vegetable biomass under the biorefinery concept depends on taking full advantage of its chemical composition, which must be accurately quantified to appropriately valorize each one of its fractions. For this, it is necessary to use comprehensive and reliable compositional analysis methods. Also, the classification of different types of biomasses, greatly contributes to the accuracy of the compositional analysis while facilitating the selection pathways (operations, processes, products) during the design process based on a specific feedstock. This work proposes a pioneer methodological framework for biorefinery design that suggests using the composition of vegetable biomass as a key parameter for biomass valorization and biorefinery design. Novel techniques that involve the use of data clustering, a form of unsupervised learning, will be implemented to find patterns that could help in the classification of vegetable biomass composition. This results in the formation of groups that, together with biomass cascading criteria which prioritizes the use of materials and products over energy were used as a guide to obtain experimental data regarding yields of different products under various processing conditions to maximize the recovery of valuable substances in a biorefinery from orange residues. This work included a systematic literature review about compositional analysis methods and biomass characterization techniques that could be used for biorefinery design, the construction of a biomass composition database used to obtain different groups through data clustering, a revision on how lignocellulosic biomass and fruit-derived biomass are currently valorized considering their composition, and finally the valorization of valuable fractions recovered from orange residues the formulation of a baked good, the evaluation of different valorization techniques for orange residues, and finally an experimental cascade to integrate several processing options into a biorefinery.Doctor en IngenieríaDoctorado418 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosVegetable biomass composition: The key parameter for biomass valorization and biorefinery designTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDBiomassValorizationCompositionBiorefineryIngeniería[1]. FAO. (2020). FAO - News Article: Food loss and waste must be reduced for greater food security and environmental sustainability. FAO. http://www.fao.org/news/story/en/item/1310271/icode/[2]. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330[3]. Halder, P., Azad, K., Shah, S., & Sarker, E. (2019). Prospects and technological advancement of cellulosic bioethanol ecofuel production. In Advances in Eco-Fuels for a Sustainable Environment. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00008-5[4]. Reuters. (2019). How ethanol plant shutdowns deepen pain for U.S. corn farmers. Commodities News. https://www.reuters.com/article/us-usa-biofuels-corn-idUSKBN1YH1B7[5]. Slegers, P. M., Olivieri, G., Breitmayer, E., Sijtsma, L., Eppink, M. H. M., Wijffels, R. H., & Reith, J. H. (2020). Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Frontiers in Bioengineering and Biotechnology, 8(September), 1-17. https://doi.org/10.3389/fbioe.2020.5507586]. Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., Van Ree, R., & de Jong, E. Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534-546. https://doi.org/10.1002/bbb.17[7]. Kokossis, A. C., & Yang, A. (2010). On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Computers and Chemical Engineering, 34(9), 1397-1405. https://doi.org/10.1016/j.compchemeng.2010.02.021[8]. Aristizábal Marulanda, V., & Cardona Alzate, C. A. (2019). Methods for designing and 18 assessing biorefineries: Review. Biofuels, Bioproducts and Biorefining, 13(3), 789-808. https://doi.org/10.1002/bbb.1961[9]. Olsson, O., Bruce, L., Roos, A., Hektor, B., Guisson, R., Lamers, P., Hartley, D., Ponitka, J., Hildebrandt, J., & Thrän, D. (2016). Cascading of woody biomass: definitions, policies and effects on international trade. In IEA Bioenergy Task 40 working paper. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/t40-cascading-2016.pdf10]. Battista, F., Zanzoni, S., Strazzera, G., Andreolli, M., & Bolzonella, D. (2020). The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 157, 1203-1211. https://doi.org/10.1016/j.renene.2020.05.11[11]. Fehrenbach, H., Köppen, S., Kauertz, B., Detzel, A., & Wellenreuther, F. (2017). Biomass Cascades: Increasing Resource Efficiency by Cascading Use of Biomass From Theory to Practice.[12]. Weihrauch, J. L., & Teter, B. B. (1994). Fruit and vegetable by-products as sources of oil. In Technological Advances in Improved and Alternative Sources of Lipids (pp. 177-208). Springer US. https://doi.org/10.1007/978-1-4615-2109-9_7[13]. Chen, G.-L. L., Chen, S.-G. G., Zhao, Y.-Y. Y., Luo, C.-X. X., Li, J., & Gao, Y.-Q. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. https://doi.org/10.1016/j.indcrop.2014.03.018[14]. Kringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3-4), 1-9. https://doi.org/10.1002/star.201900200[15]. Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K., & Sforza, S. (2016). Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chemistry, 201, 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012200911650PublicationTEXTThesis_DDDA_30_05_2023.pdf.txtThesis_DDDA_30_05_2023.pdf.txtExtracted texttext/plain685696https://repositorio.uniandes.edu.co/bitstreams/be4cc3b4-81e1-45c1-b928-ce70cf99cab2/download309470c702234b253298eb6302302898MD55biblioteca - JP2 (1)-1.pdf.txtbiblioteca - JP2 (1)-1.pdf.txtExtracted texttext/plain1481https://repositorio.uniandes.edu.co/bitstreams/7cc76b7a-111b-4730-9575-0bcd7c5d4b1e/download8b444b3382ad64f64b1b90545179acaaMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/57bef231-b092-4de3-97be-61e8a9683881/download5aa5c691a1ffe97abd12c2966efcb8d6MD53ORIGINALThesis_DDDA_30_05_2023.pdfThesis_DDDA_30_05_2023.pdfTrabajo de grado de doctorado. Documento completo, incluye anexos.application/pdf21597182https://repositorio.uniandes.edu.co/bitstreams/9f3df730-cdfc-41a7-b292-4da602410cf9/download2a6184c824ed76baf9f1ac6b40f0a94dMD52biblioteca - JP2 (1)-1.pdfbiblioteca - JP2 (1)-1.pdfHIDEapplication/pdf370976https://repositorio.uniandes.edu.co/bitstreams/2c02d130-2a57-4775-9f46-6af9a626409c/download37be4ae5f71e02d0322b13845f10d692MD54THUMBNAILThesis_DDDA_30_05_2023.pdf.jpgThesis_DDDA_30_05_2023.pdf.jpgIM Thumbnailimage/jpeg16967https://repositorio.uniandes.edu.co/bitstreams/84b0db63-ec37-45d3-b8e9-945da12a4aaa/download4ddaf00b1f0b70566c673d80fa558c78MD56biblioteca - JP2 (1)-1.pdf.jpgbiblioteca - JP2 (1)-1.pdf.jpgIM Thumbnailimage/jpeg16636https://repositorio.uniandes.edu.co/bitstreams/13d1928e-39bf-4f2f-a7fb-9211457636fb/download801d314a54ad0fd2a5e57a53c9ebf286MD581992/68392oai:repositorio.uniandes.edu.co:1992/683922024-08-26 15:25:38.302https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfembargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==